Research article

Economic and ecological impacts of bioenergy crop production—a modeling approach applied in Southwestern Germany

  • Received: 27 October 2016 Accepted: 19 February 2017 Published: 01 March 2017
  • This paper considers scenarios of cultivating energy crops in the German Federal State of Baden-Württemberg to identify potentials and limitations of a sustainable bioenergy production. Trade-offs are analyzed among income and production structure in agriculture, bioenergy crop production, greenhouse gas emissions, and the interests of soil, water and species habitat protection. An integrated modelling approach (IMA) was implemented coupling ecological and economic models in a model chain. IMA combines the Economic Farm Emission Model (EFEM; key input: parameter sets on farm production activities), the Environmental Policy Integrated Climate model (EPIC; key input: parameter sets on environmental cropping effects) and GIS geo-processing models. EFEM is a supply model that maximizes total gross margins on farm level with simultaneous calculation of greenhouse gas emission from agriculture production. Calculations by EPIC result in estimates for soil erosion by water, nitrate leaching, Soil Organic Carbon and greenhouse gas emissions from soil. GIS routines provide land suitability analyses, scenario settings concerning nature conservation and habitat models for target species and help to enable spatial explicit results. The model chain is used to calculate scenarios representing different intensities of energy crop cultivation. To design scenarios which are detailed and in step to practice, comprehensive data research as well as fact and effect analyses were carried out. The scenarios indicate that, not in general but when considering specific farm types, energy crop share extremely increases if not restricted and leads to an increase in income. If so this leads to significant increase in soil erosion by water, nitrate leaching and greenhouse gas emissions. It has to be expected that an extension of nature conservation leads to an intensification of the remaining grassland and of the arable land, which were not part of nature conservation measures, and thus do not lead to a significant decrease in income. It is concluded that an environment friendly extension of energy crops is possible when using scenario technique which enables to formulate more precise agri-environmental policies.

    Citation: Hans-Georg Schwarz-v. Raumer, Elisabeth Angenendt, Norbert Billen, Rüdiger Jooß. Economic and ecological impacts of bioenergy crop production—a modeling approach applied in Southwestern Germany[J]. AIMS Agriculture and Food, 2017, 2(1): 75-100. doi: 10.3934/agrfood.2017.1.75

    Related Papers:

  • This paper considers scenarios of cultivating energy crops in the German Federal State of Baden-Württemberg to identify potentials and limitations of a sustainable bioenergy production. Trade-offs are analyzed among income and production structure in agriculture, bioenergy crop production, greenhouse gas emissions, and the interests of soil, water and species habitat protection. An integrated modelling approach (IMA) was implemented coupling ecological and economic models in a model chain. IMA combines the Economic Farm Emission Model (EFEM; key input: parameter sets on farm production activities), the Environmental Policy Integrated Climate model (EPIC; key input: parameter sets on environmental cropping effects) and GIS geo-processing models. EFEM is a supply model that maximizes total gross margins on farm level with simultaneous calculation of greenhouse gas emission from agriculture production. Calculations by EPIC result in estimates for soil erosion by water, nitrate leaching, Soil Organic Carbon and greenhouse gas emissions from soil. GIS routines provide land suitability analyses, scenario settings concerning nature conservation and habitat models for target species and help to enable spatial explicit results. The model chain is used to calculate scenarios representing different intensities of energy crop cultivation. To design scenarios which are detailed and in step to practice, comprehensive data research as well as fact and effect analyses were carried out. The scenarios indicate that, not in general but when considering specific farm types, energy crop share extremely increases if not restricted and leads to an increase in income. If so this leads to significant increase in soil erosion by water, nitrate leaching and greenhouse gas emissions. It has to be expected that an extension of nature conservation leads to an intensification of the remaining grassland and of the arable land, which were not part of nature conservation measures, and thus do not lead to a significant decrease in income. It is concluded that an environment friendly extension of energy crops is possible when using scenario technique which enables to formulate more precise agri-environmental policies.


    加载中
    [1] FNR. Cultivation of renewable raw materials in Germany. Fachagentur Nachwachsende Rohstoffe e.V. (FNR). 2010. Available from: http://www.nachwachsenderohstoffe.de/service/daten-und-fakten/anbau/?spalte=3
    [2] BMU. Nationaler Biomasseaktionsplan für Deutschland: Beitrag der Biomasse für eine nachhaltige Energieversorgung. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit; Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Berlin. 2010. Available from: https://www.bmbf.de/files/BiomasseaktionsplanNational.pdf
    [3] Angenendt E, Triebe S, Zeddies J (2008) Der Beitrag erneuerbarer Energien zum Klimaschutz – Eine ökonomisch-ökologische Analyse für die Landwirtschaft von Niedersachsen, in: Glebe, T., Heißenhuber, A., Kirner, L., Pöchtrager, S., Salhofer, K. (Eds.), Agrar- und Ernährungswirtschaft im Umbruch, vol. 43. Landwirtschaftsverlag, Münster-Hiltrup, 463-472.
    [4] Gregg JS, Izaurralde RC (2010) Effect of crop residue harvest on long-term crop yield, soil erosion and nutrient balance: trade-offs for a sustainable bioenergy feedstock. Biofuels 1: 69-83. doi: 10.4155/bfs.09.8
    [5] Wiesenthal T (2006) How much bioenergy can Europe produce without harming the environment? EEA Report No 7/2006. European Environment Agency, Copenhagen, Denmark, 67.
    [6] Everaars J, Frank K, Huth A (2014) Species ecology and the impacts of bioenergy crops: an assessment approach with four example farmland bird species. GCB Bioenergy 6: 252-264. doi: 10.1111/gcbb.12135
    [7] Hellmann F, Verburg P (2010) Impact assessment of the European biofuel directive on land use and biodiversity. J Environ Manag 91: 1389-1396. doi: 10.1016/j.jenvman.2010.02.022
    [8] EC. Halting the loss of biodiversity by 2010 – and beyond. Sustaining ecosystem services for human well-being. COM (2006) 216 final. European Commission, Brussels, 2006. Available from: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2006:0216:FIN:EN:pdf.
    [9] EC. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework of Community action in the field of water policy. O J (L 327), 1-73. 2000. Available from: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32000L0060:en:NOT
    [10] Janssen S, Louhichi K, Kanellopoulos A, et al. (2010) A generic bio-economic farm model for environmental and economic assessment of agricultural systems. Environ Manag 46: 862-877. doi: 10.1007/s00267-010-9588-x
    [11] Louhichi K, Kanellopoulos A, Janssen S, et al. (2010) FSSIM, a bio-economic farm model for simulating the response of EU farming systems to agricultural and environmental policies. Agric Syst 103: 585-597. doi: 10.1016/j.agsy.2010.06.006
    [12] Henseler M, Wirsig A, Herrmann S, et al. (2009) Modeling the impact of global change on regional agricultural land use through an activity-based non-linear programming approach. Agric Syst 100: 31-42. doi: 10.1016/j.agsy.2008.12.002
    [13] Wagner S, Angenendt E, Beletskaya O, et al. (2015) Costs and benefits of ammonia and particulate matter abatement in German agriculture including interactions with greenhouse gas emissions. Agric Syst 141: 58-68. doi: 10.1016/j.agsy.2015.09.003
    [14] Schönhart M, Schauppenlehner T, Schmid E, et al. (2011a) Integration of bio-physical and economic models to analyze management intensity and landscape structure effects at farm and landscape level. Agric Syst 104: 122-134.
    [15] Kirchner M, Schmidt J, Kindermann G, et al. (2015) Ecosystem services and economic development in Austrian agricultural landscapes – The impact of policy and climate change scenarios on trade-offs and synergies. Ecol Econ 109: 161-174. doi: 10.1016/j.ecolecon.2014.11.005
    [16] Britz W, Leip A (2009) Development of marginal emission factors for N losses from agricultural soils with the DNDC–CAPRI meta-model. Agric Ecosyst Environ 133: 267-279. doi: 10.1016/j.agee.2009.04.026
    [17] Lotze-Campen H, Popp A, Beringer T, et al. (2010) Scenarios of global bioenergy production: The trade-offs between agricultural expansion, intensification and trade. Ecol Model 221: 2188-2196. doi: 10.1016/j.ecolmodel.2009.10.002
    [18] Ewert F, van Ittersum MK, Heckelei T, et al. (2011) Scale changes and model linking methods for integrated assessment of agri-environmental systems. Agric Ecosyst Environ 142: 6-17. doi: 10.1016/j.agee.2011.05.016
    [19] Ewert F, van Keulen H, van Ittersum MK (2006) Multi-scale analysis and modelling of natural resource management options, in: Proceedings of the iEMSs Third Biennial Meeting, "Summit on Environmental Modelling and Software", Burlington, USA.
    [20] van Delden H, van Vliet J, Rutledge DT, et al. (2011) Comparison of scale and scaling issues in integrated land-use models for policy support. Agric Ecosyst Environ 142: 18-28. doi: 10.1016/j.agee.2011.03.005
    [21] Volk M, Ewert F (2011) Scaling methods in integrated assessment of agricultural systems-State-of-the-art and future directions. Agric Ecosyst Environ 142: 1-5. doi: 10.1016/j.agee.2010.10.014
    [22] van Notten P (2005) Writing on the wall: Scenario development in times of discontinuity. Dissertation.com, Boca Raton, FL, 211.
    [23] Sparrow O (2000) Making Use of Scenarios – From the Vague to the Concrete. Scenar Strategy Plan 2: 18-21.
    [24] Neufeldt H, Schäfer M, Angenendt E, et al. (2006) Disaggregated greenhouse gas emission inventories from agriculture via a coupled economic-ecosystem model. Agric Ecosyst Environ 112: 233-240. doi: 10.1016/j.agee.2005.08.024
    [25] Krimly T, Angenendt E, Bahrs E (2016) Global warming potential and abatement costs of different peatland management options: A case study for the Pre-alpine Hill and Moorland in Germany. Agric Syst 145: 1-12. doi: 10.1016/j.agsy.2016.02.009
    [26] EC, Farm Accountancy Data Network (FADN). 2016. Available from: http://ec.europa.eu/agriculture/rica/
    [27] KTBL, Calculation data for bioenergy. Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (KTBL). 2010. Available from: http://daten.ktbl.de/energy
    [28] Öko-Institut, Globales Emissions-Modell Integrierter Systeme (GEMIS). Free software version 4.5. Öko-Institut e.V. Institut für angewandte Ökologie, Freiburg. 2010. Available from: http://www.oeko.de/service/gemis/
    [29] Triebe S (2007) Reduktion von Treibhausgasemissionen aus der Landwirtschaft: Dargestellt für die Bundesländer Brandenburg und Niedersachsen, 1st ed. Eul, Lohmar, Köln, 306.
    [30] Schäfer M (2006) Abschätzung der Emissionen klimarelevanter Gase aus der Landwirtschaft Baden-Württembergs und Bewertung von Minderungsstrategien unter Nutzung eines ökonomisch-ökologischen Regionalmodells. Shaker, Aachen, 200.
    [31] Gaiser T, Abdel-Razek M, Bakara H (2009) Modeling carbon sequestration under zero-tillage at the regional scale. II. The influence of crop rotation and soil type. Ecol Model 220: 3372-3379.
    [32] Oldeman LR, van Engelen VWP (1993) A world soils and terrain digital database (SOTER) - An improved assessment of land resources. Geoderma 60: 309-325. doi: 10.1016/0016-7061(93)90033-H
    [33] Williams JR (1995) The EPIC model, in: Singh, V.P. (Ed.), Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch, Colorado, 909-1000.
    [34] Williams JR, Wang E, Meinardus A. EPIC Users Guide v. 0509. - i_EPIC. 2006. Available from: http://www.public.iastate.edu/~tdc/i_epic_main.html
    [35] Schmid E, Balkovic J, Moltchanova E. Biophysical Process Modeling for EU25: Concept, Data, Methods, and Results: Deliverable D3 (T30), Final Report, Appendix II., EU FP 6 Project INSEA–Integrated Sink Enhancement Assessment (SSPI-CT-2003/503614 with DG RTD). International Institute for Applied Systems Analysis, Laxenburg, 2006. Available from: http://www.insea-eu.info/.
    [36] Khalil K, Mary B, Renault P (2004) Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O2 concentration. Soil Biol Biochem 36: 687-699. doi: 10.1016/j.soilbio.2004.01.004
    [37] UMBW (1995) Bewertung von Böden nach ihrer Leistungsfähigkeit. Luft, Boden, Abfall 31. Ministerium für Umwelt Baden-Württemberg.
    [38] FAO. Ecocrop – A Database for environmental requirements of crops. Food and Agriculture Organization of the United Nations. 2007. Available from: http://ecocrop.fao.org/ecocrop/srv/en/home.
    [39] Sys C, van Ranst E, Debaveye J, et al. (1993) Land Evaluation – Part III: Crop Requierements. Agricultural Publication 7. General Administration for Development Cooperation, Brussels.
    [40] Britz W, Leip A (2009) Development of marginal emission factors for N losses from agricultural soils with the DNDC–CAPRI meta-model. Agric Ecosyst Environ 133: 267-279.
    [41] Chakir R (2009) Spatial Downscaling of Agricultural Land-Use Data: An Econometric Approach Using Cross Entropy. Land Econ 85: 238-251. doi: 10.3368/le.85.2.238
    [42] Gaiser T, Printz A, Schwarz-v.Raumer HG (2008) Development of a regional model for integrated management of water resources at the basin scale. Phys Chem Earth 33: 175-182. doi: 10.1016/j.pce.2007.04.018
    [43] Schwarz-v.Raumer HG, Printz A, Gaiser T (2007) Ein "Spatial Scenario Design Model" zur strategischen Unterstützung der Landnutzungspolitik im Ouémé-Einzugsgebiet (Benin), in: Strobl, J. (Ed.), Angewandte Geoinformatik 2007. Beiträge zum 19. AGIT-Symposium Salzburg. Wichmann, Heidelberg, 725-730.
    [44] Jooß R, Geissler-Strobel S, Trautner J, et al. (2009) "Conservation responsibilities" of municipalities for target species Prioritizing conservation by assigning responsibilities to municipalities in Baden-Wuerttemberg, German. Landsc Urban Plan 93: 218-228. doi: 10.1016/j.landurbplan.2009.07.009
    [45] Jooß R. Schutzverantwortung von Gemeinden für Zielarten in Baden-Württemberg Empirische Analyse und naturschutzfachliche Diskussion einer Methode zur Auswahl von Vorranggebieten für den Artenschutz aus landesweiter Sicht. 2006. Available from: http:/elib.uni-stuttgart.de/bitstream/11682/62/1/Dokument_01.pdf
    [46] MLR, LUBW. Informationssystem Zielartenkonzept Baden-Württemberg: Planungswerkzeug zur Erstellung eines kommunalen Zielarten- und Maßnahmenkonzepts Fauna ("Information System Target Species Concept" - a planning tool for designing conservation strategies for fauna species). Ministerium für Ernährung und Ländlichen Raum Baden-Württemberg (MLR), LUBW Landesanstalt für Umwelt Messungen und Naturschutz. 2009. Available from: http://www2.lubw.baden-Württemberg.de/public/abt5/zak/
    [47] Ministerium Ländlicher Raum Baden-Württemberg. Richtlinie des Ministeriums Ländlicher Raum zur Förderung der Erhaltung und Pflege der Kulturlandschaft und von Erzeugungspraktiken, die der Marktentlastung dienen (Marktentlastungs- und Kulturlandschaftsausgleich – MEKA II): Az. 65-8872.53 (Directive of the Ministry for Rural Areas of Baden-Württemberg Promoting a Reduction in Market Pressures and Protection of the Farmed Landscape). 2000. Available from: http://www.landwirtschaft-bw.info/pb/site/lel/get/documents/MLR.LEL/PB5Documents/recht/pdf/1/richtlinien.pdf
    [48] Lambeck RJ (1997) Focal Species: A Multi-Species Umbrella for Nature Conservation. Conserv Biol 11: 849-856.
    [49] Statistisches Landesamt Baden-Württemberg. Energiebericht 2014. 2014. Available from: www.statistik.baden-wuerttemberg.de/Service/Veroeff/Querschnittsveroeffentlichungen/806114002.pdf
    [50] EEC (1991) Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources. O J (L 375), 1-8.
    [51] Deppermann A, Grethe H, Offermann F (2014) Distributional effects of CAP liberalisation on western German farm incomes: An ex-ante analysis. Eur Rev Agric Econ 41: 605-626. doi: 10.1093/erae/jbt034
    [52] Wolf J, Kanellopoulos A, Kros J (2015) Combined analysis of climate, technological and price changes on future arable farming systems in Europe. Agric Syst 140: 56-73. doi: 10.1016/j.agsy.2015.08.010
    [53] Musshoff O (2012) Growing short rotation coppice on agricultural land in Germany: A Real Options Approach. Biomass Bioenerg 41: 73-85. doi: 10.1016/j.biombioe.2012.02.001
    [54] Wolbert-Haverkamp M, Musshoff O (2014) Are short rotation coppices an economically interesting form of land use? A real options analysis. Land Use Policy 38: 163-174. doi: 10.1016/j.landusepol.2013.10.006
    [55] Deppermann A, Blesl M, Boysen O (2014) Linkages between the energy and agricultural sectors: insights from European Union greenhouse gas mitigation scenarios. Mitig Adapt Strateg Glob Chang 21: 743-759.
    [56] Alkan Olsson J, Bockstaller C, Stapleton LM, et al. (2009) A goal oriented indicator framework to support integrated assessment of new policies for agri-environmental systems. Environ Sci Policy 12: 562-572. doi: 10.1016/j.envsci.2009.01.012
    [57] Bockstaller C, Girardin P, van der Werf HMG (1997) Use of agro-ecological indicators for the evaluation of farming systems. Eur J Agron 7: 261-270. doi: 10.1016/S1161-0301(97)00041-5
    [58] van der Werf HMG, Petit J (2002) Evaluation of the environmental impact of agriculture at the farm level: a comparison and analysis of 12 indicator-based methods. Agric Ecosyst Environ 93: 131-145.
    [59] EEA (2012) Climate change, impacts and vulnerability in Europe 2012: An indicator-based report, 12/2012. European Environment Agency; Office for Official Publ. of the Europ. Union, Copenhagen, 300.
    [60] Krause S, Jacobs J, Voss A (2008) Assessing the impact of changes in landuse and management practices on the diffuse pollution and retention of nitrate in a riparian floodplain. Sci Total Environ 389: 149-164. doi: 10.1016/j.scitotenv.2007.08.057
    [61] Chen H, Marhan S, Billen N, et al. (2009) Soil organic-carbon and total nitrogen stocks as affected by different land uses in Baden-Württemberg (southwest Germany). J Plant Nutr Soil Sci 172: 32-42. doi: 10.1002/jpln.200700116
    [62] UBA (2006) Nationaler Inventarbericht zum deutschen Treibhausgasinventar 1990 - 2004. Climate Change 03/2006. Umweltbundesamt, Dessau; Berlin, 565.
    [63] West T, Post W (2002) Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Sci Soc Am J 66: 1930-1946. doi: 10.2136/sssaj2002.1930
    [64] LTZ (2010) SchALVO Nitratbericht – Ergebnisse der Beprobungen 2009. Landwirtschaftliches Technologiezentrum Augustenberg (LTZ); Ministerium für Ländlichen Raum, Ernährung und Verbraucherschutz, Stuttgart.
    [65] Kaiser EA, Ruser R (2000) Nitrous oxide emissions from arable soils in Germany - An evaluation of six long-term field experiments. J Plant Nutr Soil Sci 163: 249-259.
    [66] Clemens G, Stahr K (1994) Present and past soil erosion rates in catchments of the Kraichgau area (SW-Germany). Catena 22: 153-168. doi: 10.1016/0341-8162(94)90023-X
    [67] Auerswald K, Kainz M, Fiener P (2003) Soil erosion potential of organic versus conventional farming evaluated by USLE modelling of cropping statistics for agricultural districts in Bavaria. Soil Use Manag 19: 305-311. doi: 10.1079/SUM2003212
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(12662) PDF downloads(1209) Cited by(5)

Article outline

Figures and Tables

Figures(9)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog