Citation: Joe Mari J. Maja, James Robbins. Controlling irrigation in a container nursery using IoT[J]. AIMS Agriculture and Food, 2018, 3(3): 205-215. doi: 10.3934/agrfood.2018.3.205
[1] | Acclima, Last accessed: July 03, 2017. Available from: https://acclima.com/research/SensorBasedAutomation.pdf. |
[2] | Argo WR and Biernbaum JA (1994) Irrigation requirements, root medium pH, and nutrient concentrations of Easter lilies grown in five peat-based media with and without an evaporation barrier. J Am Soc Hortic Sci 119: 1151–1156. |
[3] | Bayer A, Ruter J and van Iersel MW (2015) Automated irrigation control for improved growth and quality of Gardenia jasminoides 'Radicans' and 'August Beauty'. HortScience 50: 78–84. |
[4] | Belaynch BE, Lea-Cox JD and Lichtenberg E (2013) Costs and benefits of implementing sensor-controlled irrigation in a commercial pot-in-pot container nursery. HortTechn 23: 760–769. |
[5] | Chappell M, Dove SK, van Iersel MW, et al. (2013) Implementation of wireless sensor networks for irrigation control in three container nurseries. HortTechn 23: 747–753. |
[6] | Coates RW, Delwiche JM and Brown PH (2006) Design of a system for individual microsprinkler control. T ASABE 49: 1963–1970. doi: 10.13031/2013.22276 |
[7] | Cohen Y, Alchanatis V, Meron M, et al. (2005) Estimation of leaf water potential by thermal imagery and spatial analysis. J Exp Bot 56: 1843–1852. doi: 10.1093/jxb/eri174 |
[8] | de Castro A, Maja JM, Owen J, et al. (2018) Experimental approach to detect water stress in ornamental plants using sUAS-imagery. Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyphing, SPIE Commercial + Scientific Sensing and Imaging, Orlando, FL 2018 (in press). |
[9] | EPA Strategic Plan 2018–2022, Last accessed: July 03, 2018. Available from: https://www.epa.gov/sites/production/files/2018-02/documents/fy-2018-2022-epa-strategic-plan.pdf. |
[10] | Gago J, Douthe C, Coopman RE, et al. (2015) UAVs challenge to assess water stress for sustainable agriculture. Agr Water Manage 153: 9–19. doi: 10.1016/j.agwat.2015.01.020 |
[11] | Gilbert N (2012) Water under pressure. Nature 483: 256–257. doi: 10.1038/483256a |
[12] | Jacobson BK, Jones PH, Jones JW, et al. (1989) Real-time greenhouse monitoring and control with an expert system. Comput Electron Agr 3: 273–285. doi: 10.1016/0168-1699(89)90018-5 |
[13] | Kim Y and Evans RG (2009) Software design for wireless sensor-based site-specific irrigation. Comput Electron Agr 66: 159–165. doi: 10.1016/j.compag.2009.01.007 |
[14] | Kohanbash D, Kantor G, Martin T,et al. (2013) Wireless sensor network design for monitoring and irrigation control: user-centric hardware and software development. HortTechn. 23: 725–734. |
[15] | Lea-Cox JD, Bauerle WL, van Iersel MW, et al. (2013) Advancing wireless sensor networks for irrigation management of ornamental crops: an overview. HortTechn 23: 717–724. |
[16] | Majsztrik JC, Price EW and King DM (2013) Environmental benefits of wireless sensor-based irrigation networks: case-study projections and potential adoption rates. HortTechn 23: 783–793. |
[17] | Stone KC, Smajstrla AG and Zazueta FS (1985) Microcomputer-based data acquisition system for continuous soilwater potential measurements. Soil Crop Sci Soc Fla Proc 44: 49–53. |
[18] | Testezlaf R, Zazueta FS and Yeager TH (1997) A real-time irrigation control system for greenhouses. Appl Eng Agric 13: 329–332. doi: 10.13031/2013.21616 |
[19] | Van Iersel MW, Chappell M and Lea-Cox JD (2013) Sensors for improved efficiency of irrigation in greenhouse and nursery production. HortTechn. 23: 735–746. |