Citation: Kwang-Min Choi. Airborne PM2.5 characteristics in semiconductor manufacturing facilities[J]. AIMS Environmental Science, 2018, 5(3): 216-228. doi: 10.3934/environsci.2018.3.216
[1] | Miller FJ, Gardner DE, Graham JA, et al. (1979) Size considerations for establishing a standard for inhalable particles. J Air Poll Control Assoc 29: 610–615. doi: 10.1080/00022470.1979.10470831 |
[2] | Schwarze PE, Øvrevik J, Låg M, et al. (2006) Particulate matter properties and health effects: consistency of epidemiological and toxicological studies. Human Exp Toxicol 25: 559–579. doi: 10.1177/096032706072520 |
[3] | Valavanidis A, Fiotakis K, Vlachogianni T (2008) Airborne particulate matter and human health: toxicological assessment and importance size and composition of particles for oxidative damage and carcinogenic mechanisms. J Environ Sci Health Part C 26: 339–362. doi: 10.1080/10590500802494538 |
[4] | International Agency for Research on Cancer (IARC) (2013) Outdoor air pollution. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 109. |
[5] | Donaldson K, MacNee W (2001) Potential mechanisms of adverse pulmonary and cardiovascular effects of particulate air pollution (PM10). Int J Hyg Environ Health 203: 411–415. doi: 10.1078/1438-4639-00059 |
[6] | MacNee W, Donaldson K (2003) Mechanism of lung injury caused by PM10 and ultrafine particles with special reference to COPD. Eur Respir J 21: 47s–51s. doi: 10.1183/09031936.03.00403203 |
[7] | Dominici F, Peng RD, Bell ML, et al. (2006) Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 295: 1127–1134. doi: 10.1001/jama.295.10.1127 |
[8] | Schlesinger RB (2007) The health impact of common inorganic components of fine particulate matter (PM2.5) in ambient air: a critical review. Inhal Toxicol 19: 811–832. doi: 10.1080/08958370701402382 |
[9] | Leiva MA, Santibanez DA, Ibarra S, et al. (2013) A five-year study of particulate matter (PM2.5) and cerebrovascular diseases. Environ Pollut 181: 1–6. doi: 10.1016/j.envpol.2013.05.057 |
[10] | Atkinson RW, Kang S, Anderson HR, et al. (2014) Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: a systematic review and meta-analysis. Thorax Thoraxjnl-2013. |
[11] | Xing YF, Xu YH, Shi MH, et al. (2016) The impact of PM2.5 on the human respiratory system. J Thorac Dis 8: E69–E74. |
[12] | Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113: 823–839. doi: 10.1289/ehp.7339 |
[13] | Franklin M, Koutrakis P, Schwartz J (2008) The role of particle composition on the association between PM2.5 and mortality. Epidemiology 19: 680–689. doi: 10.1097/EDE.0b013e3181812bb7 |
[14] | Thornton JA, McGuire GE (1988) Semiconductor Materials and Process Technology Handbook. New Jersey: Noyes Publications, 329. |
[15] | May GS, Spans CJ (2006) Fundamental of Semiconductor Manufacturing and Process Control. John Wiley & Sons, Inc., New Jersey. |
[16] | Ino K, Natori I, Ichikawa A, et al. (1996) Plasma enhanced in situ chamber cleaning evaluated by extracted-plasma-parameter analysis. IEEE Trans Semicond Manuf 9: 230–240. doi: 10.1109/66.492817 |
[17] | Ji B, Elder DL, Yang JH, et al. (2009) Power dependence of NF3 plasma stability for in situ chamber cleaning. J Appl Phys 95: 4446–4451. |
[18] | International Organization for Standard (ISO). ISO 14644-1, Cleanrooms and associate controlled environments-Part 1: classification of air cleanliness. 1999. |
[19] | Whyte W (2001) Cleanroom Technology: Fundamentals of Design, Testing and Operation. John Wiley & Sons, Inc., Chichester, UK. Chapter 1: 1–8. |
[20] | USEPA (2012) Particulate Matter (PM) Standard. United States Environmental Protection Agency. |
[21] | Ministry of Environment (2011) Clean Air Conservation Act. |
[22] | Giugliano M, Lonati G, Butelli P, et al. (2005) Fine particulate (PM2.5–PM1) at urban sites different traffic exposure. Atmos Environ 39: 2421–2431. doi: 10.1016/j.atmosenv.2004.06.050 |
[23] | Lee SC, Cheng Y, Ho FK, et al. (2006) PM1.0 and PM2.5 characteristics in the roadside environment of Hong Kong. Aerosol Sci Technol 40: 157–165. doi: 10.1080/02786820500494544 |
[24] | Fujii Y, Mahmud M, Tohno S, et al. (2016) A case study of PM2.5 characterization in Bangi, Selangor, Malaysia during the Southwest monsoon season. Aerosol Air Qual Res 16: 2685–2691. doi: 10.4209/aaqr.2015.04.0277 |
[25] | Lang J, Zhang Y, Zhou Y, et al. (2017) Trend of PM2.5 and chemical composition in Beijing, 2000-2015. Aerosol Air Qual Res 17: 412–425. doi: 10.4209/aaqr.2016.07.0307 |
[26] | Choi KM, Kim TH, Kim KS, et al. (2013) Hazard identification of powder generated from a chemical vapor deposition process in the semiconductor manufacturing industry. J Occup Environ Hyg 10: D1–D5. doi: 10.1080/15459624.2012.734274 |
[27] | Choi KM, An HC, Kim KS (2015) Identifying the hazard characteristics of powder by-products generated semiconductor fabrication processes. J Occup Environ Hyg 12: 114–122. doi: 10.1080/15459624.2014.955178 |
[28] | Talifu D, Wuji A, Tursun Y, et al. (2015) Micro-morphology characteristics and size distribution of PM2.5 in the Kuitun-Dushanzi region of Xinjiang, China. Aerosol Air Qual Res 15: 2258–2269. |
[29] | Hueglin C, Gehrig R, Baltensperger U, et al. (2005) Chemical characterization of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmos Environ 39: 637–651. doi: 10.1016/j.atmosenv.2004.10.027 |
[30] | Seneviratne S, Handagiripathira L, Sanjeevani S, et al. (2017) Identification of source of fine particulate matter in Kandy, Sri Lanka. Aerosol Air Qual Res 17: 476–484. doi: 10.4209/aaqr.2016.03.0123 |
[31] | Li TC, Yuan CS, Lo KC, et al. (2015) Seasonal variation and chemical characteristics of atmospheric particles at three islands in the Taiwan Strait. Aerosol Air Qual Res 15: 2277–2290. |