Citation: Hans-Georg Schwarz-v. Raumer, Elisabeth Angenendt, Norbert Billen, Rüdiger Jooß. Economic and ecological impacts of bioenergy crop production—a modeling approach applied in Southwestern Germany[J]. AIMS Agriculture and Food, 2017, 2(1): 75-100. doi: 10.3934/agrfood.2017.1.75
[1] | FNR. Cultivation of renewable raw materials in Germany. Fachagentur Nachwachsende Rohstoffe e.V. (FNR). 2010. Available from: http://www.nachwachsenderohstoffe.de/service/daten-und-fakten/anbau/?spalte=3 |
[2] | BMU. Nationaler Biomasseaktionsplan für Deutschland: Beitrag der Biomasse für eine nachhaltige Energieversorgung. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit; Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Berlin. 2010. Available from: https://www.bmbf.de/files/BiomasseaktionsplanNational.pdf |
[3] | Angenendt E, Triebe S, Zeddies J (2008) Der Beitrag erneuerbarer Energien zum Klimaschutz – Eine ökonomisch-ökologische Analyse für die Landwirtschaft von Niedersachsen, in: Glebe, T., Heißenhuber, A., Kirner, L., Pöchtrager, S., Salhofer, K. (Eds.), Agrar- und Ernährungswirtschaft im Umbruch, vol. 43. Landwirtschaftsverlag, Münster-Hiltrup, 463-472. |
[4] | Gregg JS, Izaurralde RC (2010) Effect of crop residue harvest on long-term crop yield, soil erosion and nutrient balance: trade-offs for a sustainable bioenergy feedstock. Biofuels 1: 69-83. doi: 10.4155/bfs.09.8 |
[5] | Wiesenthal T (2006) How much bioenergy can Europe produce without harming the environment? EEA Report No 7/2006. European Environment Agency, Copenhagen, Denmark, 67. |
[6] | Everaars J, Frank K, Huth A (2014) Species ecology and the impacts of bioenergy crops: an assessment approach with four example farmland bird species. GCB Bioenergy 6: 252-264. doi: 10.1111/gcbb.12135 |
[7] | Hellmann F, Verburg P (2010) Impact assessment of the European biofuel directive on land use and biodiversity. J Environ Manag 91: 1389-1396. doi: 10.1016/j.jenvman.2010.02.022 |
[8] | EC. Halting the loss of biodiversity by 2010 – and beyond. Sustaining ecosystem services for human well-being. COM (2006) 216 final. European Commission, Brussels, 2006. Available from: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2006:0216:FIN:EN:pdf. |
[9] | EC. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework of Community action in the field of water policy. O J (L 327), 1-73. 2000. Available from: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32000L0060:en:NOT |
[10] | Janssen S, Louhichi K, Kanellopoulos A, et al. (2010) A generic bio-economic farm model for environmental and economic assessment of agricultural systems. Environ Manag 46: 862-877. doi: 10.1007/s00267-010-9588-x |
[11] | Louhichi K, Kanellopoulos A, Janssen S, et al. (2010) FSSIM, a bio-economic farm model for simulating the response of EU farming systems to agricultural and environmental policies. Agric Syst 103: 585-597. doi: 10.1016/j.agsy.2010.06.006 |
[12] | Henseler M, Wirsig A, Herrmann S, et al. (2009) Modeling the impact of global change on regional agricultural land use through an activity-based non-linear programming approach. Agric Syst 100: 31-42. doi: 10.1016/j.agsy.2008.12.002 |
[13] | Wagner S, Angenendt E, Beletskaya O, et al. (2015) Costs and benefits of ammonia and particulate matter abatement in German agriculture including interactions with greenhouse gas emissions. Agric Syst 141: 58-68. doi: 10.1016/j.agsy.2015.09.003 |
[14] | Schönhart M, Schauppenlehner T, Schmid E, et al. (2011a) Integration of bio-physical and economic models to analyze management intensity and landscape structure effects at farm and landscape level. Agric Syst 104: 122-134. |
[15] | Kirchner M, Schmidt J, Kindermann G, et al. (2015) Ecosystem services and economic development in Austrian agricultural landscapes – The impact of policy and climate change scenarios on trade-offs and synergies. Ecol Econ 109: 161-174. doi: 10.1016/j.ecolecon.2014.11.005 |
[16] | Britz W, Leip A (2009) Development of marginal emission factors for N losses from agricultural soils with the DNDC–CAPRI meta-model. Agric Ecosyst Environ 133: 267-279. doi: 10.1016/j.agee.2009.04.026 |
[17] | Lotze-Campen H, Popp A, Beringer T, et al. (2010) Scenarios of global bioenergy production: The trade-offs between agricultural expansion, intensification and trade. Ecol Model 221: 2188-2196. doi: 10.1016/j.ecolmodel.2009.10.002 |
[18] | Ewert F, van Ittersum MK, Heckelei T, et al. (2011) Scale changes and model linking methods for integrated assessment of agri-environmental systems. Agric Ecosyst Environ 142: 6-17. doi: 10.1016/j.agee.2011.05.016 |
[19] | Ewert F, van Keulen H, van Ittersum MK (2006) Multi-scale analysis and modelling of natural resource management options, in: Proceedings of the iEMSs Third Biennial Meeting, "Summit on Environmental Modelling and Software", Burlington, USA. |
[20] | van Delden H, van Vliet J, Rutledge DT, et al. (2011) Comparison of scale and scaling issues in integrated land-use models for policy support. Agric Ecosyst Environ 142: 18-28. doi: 10.1016/j.agee.2011.03.005 |
[21] | Volk M, Ewert F (2011) Scaling methods in integrated assessment of agricultural systems-State-of-the-art and future directions. Agric Ecosyst Environ 142: 1-5. doi: 10.1016/j.agee.2010.10.014 |
[22] | van Notten P (2005) Writing on the wall: Scenario development in times of discontinuity. Dissertation.com, Boca Raton, FL, 211. |
[23] | Sparrow O (2000) Making Use of Scenarios – From the Vague to the Concrete. Scenar Strategy Plan 2: 18-21. |
[24] | Neufeldt H, Schäfer M, Angenendt E, et al. (2006) Disaggregated greenhouse gas emission inventories from agriculture via a coupled economic-ecosystem model. Agric Ecosyst Environ 112: 233-240. doi: 10.1016/j.agee.2005.08.024 |
[25] | Krimly T, Angenendt E, Bahrs E (2016) Global warming potential and abatement costs of different peatland management options: A case study for the Pre-alpine Hill and Moorland in Germany. Agric Syst 145: 1-12. doi: 10.1016/j.agsy.2016.02.009 |
[26] | EC, Farm Accountancy Data Network (FADN). 2016. Available from: http://ec.europa.eu/agriculture/rica/ |
[27] | KTBL, Calculation data for bioenergy. Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (KTBL). 2010. Available from: http://daten.ktbl.de/energy |
[28] | Öko-Institut, Globales Emissions-Modell Integrierter Systeme (GEMIS). Free software version 4.5. Öko-Institut e.V. Institut für angewandte Ökologie, Freiburg. 2010. Available from: http://www.oeko.de/service/gemis/ |
[29] | Triebe S (2007) Reduktion von Treibhausgasemissionen aus der Landwirtschaft: Dargestellt für die Bundesländer Brandenburg und Niedersachsen, 1st ed. Eul, Lohmar, Köln, 306. |
[30] | Schäfer M (2006) Abschätzung der Emissionen klimarelevanter Gase aus der Landwirtschaft Baden-Württembergs und Bewertung von Minderungsstrategien unter Nutzung eines ökonomisch-ökologischen Regionalmodells. Shaker, Aachen, 200. |
[31] | Gaiser T, Abdel-Razek M, Bakara H (2009) Modeling carbon sequestration under zero-tillage at the regional scale. II. The influence of crop rotation and soil type. Ecol Model 220: 3372-3379. |
[32] | Oldeman LR, van Engelen VWP (1993) A world soils and terrain digital database (SOTER) - An improved assessment of land resources. Geoderma 60: 309-325. doi: 10.1016/0016-7061(93)90033-H |
[33] | Williams JR (1995) The EPIC model, in: Singh, V.P. (Ed.), Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch, Colorado, 909-1000. |
[34] | Williams JR, Wang E, Meinardus A. EPIC Users Guide v. 0509. - i_EPIC. 2006. Available from: http://www.public.iastate.edu/~tdc/i_epic_main.html |
[35] | Schmid E, Balkovic J, Moltchanova E. Biophysical Process Modeling for EU25: Concept, Data, Methods, and Results: Deliverable D3 (T30), Final Report, Appendix II., EU FP 6 Project INSEA–Integrated Sink Enhancement Assessment (SSPI-CT-2003/503614 with DG RTD). International Institute for Applied Systems Analysis, Laxenburg, 2006. Available from: http://www.insea-eu.info/. |
[36] | Khalil K, Mary B, Renault P (2004) Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O2 concentration. Soil Biol Biochem 36: 687-699. doi: 10.1016/j.soilbio.2004.01.004 |
[37] | UMBW (1995) Bewertung von Böden nach ihrer Leistungsfähigkeit. Luft, Boden, Abfall 31. Ministerium für Umwelt Baden-Württemberg. |
[38] | FAO. Ecocrop – A Database for environmental requirements of crops. Food and Agriculture Organization of the United Nations. 2007. Available from: http://ecocrop.fao.org/ecocrop/srv/en/home. |
[39] | Sys C, van Ranst E, Debaveye J, et al. (1993) Land Evaluation – Part III: Crop Requierements. Agricultural Publication 7. General Administration for Development Cooperation, Brussels. |
[40] | Britz W, Leip A (2009) Development of marginal emission factors for N losses from agricultural soils with the DNDC–CAPRI meta-model. Agric Ecosyst Environ 133: 267-279. |
[41] | Chakir R (2009) Spatial Downscaling of Agricultural Land-Use Data: An Econometric Approach Using Cross Entropy. Land Econ 85: 238-251. doi: 10.3368/le.85.2.238 |
[42] | Gaiser T, Printz A, Schwarz-v.Raumer HG (2008) Development of a regional model for integrated management of water resources at the basin scale. Phys Chem Earth 33: 175-182. doi: 10.1016/j.pce.2007.04.018 |
[43] | Schwarz-v.Raumer HG, Printz A, Gaiser T (2007) Ein "Spatial Scenario Design Model" zur strategischen Unterstützung der Landnutzungspolitik im Ouémé-Einzugsgebiet (Benin), in: Strobl, J. (Ed.), Angewandte Geoinformatik 2007. Beiträge zum 19. AGIT-Symposium Salzburg. Wichmann, Heidelberg, 725-730. |
[44] | Jooß R, Geissler-Strobel S, Trautner J, et al. (2009) "Conservation responsibilities" of municipalities for target species Prioritizing conservation by assigning responsibilities to municipalities in Baden-Wuerttemberg, German. Landsc Urban Plan 93: 218-228. doi: 10.1016/j.landurbplan.2009.07.009 |
[45] | Jooß R. Schutzverantwortung von Gemeinden für Zielarten in Baden-Württemberg Empirische Analyse und naturschutzfachliche Diskussion einer Methode zur Auswahl von Vorranggebieten für den Artenschutz aus landesweiter Sicht. 2006. Available from: http:/elib.uni-stuttgart.de/bitstream/11682/62/1/Dokument_01.pdf |
[46] | MLR, LUBW. Informationssystem Zielartenkonzept Baden-Württemberg: Planungswerkzeug zur Erstellung eines kommunalen Zielarten- und Maßnahmenkonzepts Fauna ("Information System Target Species Concept" - a planning tool for designing conservation strategies for fauna species). Ministerium für Ernährung und Ländlichen Raum Baden-Württemberg (MLR), LUBW Landesanstalt für Umwelt Messungen und Naturschutz. 2009. Available from: http://www2.lubw.baden-Württemberg.de/public/abt5/zak/ |
[47] | Ministerium Ländlicher Raum Baden-Württemberg. Richtlinie des Ministeriums Ländlicher Raum zur Förderung der Erhaltung und Pflege der Kulturlandschaft und von Erzeugungspraktiken, die der Marktentlastung dienen (Marktentlastungs- und Kulturlandschaftsausgleich – MEKA II): Az. 65-8872.53 (Directive of the Ministry for Rural Areas of Baden-Württemberg Promoting a Reduction in Market Pressures and Protection of the Farmed Landscape). 2000. Available from: http://www.landwirtschaft-bw.info/pb/site/lel/get/documents/MLR.LEL/PB5Documents/recht/pdf/1/richtlinien.pdf |
[48] | Lambeck RJ (1997) Focal Species: A Multi-Species Umbrella for Nature Conservation. Conserv Biol 11: 849-856. |
[49] | Statistisches Landesamt Baden-Württemberg. Energiebericht 2014. 2014. Available from: www.statistik.baden-wuerttemberg.de/Service/Veroeff/Querschnittsveroeffentlichungen/806114002.pdf |
[50] | EEC (1991) Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources. O J (L 375), 1-8. |
[51] | Deppermann A, Grethe H, Offermann F (2014) Distributional effects of CAP liberalisation on western German farm incomes: An ex-ante analysis. Eur Rev Agric Econ 41: 605-626. doi: 10.1093/erae/jbt034 |
[52] | Wolf J, Kanellopoulos A, Kros J (2015) Combined analysis of climate, technological and price changes on future arable farming systems in Europe. Agric Syst 140: 56-73. doi: 10.1016/j.agsy.2015.08.010 |
[53] | Musshoff O (2012) Growing short rotation coppice on agricultural land in Germany: A Real Options Approach. Biomass Bioenerg 41: 73-85. doi: 10.1016/j.biombioe.2012.02.001 |
[54] | Wolbert-Haverkamp M, Musshoff O (2014) Are short rotation coppices an economically interesting form of land use? A real options analysis. Land Use Policy 38: 163-174. doi: 10.1016/j.landusepol.2013.10.006 |
[55] | Deppermann A, Blesl M, Boysen O (2014) Linkages between the energy and agricultural sectors: insights from European Union greenhouse gas mitigation scenarios. Mitig Adapt Strateg Glob Chang 21: 743-759. |
[56] | Alkan Olsson J, Bockstaller C, Stapleton LM, et al. (2009) A goal oriented indicator framework to support integrated assessment of new policies for agri-environmental systems. Environ Sci Policy 12: 562-572. doi: 10.1016/j.envsci.2009.01.012 |
[57] | Bockstaller C, Girardin P, van der Werf HMG (1997) Use of agro-ecological indicators for the evaluation of farming systems. Eur J Agron 7: 261-270. doi: 10.1016/S1161-0301(97)00041-5 |
[58] | van der Werf HMG, Petit J (2002) Evaluation of the environmental impact of agriculture at the farm level: a comparison and analysis of 12 indicator-based methods. Agric Ecosyst Environ 93: 131-145. |
[59] | EEA (2012) Climate change, impacts and vulnerability in Europe 2012: An indicator-based report, 12/2012. European Environment Agency; Office for Official Publ. of the Europ. Union, Copenhagen, 300. |
[60] | Krause S, Jacobs J, Voss A (2008) Assessing the impact of changes in landuse and management practices on the diffuse pollution and retention of nitrate in a riparian floodplain. Sci Total Environ 389: 149-164. doi: 10.1016/j.scitotenv.2007.08.057 |
[61] | Chen H, Marhan S, Billen N, et al. (2009) Soil organic-carbon and total nitrogen stocks as affected by different land uses in Baden-Württemberg (southwest Germany). J Plant Nutr Soil Sci 172: 32-42. doi: 10.1002/jpln.200700116 |
[62] | UBA (2006) Nationaler Inventarbericht zum deutschen Treibhausgasinventar 1990 - 2004. Climate Change 03/2006. Umweltbundesamt, Dessau; Berlin, 565. |
[63] | West T, Post W (2002) Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Sci Soc Am J 66: 1930-1946. doi: 10.2136/sssaj2002.1930 |
[64] | LTZ (2010) SchALVO Nitratbericht – Ergebnisse der Beprobungen 2009. Landwirtschaftliches Technologiezentrum Augustenberg (LTZ); Ministerium für Ländlichen Raum, Ernährung und Verbraucherschutz, Stuttgart. |
[65] | Kaiser EA, Ruser R (2000) Nitrous oxide emissions from arable soils in Germany - An evaluation of six long-term field experiments. J Plant Nutr Soil Sci 163: 249-259. |
[66] | Clemens G, Stahr K (1994) Present and past soil erosion rates in catchments of the Kraichgau area (SW-Germany). Catena 22: 153-168. doi: 10.1016/0341-8162(94)90023-X |
[67] | Auerswald K, Kainz M, Fiener P (2003) Soil erosion potential of organic versus conventional farming evaluated by USLE modelling of cropping statistics for agricultural districts in Bavaria. Soil Use Manag 19: 305-311. doi: 10.1079/SUM2003212 |