Research article Special Issues

Biofilm scrubbing for restoration—algae community composition and succession in artificial streams

  • Received: 30 May 2016 Accepted: 07 September 2016 Published: 14 September 2016
  • Photoautotrophic biofilms play a pivotal role in self-purification of rivers. We took advantage of the biofilm’s cleaning capacity by applying artificial stream mesocosms, called algae turf scrubberTM (ATS), to reduce the nutrient load of a highly eutrophicated backwater in Vienna (Austria). Since purification strongly depends on benthic algae on the ATS, we focused on the algae community composition and succession. Estimation of coverage, photographic documentation for micromapping, species identification and pigment analyses were carried out. Already one week after exposition, 20–30 different taxa were recorded, suggesting a rapid colonization of the substrate. In total around 200 taxa were identified, mainly belonging to Chlorophyta, Bacillariophyceae and Cyanoprokaryota. Nonmetric multidimensional scaling implied that season and succession strongly influenced species composition on the ATS and a minimum turnover of 0.28 indicates a development towards a more stable community at the end of experiments. We measured maximum biomass production of ~250 g m−2 in June and August and during a period of 5 months nearly 19 kg ha−1 phosphorus could be removed. ATS systems proved to retain nutrients and produce algae biomass in an environmentally friendly and cost effective way and thus support restoration of highly eutrophicated water bodies.

    Citation: Jacqueline Jerney, Magdalena Mayr, Michael Schagerl. Biofilm scrubbing for restoration—algae community composition and succession in artificial streams[J]. AIMS Environmental Science, 2016, 3(3): 560-581. doi: 10.3934/environsci.2016.3.560

    Related Papers:

  • Photoautotrophic biofilms play a pivotal role in self-purification of rivers. We took advantage of the biofilm’s cleaning capacity by applying artificial stream mesocosms, called algae turf scrubberTM (ATS), to reduce the nutrient load of a highly eutrophicated backwater in Vienna (Austria). Since purification strongly depends on benthic algae on the ATS, we focused on the algae community composition and succession. Estimation of coverage, photographic documentation for micromapping, species identification and pigment analyses were carried out. Already one week after exposition, 20–30 different taxa were recorded, suggesting a rapid colonization of the substrate. In total around 200 taxa were identified, mainly belonging to Chlorophyta, Bacillariophyceae and Cyanoprokaryota. Nonmetric multidimensional scaling implied that season and succession strongly influenced species composition on the ATS and a minimum turnover of 0.28 indicates a development towards a more stable community at the end of experiments. We measured maximum biomass production of ~250 g m−2 in June and August and during a period of 5 months nearly 19 kg ha−1 phosphorus could be removed. ATS systems proved to retain nutrients and produce algae biomass in an environmentally friendly and cost effective way and thus support restoration of highly eutrophicated water bodies.


    加载中
    [1] Correll DL (1998) The Role of Phosphorus in the Eutrophication of Receiving Waters: A Review. J Environ Qual 27: 261-266.
    [2] Dokulil MT, Teubner K (2011) Eutrophication and Climate Change: Present Situation and Future Scenarios. Dordrecht Heidelberg London New York: Springer, 1-16.
    [3] Fleming-Lehtinen V, Andersen JH, Carstensen J, et al. (2015) Recent developments in assessment methodology reveal that the Baltic Sea eutrophication problem is expanding. Ecol Indic 48: 380-388.
    [4] Graham LE, Graham JM, Wilcox LW (2009) Algae. 2.ed. San Francisco: Benjamin/Cummings.
    [5] Shen PP, Shi Q, Hua ZC, et al. (2003) Analysis of microcystins in cyanobacteria blooms and surface water samples from Meiliang Bay, Taihu Lake, China. Environ Int 29: 641-647. doi: 10.1016/S0160-4120(03)00047-3
    [6] Falconer IR, Humpage AR (2005) Health Risk Assessment of Cyanobacterial (Blue-green Algal) Toxins in Drinking Water. Int J Environ Res Public Health 2: 43-50. doi: 10.3390/ijerph2005010043
    [7] Ruuhijarvi J, Rask M, Vesala S, et al. (2010) Recovery of the fish community and changes in the lower trophic levels in a eutrophic lake after a winter kill of fish. Hydrobiologia 646: 145-158. doi: 10.1007/s10750-010-0186-y
    [8] Lampert W, Sommer U (1999) Limnoökologie. Stuttgart: Thieme.
    [9] Stadler GA, Wehdorn M (2007) Architektur im Verbund. Vienna: Springer.
    [10] Donabaum K, Donabaum U, Großschartner M, et al. (2011) Sanierung Heustadelwasser—Monitoring 2011–project report. Vienna, 113.
    [11] Adey WH, Loveland K (1991) Dynamic aquaria—building living ecosystems. San Diego: Academic Press.
    [12] Sabater S, Guasch H, Romani A, et al. (2002) The effect of biological factors on the efficiency of river biofilms in improving water quality. Hydrobiologia 469: 149-156. doi: 10.1023/A:1015549404082
    [13] Hoffmann JP (1998) Wastewater treatment with suspended and nonsuspended algae. J Phycol 34: 757-763. doi: 10.1046/j.1529-8817.1998.340757.x
    [14] Powell N, Shilton A, Chisti Y, et al. (2009) Towards a luxury uptake process via microalgae - defining the polyphosphate dynamics. Water res 43: 4207-4213. doi: 10.1016/j.watres.2009.06.011
    [15] Hartley AM, House WA, Callow ME, et al. (1997) Coprecipitation of phosphate with calcite in the presence of photosynthesizing green algae. Water Res 31: 2261-2268. doi: 10.1016/S0043-1354(97)00103-6
    [16] Adey W, Luckett C, Jensen K (1993) Phosphorus removal from natural waters using controlled algal production. Restor Ecol 1: 29-39.
    [17] D’Aiuto PE, Patt JM, Albano JP, et al. (2015) Algal turf scrubbers: Periphyton production and nutrient recovery on a South Florida citrus farm. Ecol Eng 75: 404-412. doi: 10.1016/j.ecoleng.2014.11.054
    [18] Mayr M, Jerney J, Schagerl M (2015) Combating planktonic algae with benthic algae. Ecol Eng 74: 310-318. doi: 10.1016/j.ecoleng.2014.10.034
    [19] Adey WH, Luckett C, Smith M (1996) Purification of industrially contaminated groundwaters using controlled ecosystems. Ecol Eng 7: 191-212. doi: 10.1016/0925-8574(96)00008-0
    [20] Craggs RJ, Adey WH, Jessup BK, et al. (1996) A controlled stream mesocosm for tertiary treatment of sewage. Ecol Eng 6: 149-169. doi: 10.1016/0925-8574(95)00056-9
    [21] Mulbry W, Kangas P, Kondrad S (2010) Toward scrubbing the bay: Nutrient removal using small algal turf scrubbers on Chesapeake Bay tributaries. Ecol Eng 36: 536-541. doi: 10.1016/j.ecoleng.2009.11.026
    [22] Mulbry W, Westhead EK, Pizarro C, et al. (2005) Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresour Technol 96: 451-458. doi: 10.1016/j.biortech.2004.05.026
    [23] Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25: 294-306. doi: 10.1016/j.biotechadv.2007.02.001
    [24] Douglas B (1958) The ecology of the attached diatoms and other algae in a small stony stream. J Ecol 46: 295-322. doi: 10.2307/2257397
    [25] Wright SW, Jeffrey SW, Mantoura RFC, et al. (1991) Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar Ecol Prog Ser 77: 183-196.
    [26] Jeffrey SW (1997) Phytoplankton pigments in oceanography: guidelines to modern methods. Paris: Unesco Publishing.
    [27] Mackey MD, Mackey DJ, Higgins HW, et al. (1996) CHEMTAX- A program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton pigments. Mar Ecol Progr Ser 144: 265-283. doi: 10.3354/meps144265
    [28] Pfister P, Pipp E (2010) Leitfaden zur Erhebung der biologischen Qualitätselemente. Teil A3 - Phytobenthos. Vienna: Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Eigenverlag.
    [29] Krammer K, Lange-Bertalot H (1986) Naviculaceae. Bacillariophyceae - Band 2/1. Stuttgart: G. Fischer.
    [30] Krammer K, Lange-Bertalot H (1988) Bacillariaceae, Epithemiaceae, Surirellaceae. Bacillariophyceae - Band 2/2. Stuttgart: G.Fischer.
    [31] Krammer K, Lange-Bertalot H, Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema; Gesamtliteraturverzeichnis. G Fischer.
    [32] Krammer K, Lange-Bertalot H (2004) Centrales, Fragilariaceae, Eunotiaceae. Bacillariophyceae - Band 2/3. Stuttgart: G Fischer.
    [33] Ettl H (1983) Phytomonadina, Chlorophyta - Band 9. Stuttgart: G. Fischer.
    [34] Ettl H, Gärtner G (1988) Tetrasporales, Chlorococcales, Gloeodendrales – Band 10. Chlorophyta. Stuttgart: G. Fischer.
    [35] Kadłubowska JZ (1984) Zygnemales. Chlorophyta - Band 16. Stuttgart: G. Fischer.
    [36] Mrozińska T (1985) Oedogoniophyceae: Oedogoniales, Chlorophyta VI - Band 14. Stuttgart: G. Fischer.
    [37] Pascher A HF (1930) Die Süsswasser-Flora Mitteleuropas. Jena: Verlag von Gustav Fischer.
    [38] Starmach K (1985) Chrysophyceae und Haptophyceae. Stuttgart: Fischer.
    [39] Lenzenweger R (1996) Desmidiaceenflora von Österreich, Teil 1. Berlin: Cramer.
    [40] Lenzenweger R (1997) Desmidiaceenflora von Österreich, Teil 2. Berlin: Cramer.
    [41] Lenzenweger R (1999) Desmidiaceenflora von Österreich, Teil 3. Berlin: Cramer.
    [42] Geitler L (1930) Cyanophyceae (von Europa, unter Berücks. d. anderen Kontinente). Leipzig: Akad. Verl. Ges.
    [43] Komárek J, Anagnostidis K (2005) Oscillatoriales. Cyanoprokaryota - Band 19/2. Stuttgart: G. Fischer.
    [44] Komárek J, Anagnostidis K (1999) Chroococcales. Cyanoprokaryota - Band 19/1. Stuttgart: Fischer.
    [45] Popovský J, Pfiester LA (2008) Dinophyceae (Dinoflagellida)—Band 6. Jena: Spektrum.
    [46] Rieth A (1980) Xanthophyceae, 2. Teil - Band 4. Stuttgart: G. Fischer.
    [47] Ettl H (1978) Xanthophyceae, 1. Teil - Band 3. Stuttgart: G. Fischer.
    [48] Smith TM, Smith RL (2009) Ökologie. Czech Republic, Munich, Boston: Pearson Education Deutschland GmbH.
    [49] Krebs CJ (1986) Ecology : the experimental analysis of distribution and abundance. New York: Harper & Row.
    [50] McCune B, Mefford MJ (2006) PC-ORD. Multivariate Analysis of Ecological Data. 5 ed. Gleneden Beach, Oregon, U.S.A.: MjM Software.
    [51] Schönhuber M (2006) Kieselalgengemeinschaften von ausgewählten Kärntner Seen. Klagenfurt.
    [52] Adey WH, Laughinghouse HD, Miller JB, et al. (2013) Algal turf scrubber (ATS) floways on the Great Wicomico River, Chesapeake Bay: productivity, algal community structure, substrate and chemistry 1. J Phycol 49: 489-501. doi: 10.1111/jpy.12056
    [53] Tamm M, Freiberg R, Tõnno I, et al. (2015) Pigment-Based Chemotaxonomy—A Quick Alternative to Determine Algal Assemblages in Large Shallow Eutrophic Lake? PLoS ONE 10: e0122526. doi: 10.1371/journal.pone.0122526
    [54] Chen N, Li J, Wu Y, et al. (2015) Nutrient removal at a drinking water reservoir in China with an algal floway. Ecol Eng 84: 506-514. doi: 10.1016/j.ecoleng.2015.09.049
    [55] Sindelar HR, Yap JN, Boyer TH, et al. (2015) Algae scrubbers for phosphorus removal in impaired waters. Ecol Eng 85: 144-158. doi: 10.1016/j.ecoleng.2015.09.002
    [56] Ray NE, Terlizzi DE, Kangas PC (2015) Nitrogen and phosphorus removal by the Algal Turf Scrubber at an oyster aquaculture facility. Ecol Eng 78: 27-32. doi: 10.1016/j.ecoleng.2014.04.028
    [57] Hoagland KD, Roemer SC, Rosowski JR, et al. (1982) Colonization and community structure of two periphyton assemblages , with emphasis on the diatoms (Bacillariophyceae). Am J Bot 69: 188-213. doi: 10.2307/2443006
    [58] Malkin SY, Sorichetti RJ, Wiklund JA, et al. (2009) Seasonal abundance, community composition, and silica content of diatoms epiphytic on Cladophora glomerata. J Great Lakes Res 35: 199-205. doi: 10.1016/j.jglr.2008.12.008
    [59] Peterson CG, Stevenson RJ (1992) Resistance and resilience of lotic algal communities—importance of distrurbance timing and current. Ecology 73: 1445-1461. doi: 10.2307/1940689
    [60] Stevenson RJ, Bothwell ML, Lowe RL (1996) Algal ecology: Freshwater benthic ecosystems, 788.
    [61] McCormick PV, Stevenson RJ (1991) Mechanisms of benthic algal sucession in lotic environments. Ecology 72: 1835-1848. doi: 10.2307/1940982
    [62] Larson Ca, Passy SI, Laanbroek R (2012) Taxonomic and functional composition of the algal benthos exhibits similar successional trends in response to nutrient supply and current velocity. FEMS microbiol ecol 80: 352-362. doi: 10.1111/j.1574-6941.2012.01302.x
    [63] Cardinale BJ (2011) Biodiversity improves water quality through niche partitioning. Nature 472:86-89. doi: 10.1038/nature09904
    [64] Jackson CR (2003) Changes in community properties during microbial succession. Oikos 2: 444-448.
    [65] Pandit SN, Kolasa J (2011) Opposite effects of environmental variability and species richness on temporal turnover of species in a complex habitat mosaic. Hydrobiologia 685: 145-154.
    [66] Blersch DM, Kangas PC, Mulbry WW (2013) Turbulence and nutrient interactions that control benthic algal production in an engineered cultivation raceway. Algal Res 2: 107-112. doi: 10.1016/j.algal.2013.01.001
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5882) PDF downloads(1138) Cited by(1)

Article outline

Figures and Tables

Figures(11)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog