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Abstract: Motivated by a work of Li, we study nonlocal vertex algebras and their smash products
over fields of positive characteristic. Through smash products, modular vertex algebras associated
with positive definite even lattices are reconstructed. This gives a different construction of the modular
vertex algebras obtained from integral forms introduced by Dong and Griess in lattice vertex operator
algebras over a field of characteristic zero.
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1. Introduction

It is well known that there are three important classes of rational vertex operator algebras over the
field of complex numbers; namely, affine vertex operator algebras, Virasoro vertex operator algebras
and lattice vertex operator algebras (see [1]). It is natural to study the corresponding vertex algebra
structures over fields of prime characteristic first.

There have already been some works on modular vertex algebras and their representations. For ex-
ample, modular A(V) theory and An(V) theory were studied in [2,3], modular Virasoro vertex operator
algebras were studied in [4], and framed vertex operator algebras were studied in [5]. Modular ver-
tex algebras obtained from integral forms in some vertex operator algebras over the field of complex
numbers were used to study modular moonshine in [6–8].

Dong and Griess introduced an integral form of the vertex algebras associated with positive definite
even lattices over a field of characteristic zero in [9], and the related modular vertex algebras were
studied in [10].

In a series of papers (see [11–13]), Li studied nonlocal vertex algebras over a field of characteristic
zero. In particular, in [13] Li introduced a smash product construction of nonlocal vertex algebras
and used smash product to give a different construction of lattice vertex algebras and their modules
(cf. [1, 14]). Motivated by [13], in this paper we study nonlocal vertex algebras and the smash product
construction over fields of prime characteristic. As an application, modular vertex algebras associated
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with positive definite even lattices are reconstructed by using smash products. This gives another
construction of the modular vertex algebras obtained from integral forms introduced by Dong and
Griess of lattice vertex operator algebras over a field of characteristic zero.

This paper is organized as follows: In Section 2, we present some basic results on modular nonlocal
vertex algebras and give the smash product construction of nonlocal vertex algebras. In Section 3, we
use the smash product to construct the vertex algebras associated with positive definite even lattices.

2. Nonlocal vertex algebras and smash products

In this section, we first present some basic results on modular nonlocal vertex algebras. Then we
give the smash product construction of modular nonlocal vertex algebras. The proofs for most of the
results in this section are the same as those for characteristic zero (see [11–13]).

Let F be an algebraically closed field of an odd prime characteristic p, which is fixed throughout
this paper. All vector spaces, including algebras, are considered to be over F. We use Z for the integers,
Z+ for the positive integers, and N for the nonnegative integers.

Note that for any m ∈ Z, k ∈ N,(
m
k

)
=

m(m − 1) · · · (m + 1 − k)
k!

∈ Z.

Then we shall also view
(

m
k

)
as an element of F. Furthermore, for m ∈ Z we have

(x ± z)m =
∑
k∈N

(
m
k

)
(±1)kxm−kzk ∈ F[x, x−1][[z]].

The following definition is the same as in characteristic zero (see [11–13]).

Definition 2.1. A nonlocal vertex algebra is a vector space V endowed with a distinguished vector 1,
called the vacuum vector, and endowed with a linear map

Y(·, x) : V → (End V)[[x, x−1]]

v 7→ Y(v, x) =
∑
n∈Z

vnx−n−1 (2.1)

such that for u, v ∈ V ,

unv = 0 for n sufficiently large, (2.2)
Y(1, x) = 1, (2.3)

Y(v, x)1 ∈ V[[x]] and lim
x→0

Y(v, x)1 = v for v ∈ V (2.4)

and for u, v,w ∈ V , there exists a nonnegative integer l such that

(x0 + x2)lY(u, x0 + x2)Y(v, x2)w = (x0 + x2)lY(Y(u, x0)v, x2)w. (2.5)
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As in [15], define B to be the bialgebra with a basis {D(r) | r ∈ N}, where

D(m) · D(n) =

(
m + n

n

)
D(m+n), D(0) = 1,

∆(D(n)) =
n∑

i=0

D(n−i) ⊗D(i), ε(D(n)) = δn,0

for m, n ∈ N. Set
exD =

∑
n∈N

xnD(n) ∈ B[[x]]. (2.6)

The bialgebra structure of B can be described in terms of the generating functions as

exDezD = e(x+z)D, ∆(exD) = exD ⊗ exD, ε(exD) = 1, (2.7)

in particular, we have exDe−xD = 1.

Remark 2.2. Let U be any vector space. Then U[[x, x−1]] is a B-module withD(n) for n ∈ N acting as
the n-th Hasse differential operator ∂(n)

x with respect to x, which is defined by

∂(n)
x xm =

(
m
n

)
xm−n for m ∈ Z. (2.8)

Set ez∂x =
∑

n∈N zn∂(n)
x . Then

f (x + z) = ez∂x f (x) for f (x) ∈ U[[x, x−1]]. (2.9)

As in the case of characteristic zero, we have (cf. [13]):

Lemma 2.3. Let V be a nonlocal vertex algebra. Then V is naturally a B-module with

D(n)u = u−n−11 (2.10)

for u ∈ V and n ∈ N. Furthermore,

ex0DY(u, x2)e−x0D = Y(ex0Du, x2) = Y(u, x2 + x0) = ex0∂x2 Y(u, x2). (2.11)

Proof. Let u ∈ V . By (2.4) and (2.10), we have

exDu = Y(u, x)1, (2.12)

and in particular,D(0) = 1 on V .
Let l ∈ N be such that

(x0 + x2)lY(Y(u, x0)1, x2)1 = (x0 + x2)lY(u, x0 + x2)Y(1, x2)1.

As Y(1, x) = 1 and Y(u, x)1 only involves nonnegative powers of x, we have

(x0 + x2)lY(Y(u, x0)1, x2)1 = (x0 + x2)lY(u, x0 + x2)1
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= (x0 + x2)lY(u, x2 + x0)1.

Multiplying both sides by (x2 + x0)−l we obtain

Y(Y(u, x0)1, x2)1 = Y(u, x2 + x0)1.

Using (2.12) and the equation above, we have

ex2D(ex0Du) = Y(ex0Du, x2)1 = Y(Y(u, x0)1, x2)1
= Y(u, x2 + x0)1 = e(x2+x0)Du.

Therefore V is a B-module.
Let u, v ∈ V . Then there is l ∈ N such that

(x0 + x2)lY(Y(u, x0)1, x2)v = (x0 + x2)lY(u, x0 + x2)Y(1, x2)v
= (x0 + x2)lY(u, x0 + x2)v.

We may assume that xlY(u, x)v ∈ V[[x]] by replacing l with a bigger integer if necessary, so that

(x0 + x2)lY(u, x0 + x2)v = (x0 + x2)lY(u, x2 + x0)v.

Then
(x2 + x0)lY(Y(u, x0)1, x2)v = (x2 + x0)lY(u, x2 + x0)v.

Multiplying both sides by (x2 + x0)−l we have

Y(ex0Du, x2)v = Y(Y(u, x0)1, x2)v = Y(u, x2 + x0)v = ex0∂x2 Y(u, x2)v.

Let u, v ∈ V and let l ∈ N be such that

(x0 + x2)lY(Y(u, x0)v, x2)1 = (x0 + x2)lY(u, x0 + x2)Y(v, x2)1.

Since Y(Y(u, x0)v, x2)1 involves only nonnegative powers of x2, we can multiply both sides by (x0+x2)−l

to get
Y(Y(u, x0)v, x2)1 = Y(u, x0 + x2)Y(v, x2)1.

Then

ex2DY(u, x0)v = Y(Y(u, x0)v, x2)1 = Y(u, x0 + x2)Y(v, x2)1
= Y(u, x0 + x2)ex2Dv,

that is,
ex2DY(u, x0) = Y(u, x0 + x2)ex2D

on V . Applying e−x2D from left, as ex2De−x2D = 1, we have

ex2DY(u, x0)e−x2D = Y(u, x0 + x2).

Thus (2.11) holds. □
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The following two results of [11] are valid here with the same proof.

Lemma 2.4. For any subset S of a nonlocal vertex algebra V, the subalgebra ⟨S ⟩ generated by S is
linearly spanned by vectors

v(1)
n1

v(2)
n2
· · · v(r)

nr
1

for r ∈ N, v(i) ∈ S , ni ∈ Z.

Let V be a nonlocal vertex algebra. For u, v ∈ V , we say u, v are mutually local if there exists k ∈ N
such that

(x1 − x2)kY(u, x1)Y(v, x2) = (x1 − x2)kY(v, x2)Y(u, x1). (2.13)

A subset S of V is said to be local if every pair of elements of S are mutually local.

Lemma 2.5. Let V be a nonlocal vertex algebra and let S be a local subset of V. Then the subalgebra
⟨S ⟩ of V generated by S is a vertex algebra.

Definition 2.6. Let V be a nonlocal vertex algebra. A V-module is a vector space W endowed with a
linear map

YW(·, x) : V → (End W)[[x, x−1]]

v 7→ YW(v, x) =
∑
n∈Z

vnx−n−1 (2.14)

such that for v ∈ V and w ∈ W,

vnw = 0 for n sufficiently large, (2.15)
YW(1, x) = 1, (2.16)

and for u, v ∈ V and w ∈ W, there exists a nonnegative integer l such that

(x0 + x2)lYW(u, x0 + x2)YW(v, x2)w = (x0 + x2)lYW(Y(u, x0)v, x2)w. (2.17)

A unital associative algebra A is called a B-module algebra if A is a B-module such that

h · (ab) =
∑

(h(1) · a)(h(2) · b), h · 1 = ε(h)1 (2.18)

for h ∈ B and a, b ∈ A, where ∆(h) =
∑

h(1) ⊗ h(2) is in the Sweedler notation.

Example 2.7. Let A be a B-module algebra. Then A has a nonlocal vertex algebra structure with 1 as
the vacuum vector and

Y(a, x)b = (exDa)b for a, b ∈ A.

Furthermore, on any module W for A as an associative algebra, there exists a module structure YW for
A with YW(a, x)w = (exDa)w for a ∈ A, w ∈ W.

Remark 2.8. Let A and B be B-module algebras. Then A ⊗ B is a B-module algebra with exD =

exDA ⊗ exDB .
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Let V and U be nonlocal vertex algebras. A linear map f from V to U is a homomorphism of
nonlocal vertex algebras if

f (1) = 1,
f Y(u, x)v = Y( f (u), x) f (v) for u, v ∈ V.

It is straightforward to show that f exDV = exDU f if f is a homomorphism from V to U. A homomor-
phism of nonlocal vertex algebras from V to V is called an endomorphism of V .

Remark 2.9. Let A and B be B-module algebras. Then a linear map f from A to B is a homomorphism
of nonlocal vertex algebras from A to B if and only if f is a homomorphism of algebras and of B-
modules, that is, f exDA = exDB f .

As in the case of characteristic zero, we have:

Lemma 2.10. Let V and U be nonlocal vertex algebras and let f be a linear map from V to U. If

f (1) = 1,
f Y(u, x)v = Y( f (u), x) f (v) for u ∈ T, v ∈ V,

where T is a generating subset of V, then f is a homomorphism of nonlocal vertex algebras.

Proof. Set
S =

{
u ∈ V

∣∣∣ f (Y(u, x)w) = Y( f (u), x) f (w) for w ∈ V
}
.

We must show that V = S . Since T ⊂ S and T generates V , it suffices to show that S is a nonlocal
vertex subalgebra of V . As 1 ∈ S , it remains to show that for u, v ∈ S and n ∈ Z we have unv ∈ S , that
is,

f (Y(Y(u, x0)v, x2)w) = Y( f (Y(u, x0)v), x2) f (w) (2.19)

for w ∈ V . Let l ∈ N be such that

(x0 + x2)lY(u, x0 + x2)Y(v, x2)w = (x0 + x2)lY(Y(u, x0)v, x2)w,
(x0 + x2)lY( f (u), x0 + x2)Y( f (v), x2) f (w) = (x0 + x2)lY(Y( f (u), x0) f (v), x2) f (w).

Since u, v ∈ S , we have

(x0 + x2)l f Y(Y(u, x0)v, x2)w = (x0 + x2)l f Y(u, x0 + x2)Y(v, x2)w
= (x0 + x2)lY( f (u), x0 + x2) f Y(v, x2)w
= (x0 + x2)lY( f (u), x0 + x2)Y( f (v)v, x2) f (w)
= (x0 + x2)lY(Y( f (u), x0) f (v), x2) f (w)
= (x0 + x2)lY( f (Y(u, x0)v), x2) f (w).

Multiplying both sides by (x2 + x0)−l, we obtain (2.19). □

Let V be a nonlocal vertex algebra and let A be a B-module algebra. Following [13], we consider V
as a subalgebra of V ⊗ A by the natural embedding, and consider V ⊗ A as an A-module with A acting
on the second factor. Then

HomF(V,V ⊗ A) = EndA(V ⊗ A)
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as A-modules and as spaces. We also consider any linear map from V to V ⊗ A or from V to V as an
A-linear endomorphism of V ⊗A. Then we consider the vertex operator map Y of V as an A-linear map
from V ⊗ A to (End(V ⊗ A))[[x, x−1]], that is,

Y(v ⊗ a, x) = Y(v, x) ⊗ a for v ∈ V, a ∈ A.

We denote by Yten the vertex operator map of V ⊗ A.

Lemma 2.11. Let V be a nonlocal vertex algebra, let A be a B-module algebra, and let f be a linear
map from V to V ⊗ A. Then f is a homomorphism of nonlocal vertex algebras if and only if

f (1) = 1,
f Y(v, x) = Y((1 ⊗ exD) f (v), x) f for v ∈ V.

Proof. For any u ∈ V and a ∈ A, we see that

Yten(u ⊗ a, x) = Y(u, x) ⊗ Y(a, x) = Y(u, x) ⊗ (exDa) = Y((1 ⊗ exD)(u ⊗ a), x).

It follows that

Yten( f (v), x) = Y((1 ⊗ exD) f (v), x) for v ∈ V.

Then for v ∈ V , we see f Y(v, x) = Yten( f (v), x) f is equivalent to

f Y(v, x) = Y((1 ⊗ exD) f (v), x) f .

Thus our assertion follows. □

We denote by F((x))− the B-module algebra F((x)) withD(n) acting as (−1)n∂(n)
x for n ∈ N. Now we

consider the special case with A = F((x))−.

Definition 2.12. Let V be a nonlocal vertex algebra. We define PEnd(V) to be the subspace of
HomF(V,V ⊗ F((x))−) consisting of the elements f (x) such that

f (x)1 = 1,
f (x1)Y(u, x2) = Y( f (x1 − x2)u, x2) f (x1) for u ∈ V.

Lemma 2.13. Let V be a nonlocal vertex algebra and let f (x) ∈ HomF(V,V ⊗ F((x))−). Then f (x) ∈
PEnd(V) if and only if f (x) is a homomorphism of nonlocal vertex algebras from V to V ⊗ F((x))−.
Furthermore,

ezDV f (x)e−zDV = f (x + z) for f (x) ∈ PEnd(V). (2.20)

Proof. Since e−x2∂xg(x) = g(x − x2) for g(x) ∈ F((x))−, we have

f (x − x2)u = (1 ⊗ e−x2∂x) f (x)u for u ∈ V.

Thus the first assertion follows from Lemma 2.11.
For f (x) ∈ PEnd(V), since f (x) is a homomorphism of nonlocal vertex algebras, we have

f (x)e−zDV = (e−zDV ⊗ ez∂x) f (x) = e−zDV f (x + z).

Then (2.20) holds. □
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Let V be a nonlocal vertex algebra. We say a subset U of Hom(V,V ⊗ F((x))−) is ∆-closed if for
every a(x) ∈ U, there exist elements a(1i)(x), a(2i)(x) ∈ U, i = 1, 2, . . . , r, such that

a(x1)Y(u, x2) =
r∑

i=1

Y(a(1i)(x1 − x2)u, x2)a(2i)(x1) for u ∈ V. (2.21)

We denote by B(V) the sum of all the ∆-closed subspaces U of Hom(V,V ⊗ F((x))−) such that

a(x)1 ∈ F1 for a(x) ∈ U.

Using the same arguments in [13, Proposition 3.4] we have:

Lemma 2.14. Let V be a nonlocal vertex algebra. Then B(V) is ∆-closed and B(V) is a B-module
algebra with D(n) acting as ∂(n)

x for n ∈ N. Furthermore, V is a module for B(V) as a nonlocal vertex
algebra with YV(a(x), x0) = a(x0) for a(x) ∈ B(V).

The following notion is the modular counterpart of the notion of differential bialgebra in [13].

Definition 2.15. A B-module bialgebra is a bialgebra (B,∆, ε) endowed with a B-module structure
such that εexD = ε and ∆exD = (exD ⊗ exD)∆.

We shall need the following notion (see [13]).

Definition 2.16. A nonlocal vertex algebra V endowed with a coalgebra structure (V,∆, ε) is called a
vertex bialgebra if ∆ and ε are homomorphisms of nonlocal vertex algebras.

Let (B,∆, ε) be aB-module bialgebra. Then B is aB-module algebra, and we have a nonlocal vertex
algebra B by Example 2.7. From definition we have ∆(1) = 1 ⊗ 1 and ε(1) = 1. Furthermore,

ε(Y(a, x)b) = ε((exDa)b) = ε(exDa)ε(b) = ε(a)ε(b) = Y(ε(a), x)ε(b),
∆(Y(a, x)b) = ∆((exDa)b) = ∆(exDa)∆(b) = ((exD ⊗ exD)∆(a))∆(b)

= Y(∆(a), x)∆(b)

for a, b ∈ B. Then ∆ and ε are nonlocal vertex algebra homomorphisms. Thus B is a vertex bialgebra.

Definition 2.17. Let H be a vertex bialgebra. A nonlocal vertex H-module-algebra is a nonlocal vertex
algebra V endowed with an H-module structure on V such that

Y(h, x)u ∈ V ⊗ F((x)),
Y(h, x)1V = ε(h)1V ,

Y(h, x1)Y(v, x2)u =
∑

Y(Y(h(1), x1 − x2)v, x2)Y(h(2), x1)u

for h ∈ H, u, v ∈ V .

The following results of [13] hold with the same arguments.

Lemma 2.18. Let H be a vertex bialgebra, let T be a generating subset of H as a nonlocal vertex
algebra, let V be a nonlocal vertex algebra, and let (V,YH

V ) be an H-module. Suppose that

YH
V (h, x) ∈ Hom(V,V ⊗ F((x))−),
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YH
V (h, x)1 = ε(h)1,

YH
V (h, x1)Y(v, x2)u =

∑
Y(YH

V (h(1), x1 − x2)v, x2)YH
V (h(2), x1)u

for h ∈ T and u, v ∈ V. Then V is a nonlocal vertex H-module-algebra.

Theorem 2.19. Let H be a vertex bialgebra, and let V be a nonlocal vertex H-module-algebra. We
define V♯H = V ⊗ H as a vector space and define

Y♯(u ⊗ h, x)(v ⊗ k) =
∑

Y(u, x)Y(h(1), x)v ⊗ Y(h(2), x)k.

for u, v ∈ V and h, k ∈ H. Then (V♯H,Y♯) is a nonlocal vertex algebra. Furthermore,

Y♯(h, x1)Y♯(v, x2) =
∑

Y♯(Y(h(1), x1 − x2)v, x2)Y♯(h(2), x1)

for h ∈ H and v ∈ V.

3. Lattice vertex algebras

In [9], Dong and Griess introduced an integral form of vertex operator algebras associated to even
lattices over the complex field, from which one can define modular lattice vertex algebras. In this
section, we construct the modular lattice vertex algebras through smash product.

Let L be a positive definite even lattice with a basis {γ1, . . . , γd} and let L◦ be the dual lattice of L.
Let AL denote the d × d matrix (⟨γi, γ j⟩)1≤i, j≤d. Note that det(AL) is independent of the choice of a basis
for L. Let ϵ : L × L→ F× be a map such that

ϵ(α, 0) = ϵ(0, α) = 1,
ϵ(α, β + γ)ϵ(β, γ) = ϵ(α + β, γ)ϵ(α, β)

for α, β, γ ∈ L. Denote by Fϵ[L] the ϵ-twisted group algebra of L with F-basis {eα | α ∈ L} and
multiplication

eαeβ = ϵ(α, β)eα+β for α, β ∈ L.

Next, recall from [9] the ring M(1)Z. Denote by M(1) the polynomial algebra generated by sα,n for
α ∈ {γ1, . . . , γd} and n ∈ Z+. Set sα,0 = 1 for α ∈ {γ1, . . . , γd}. For α ∈ {γ1, . . . , γd}, we set

E−(−α, x) =
∑
n∈N

sα,nxn ∈ M(1)[[x]].

Note that E−(−α, x) is an invertible element of M(1)[[x]] as sα,0 = 1. For a general element α =
k1γ1 + k2γ2 + · · · + kdγd ∈ L, where k1, . . . , kd ∈ Z, we define

E−(−α, x) =
d∏

i=1

E−(−γi, x)ki ∈ M(1)[[x]].

Then for α, β ∈ L,

E−(α, x)E−(β, x) = E−(α + β, x),
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E−(0, x) = 1.

As M(1) is isomorphic to the universal enveloping algebra of the abelian Lie algebra with basis
{sα,n | α ∈ {γ1, . . . , γd}, n ∈ Z+}, we see M(1) is naturally a bialgebra with

ε(E−(−α, x)) = 1, (3.1)
∆(E−(−α, x)) = E−(−α, x) ⊗ E−(−α, x) (3.2)

for α ∈ L.
Define a B-action on M(1) by ezD1 = 1 and

ezD
r∏

i=1

E−(−αi, xi) =
r∏

i=1

E−(−αi, xi + z)E−(αi, z) (3.3)

for r ∈ Z+, αi ∈ {γ1, . . . , γd}. Then (3.3) holds for r ∈ Z+, αi ∈ L. It is straightforward to check

e(z+z0)D = ezDez0D on M(1),
ezD(ab) = (ezDa)(ezDb) for a, b ∈ M(1).

Then M(1) is a B-module algebra. Furthermore, for r ∈ Z+, αi ∈ L, we have

εezD
r∏

i=1

E−(−αi, xi) = ε
r∏

i=1

E−(−αi, xi + z)E−(αi, z) = 1

= ε

r∏
i=1

E−(−αi, xi),

and

∆ezD
r∏

i=1

E−(−αi, xi)

= ∆

r∏
i=1

E−(−αi, xi + z)E−(αi, z)

=

( r∏
i=1

E−(−αi, xi + z)E−(αi, z)
)
⊗

( r∏
i=1

E−(−αi, xi + z)E−(αi, z)
)

=

(
ezD

r∏
i=1

E−(−αi, xi)
)
⊗

(
ezD

r∏
i=1

E−(−αi, xi)
)

= (ezD ⊗ ezD)∆
r∏

i=1

E−(−αi, xi).

Therefore, (M(1),∆, ε) is a B-module bialgebra.
For α ∈ {γ1, γ2, . . . , γd}, we inductively define linear operators rα,n for n ∈ N on M(1) by

rα,n1 = δn,01, (3.4)
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rα,n
r∏

i=1

sβi,mi =
∑

j1,..., jr∈N

( r∏
i=1

(−1) ji

(
⟨α, βi⟩

ji

)
sβi,mi− ji

)
rα,n− j1−···− jr 1 (3.5)

for βi ∈ {γ1, γ2, . . . , γd}, mi ∈ N, where rα,m is understood to be zero if m < 0. From (3.5), we see

rα,nsβ,m =
∑
i∈N

(−1)i

(
⟨α, β⟩

i

)
sβ,m−irα,n−i on M(1) (3.6)

for β ∈ {γ1, γ2, . . . , γd} and m ∈ N. For α ∈ {γ1, γ2, . . . , γd}, we set

E+(−α, x) =
∑
n∈N

rα,nx−n ∈ (End M(1))[[x−1]].

Furthermore, for α = k1γ1 + k2γ2 + · · · + kdγd ∈ L, where k1, . . . , kd ∈ Z, we define

E+(−α, x) =
d∏

i=1

E+(−γi, x)ki ∈ (End M(1))[[x−1]].

Then for α, β ∈ L,

E+(α, x)E+(β, x) = E−(α + β, x),
E+(0, x) = 1,

and furthermore,

E+(−α, x1)E−(−β, x2) =
(
1 −

x2

x1

)⟨α,β⟩
E−(−β, x2)E+(−α, x1). (3.7)

Lemma 3.1. In the B-module algebra M(1), we have

∆
(
E−(−α, x)E+(−α, x)u

)
=

(
E−(−α, x)E+(−α, x) ⊗ E−(−α, x)

)
∆u (3.8)

for α ∈ L and u ∈ M(1).

Proof. We use induction on m to show (3.8) holds for u = sα1,n1 sα2,n2 . . . sαm,nm with m ∈ N, αi ∈ L,
ni ∈ N. For u = 1, we have

∆E−(−α, x)E+(−α, x)1 = ∆E−(−α, x) = E−(−α, x) ⊗ E−(−α, x)
= (E−(−α, x)E+(−α, x) ⊗ E−(−α, x))(1 ⊗ 1)
= (E−(−α, x)E+(−α, x) ⊗ E−(−α, x))∆1.

The induction step is given by

∆E−(−α, x)E+(−α, x)E−(−β, z)u

=

(
1 −

z
x

)⟨α,β⟩
∆E−(−β, z)E−(−α, x)E+(−α, x)u

=

(
1 −

z
x

)⟨α,β⟩
(∆E−(−β, z))(∆E−(−α, x)E+(−α, x)u)
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=

(
1 −

z
x

)⟨α,β⟩
(E−(−β, z) ⊗ E−(−β, z))(E−(−α, x)E+(−α, x) ⊗ E−(−α, x))∆u

=

(
1 −

z
x

)⟨α,β⟩
(E−(−β, z)E−(−α, x)E+(−α, x) ⊗ E−(−β, z)E−(−α, x))∆u

= (E−(−α, x)E+(−α, x)E−(−β, z) ⊗ E−(−α, x)E−(−β, z))∆u

= (E−(−α, x)E+(−α, x) ⊗ E−(−α, x))∆E−(−β, z)u.

This completes the induction. As M(1) is spanned by elements of the form

sα1,n1 sα2,n2 . . . sαm,nm ,

our assertion follows. □

Set
BL,ϵ = Fϵ[L] ⊗ M(1), (3.9)

an associative algebra.

Lemma 3.2. For α ∈ L and u ∈ M(1), define

exD(eα ⊗ u) = eα ⊗ E−(−α, x)exDu.

Then BL,ϵ is a B-module algebra.

Proof. For eα ⊗ u, eβ ⊗ v ∈ BL,ϵ , we have

exD((eα ⊗ u)(eβ ⊗ v)) = ϵ(α, β)exD(eα+β ⊗ uv)
= ϵ(α, β)eα+β ⊗ E−(−α − β, x)exD(uv)
= eαeβ ⊗ E−(−α, x)E−(−β, x)(exDu)(exDv)
=

(
eα ⊗ E−(−α, x)(exDu)

)(
eβ ⊗ E−(−β, x)(exDv)

)
= (exDeα ⊗ u)(exDeβ ⊗ v).

Thus BL,ϵ is a B-module algebra. □

Set
BL = F[L] ⊗ M(1), (3.10)

a unital commutatively associative algebra. As in the case of characteristic zero (see [13]), we have the
following universal property of BL:

Lemma 3.3. Let A be a B-module algebra and let f : F[L] → A be a homomorphism of algebras.
Then f can be extended uniquely to a homomorphism of B-module algebras from BL to A.

Proof. For α ∈ {γ1, γ2, . . . , γd}, define

f E−(−α, x) = ( f e−α)exD f eα. (3.11)

Since M(1) is freely generated by sα,n for α ∈ {γ1, γ2, . . . , γd} and n ∈ Z+, it follows that f can be
extended to a homomorphism of algebras.
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Now, we show that in fact (3.11) holds for all α ∈ L. Let P be the subset of L consisting of α such
that (3.11) holds for all n ∈ N. From definition, we have γi ∈ P for 1 ≤ i ≤ d. Assume α, β ∈ P. Then
we get

f E−(−α − β, x) = f (E−(−α, x)E−(−β, x))
= ( f e−α)(exD f eα)( f e−β)(exD f eβ)
= ( f e−α)( f e−β)(exD f eα)(exD f eβ)
= ( f e−α−β)exD(( f eα)( f eβ))
= ( f e−α−β)exD( f eα+β),

proving α + β ∈ P.
Now, assume α ∈ P. As E−(α, x)E−(−α, x) = 1 and (exD f eα)(exD f e−α) = exD1 = 1, we have

f E−(α, x) = ( f E−(−α, x))−1 = (( f e−α)exD f eα)−1 = ( f eα)exD f e−α,

proving −α ∈ P. Thus P = L, that is, (3.11) holds for all α ∈ L.
Next we show that f is a homomorphism of B-modules. For α ∈ L, we have

f exD(eα) = f (eα ⊗ E−(−α, x)) = ( f eα)( f e−α)exD( f eα) = exD( f eα).

Using the equation above and (3.3), we have

exD f E−(−α, z) = exD(( f e−α)ezD f eα)
= (exD f e−α)(exDezD f eα)
= ( f eα)(exD f e−α)( f e−α)(e(z+x)D f eα)
= f (E−(α, x)) f (E−(−α, z + x))
= f

(
E−(α, x)E−(−α, z + x)

)
= f exDE−(−α, z).

Since BL as an algebra is generated by sα,n and eα for α ∈ L and n ∈ N, it follows that f exD = exD f .
Thus f is a B-module homomorphism. □

For α ∈ L, we define xα ∈ (End VL)[x, x−1] by

xα(eβ ⊗ u) = x⟨α,β⟩(eβ ⊗ u) (3.12)

for β ∈ L◦ and u ∈ M(1).

Lemma 3.4. For α ∈ L, we have

E+(−α, x)xα ∈ PEnd(BL,ϵ).

Proof. For β ∈ L, we have

(ex2DE+(−α, x1 − x2)(x1 − x2)αeβ)E+(−α, x1)xα1
= (x1 − x2)⟨α,β⟩(ex2Deβ)E+(−α, x1)xα1

Electronic Research Archive Volume 30, Issue 1, 204–220.



217

= (x1 − x2)⟨α,β⟩E−(−β, x2)eβE+(−α, x1)xα1
= (x1 − x2)⟨α,β⟩E−(−β, x2)E+(−α, x1)eβxα1

= (x1 − x2)⟨α,β⟩
(
1 −

x2

x1

)−⟨α,β⟩
E+(−α, x1)E−(−β, x2)eβxα1

= x−⟨α,β⟩1 (x1 − x2)⟨α,β⟩
(
1 −

x2

x1

)−⟨α,β⟩
E+(−α, x1)E−(−β, x2)xα1 eβ

= E+(−α, x1)E−(−β, x2)xα1 eβ
= E+(−α, x1)xα1 ex2Deβ.

Since L generates VL,ϵ as a nonlocal vertex algebra, it follows from Lemma 2.10 that E+(−α, x)xα is a
homomorphism of nonlocal vertex algebras. By Lemma 2.13, we see that E+(−α, x)xα ∈ PEnd(BL,ϵ).

□

Lemma 3.5. There exists a unique BL-module structure YM on BL,ϵ such that

YM(eα, x) = E+(−α, x)xα for α ∈ L,

and (BL,ϵ ,YM) is a nonlocal vertex BL-module-algebra.

Proof. Denote Φα(x) = E+(−α, x)xα for α ∈ L. By Lemma 3.4, we have Φα(x) ∈ PEnd(BL,ϵ). Clearly
Φ0(x) = 1 and

Φα(x)Φβ(x) = Φα+β(x) for α, β ∈ L.

Let A be the subalgebra of B(BL,ϵ) generated by ∂(n)
x Φα(x) for n ∈ N, α ∈ L. Clearly A is a commutative

B-module algebra. By Lemma 3.3, there exists a homomorphism f of B-module algebras from BL to
A such that f (eα) = Φα(x) for all α ∈ L. Then by Lemma 2.18 we see that BL,ϵ is a nonlocal vertex
BL-module-algebra. □

As BL,ϵ is a nonlocal vertex BL-module-algebra by Lemma 3.5, we have the nonlocal vertex algebra
BL,ϵ♯BL by Theorem 2.19.

Theorem 3.6. Denote
U =

∐
α∈L

F(eα ⊗ eα) ⊗ ∆(M(1)),

a subspace of BL,ϵ♯BL. Then U is a vertex subalgebra of the nonlocal vertex algebra BL,ϵ♯BL, and the
linear map

π : VL → U,

eα ⊗ u 7→ (eα ⊗ eα) ⊗ ∆(u)

for α ∈ L and u ∈ M(1) is a vertex algebra homomorphism. Furthermore, if det(AL) . 0 (mod p), the
map π is an isomorphism.

Proof. This is a slight modification of the proof in [13]. As ∆ is a homomorphism from M(1) to
M(1) ⊗ M(1), we see that π is a linear homomorphism. We then show that π is a vertex algebra
homomorphism. Let α, β ∈ L and u ∈ M(1). Then we have

YVL(eα, x)(eβ ⊗ u) = x⟨α,β⟩ϵ(α, β)(eα+β ⊗ E−(−α, x)E+(−α, x)u).
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By Lemma 3.1, we have

π(YVL(eα, x)(eβ ⊗ u))
= x⟨α,β⟩ϵ(α, β)(eα+β ⊗ eα+β)∆(E−(−α, x)E+(−α, x)u)
= x⟨α,β⟩ϵ(α, β)(eα+β ⊗ eα+β)(E−(−α, x)E+(−α, x) ⊗ E−(−α, x))∆(u).

Since ∆(eα) = eα ⊗ eα, by Lemma 3.2 we have

Y♯(eα ⊗ eα, x) = YBL,ϵ (eα, x)YM(eα, x) ⊗ YBL(eα, x)
= E−(−α, x)eαE+(−α, x)xα ⊗ E−(−α, x)eα.

Then

Y♯(eα ⊗ eα, x)π(eβ ⊗ u)
= E−(−α, x)eαE+(−α, x)xα ⊗ E−(−α, x)eα(eβ ⊗ eβ)∆(u)
= x⟨α,β⟩ϵ(α, β)(eα+β ⊗ eα+β)(E−(−α, x)E+(−α, x) ⊗ E−(−α, x))∆(u).

Therefore

π(YVL(eα, x)(eβ ⊗ u)) = Y♯(eα ⊗ eα, x)π(eβ ⊗ u)

for α, β ∈ L and u ∈ M(1). Since L generates VL as a vertex algebra by [10, Theorem 1], it follows
from Lemma 2.10 that π is a nonlocal vertex algebra homomorphism. As VL is a vertex algebra, we see
that π is a vertex algebra homomorphism. If det(AL) . 0 (mod p), it follows from [10, Theorem 13]
that VL is a simple vertex algebra, then π is an isomorphism. □

Extend ϵ to a map from L × L◦ to F× such that

ϵ(α, β)ϵ(α + β, γ) = ϵ(α, β + γ)ϵ(β, γ)

for α, β ∈ L and γ ∈ L◦ (see [14]). Define an Fϵ[L]-module structure on F[L◦] by

eα · eγ = ϵ(α, γ)eα+γ for α ∈ L, γ ∈ L◦.

Set
VL◦ = F[L◦] ⊗ M(1).

By the same proof of [13, Proposition 5.8], we have:

Proposition 3.7. There exists a unique VL-module structure on VL◦ such that

Y(eα, x) = E−(−α, x)E+(−α, x)eαxα

for α ∈ L.
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