Research article Special Issues

Exponential stabilization of fixed and random time impulsive delay differential system with applications

  • Received: 21 January 2021 Accepted: 25 February 2021 Published: 10 March 2021
  • In this work, we study the problem of $ p- $th moment global exponential stability for functional differential equations and scalar chaotic delayed equations under random impulsive effects. Meanwhile, the $ p- $th moment global exponential synchronization for the proposed equations is also discussed, whereas the main results are proved by using Lyapunov function and Razumikhin technique. Furthermore, the impact of fixed and random time impulses are presented by applying the results to Mackey Glass blood cell production model and Ikeda bistable resonator model. Finally, the effectiveness of fixed and random impulses are depicted via graphical representations.

    Citation: A. Vinodkumar, T. Senthilkumar, S. Hariharan, J. Alzabut. Exponential stabilization of fixed and random time impulsive delay differential system with applications[J]. Mathematical Biosciences and Engineering, 2021, 18(3): 2384-2400. doi: 10.3934/mbe.2021121

    Related Papers:

  • In this work, we study the problem of $ p- $th moment global exponential stability for functional differential equations and scalar chaotic delayed equations under random impulsive effects. Meanwhile, the $ p- $th moment global exponential synchronization for the proposed equations is also discussed, whereas the main results are proved by using Lyapunov function and Razumikhin technique. Furthermore, the impact of fixed and random time impulses are presented by applying the results to Mackey Glass blood cell production model and Ikeda bistable resonator model. Finally, the effectiveness of fixed and random impulses are depicted via graphical representations.



    加载中


    [1] M. C. Mackey, L. Glass, Oscillation and chaos in physiological control systems, Science, 197 (1977), 287-289. doi: 10.1126/science.267326
    [2] K. Ikeda, Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system, Opt. Commun., 30 (1979), 257-261. doi: 10.1016/0030-4018(79)90090-7
    [3] J. Sun, Y. Zhang, Q. Wu, Impulsive control for the stabilization and synchronization of lorenz systems, Phys. Lett. A, 298 (2002), 153-160. doi: 10.1016/S0375-9601(02)00466-8
    [4] T. Yang, L. B. Yang, C. M. Yang, Impulsive control of lorenz system, Phys. D Nonlinear Phenom., 110 (1997), 18-24. doi: 10.1016/S0167-2789(97)00116-4
    [5] X. Liu, Impulsive stabilization and control of chaotic system, Nonlinear Anal., 47 (2001), 1081-1092. doi: 10.1016/S0362-546X(01)00248-6
    [6] Z. Yang, D. Xu, Stability analysis and design of impulsive control systems with time delay, IEEE Trans. Autom. Control, 52 (2007), 1448-1454. doi: 10.1109/TAC.2007.902748
    [7] X. Li, S. Song, J. Wu, Exponential stability of nonlinear systems with delayed impulses and applications, IEEE Trans. Autom. Control, 64 (2019), 4024-4034. doi: 10.1109/TAC.2019.2905271
    [8] X. Li, J. Wu, Sufficient stability conditions of nonlinear differential systems under impulsive control with state-dependent delay, IEEE Trans. Autom. Control, 63 (2018), 306-311. doi: 10.1109/TAC.2016.2639819
    [9] X. Li, X. Yang, T. Huang, Persistence of delayed cooperative models: Impulsive control method, Appl. Math. Comput., 342 (2019), 130-146.
    [10] H. Danhua, X. Liguang, Ultimate boundedness of nonautonomous dynamical complex networks under impulsive control, IEEE Trans. Circuits Syst. II: Express Briefs, 62 (2015), 997-1001. doi: 10.1109/TCSII.2015.2436191
    [11] D. Zhenlei, X. Liguang, G. S. Sam, Attracting sets of discrete-time Markovian jump delay systems with stochastic disturbances via impulsive control, J. Franklin Inst., 357 (2020), 9781-9810. doi: 10.1016/j.jfranklin.2020.07.049
    [12] E. A. Alzahrani, H. Akca, X. Li, New synchronization schemes for delayed chaotic neural networks with impulses, Neural. Comput. Appl., 28 (2017), 2823-2837. doi: 10.1007/s00521-016-2218-7
    [13] J. Cao, D. W. Ho, Y. Yang, Projective synchronization of a class of delayed chaotic systems via impulsive control, Phys. Lett. A, 373 (2009), 3128-3133. doi: 10.1016/j.physleta.2009.06.056
    [14] I. Chaiya, C. Rattanakul, An impulsive mathematical model of bone formation and resorption: effects of parathyroid hormone, calcitonin and impulsive estrogen supplement, Adv. Differ. Equations, 2017 (2017), 1-20. doi: 10.1186/s13662-016-1057-2
    [15] M. Iswarya, R. Raja, G. Rajchakit, J. Cao, J. Alzabut, C. Huang, et al., Existence, uniqueness and exponential stability of periodic solution for discrete-time delayed bam neural networks based on coincidence degree theory and graph theoretic method, Mathematics, 7 (2019), 1055. doi: 10.3390/math7111055
    [16] M. Iswarya, R. Raja, G. Rajchakit, J. Cao, J. Alzabut, C. Huang, et al., A perspective on graph theory-based stability analysis of impulsive stochastic recurrent neural networks with time-varying delays, Adv. Differ. Equations, 2019 (2019), 1-21. doi: 10.1186/s13662-018-1939-6
    [17] C. Li, X. Liao, X. Yang, T. Huang, Impulsive stabilization and synchronization of a class of chaotic delay systems, Chaos, 15 (2005), 043103. doi: 10.1063/1.2102107
    [18] C. Li, X. Liao, R. Zhang, Impulsive synchronization of nonlinear coupled chaotic systems, Phys. Lett. A, 328 (2004), 47-50. doi: 10.1016/j.physleta.2004.05.065
    [19] X. Li, Y. Ding, Razumikhin-type theorems for time-delay systems with persistent impulses, Syst. Cont. Lett., 107 (2017), 22-27. doi: 10.1016/j.sysconle.2017.06.007
    [20] X. Li, D. W. Ho, J. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica, 99 (2019), 361-368. doi: 10.1016/j.automatica.2018.10.024
    [21] Z. Luo, J. Shen, Stability of impulsive functional differential equations via the Lyapunov functional, Appl. Math. Lett., 22 (2009), 163-169. doi: 10.1016/j.aml.2008.03.004
    [22] G. Stamov, I. Stamova, J. O. Alzabut, Existence of almost periodic solutions for strongly stable nonlinear impulsive differential-difference equations, Nonlinear Anal. Hybrid Syst., 6 (2012), 818-823. doi: 10.1016/j.nahs.2011.08.002
    [23] G. T. Stamov, J. O. Alzabut, Almost periodic solutions in the pc-space for uncertain impulsive dynamical systems, Nonlinear Anal. Theory Methods Appl., 74 (2011), 4653-4659. doi: 10.1016/j.na.2011.04.026
    [24] I. Stamova, G. T. Stamov, J. O. Alzabut, Global exponential stability for a class of impulsive bam neural networks with distributed delays, Appl. Math. Inf. Sci., 7 (2013), 1539. doi: 10.12785/amis/070438
    [25] J. Sun, Q. L. Han, X. Jiang, Impulsive control of time-delay systems using delayed impulse and its application to impulsive master-slave synchronization, Phys. Lett. A, 372 (2008), 6375-6380. doi: 10.1016/j.physleta.2008.08.067
    [26] Y. W. Wang, Z. H. Guan, J. W. Xiao, Impulsive control for synchronization of a class of continuous systems, Chaos, 14 (2004), 199-203. doi: 10.1063/1.1644351
    [27] Q. Wu, J. Zhou, L. Xiang, Global exponential stability of impulsive differential equations with any time delays, Appl. Math. Lett., 23 (2010), 143-147. doi: 10.1016/j.aml.2009.09.001
    [28] X. Yang, Z. Yang, X. Nie, Exponential synchronization of discontinuous chaotic systems via delayed impulsive control and its application to secure communication, Commun. Nonlinear Sci., 19 (2014), 1529-1543. doi: 10.1016/j.cnsns.2013.09.012
    [29] Z. Yang, D. Xu, Robust stability of uncertain impulsive control systems with time-varying delay, Comput. Math. Appl., 53 (2007), 760-769. doi: 10.1016/j.camwa.2006.10.023
    [30] X. Zhang, X. Lv, X. Li, Sampled-data-based lag synchronization of chaotic delayed neural networks with impulsive control, Nonlinear Dyn., 90 (2017), 2199-2207. doi: 10.1007/s11071-017-3795-4
    [31] A. Anguraj, A. Vinodkumar, Existence, uniqueness and stability results of random impulsive semilinear differential systems, Nonlinear Anal. Hybrid Systems, 4 (2010), 475-483. doi: 10.1016/j.nahs.2009.11.004
    [32] R. Agarwal, S. Hristova, D. ORegan, Exponential stability for differential equations with random impulses at random times, Adv. Differ. Equations, 2013 (2013), 1-12. doi: 10.1186/1687-1847-2013-1
    [33] A. Vinodkumar, T. Senthilkumar, X. Li, Robust exponential stability results for uncertain infinite delay differential systems with random impulsive moments, Adv. Differ. Equations, 2018 (2018), 1-12. doi: 10.1186/s13662-017-1452-3
    [34] W. Hu, Q. Zhu, Moment exponential stability of stochastic delay systems with delayed impulse effects at random times and applications in the stabilisation of stochastic neural networks, Int. J. Control, 93 (2020), 2505-2515. doi: 10.1080/00207179.2019.1566635
    [35] W. Hu, Q. Zhu, Moment exponential stability of stochastic nonlinear delay systems with impulse effects at random times, Int. J. Robust Nonlinear Control, 29 (2019), 3809-3820. doi: 10.1002/rnc.4031
    [36] W. Hu, Q. Zhu, Exponential stability of stochastic differential equations with impulse effects at random times, Asian J. Control, 22 (2020), 779-787. doi: 10.1002/asjc.1937
    [37] M. Han, Y. Liu, J. Lu, Impulsive control for the synchronization of chaotic systems with time delay, Abstr. Appl. Anal., 2012 (2012), 647561.
    [38] T. Ma, F. L. Lewis, Y. Song, Exponential synchronization of nonlinear multi-agent systems with time delays and impulsive disturbances, Int. J. Robust Nonlinear Control, 26 (2016), 1615-1631. doi: 10.1002/rnc.3370
    [39] T. Yu, H.Wang, D. Cao, Synchronization of delayed neural networks with hybrid coupling via impulsive control, Trans. Inst. Meas. Control, 41 (2019), 3714-3724. doi: 10.1177/0142331219834993
    [40] X. Liguang, G. S. Sam, Asymptotic behavior analysis of complex-valued impulsive differential systems with time-varying delays, Nonlinear Anal. Hybrid Systems, 27 (2018), 13-28. doi: 10.1016/j.nahs.2017.07.002
    [41] X. Liguang, D. Zhenlei, H. Danhua, Exponential ultimate boundedness of impulsive stochastic delay differential equations, Appl. Math. Lett., 85 (2018), 70-76. doi: 10.1016/j.aml.2018.05.019
    [42] X. Liguang, G. S. Sam, The pth moment exponential ultimate boundedness of impulsive stochastic differential systems, Appl. Math. Lett., 42 (2015), 22-29. doi: 10.1016/j.aml.2014.10.018
    [43] H. Wei, Z. Quanxin, K. H. Reza, Some improved Razumikhin stability criteria for impulsive stochastic delay differential systems, IEEE Trans. Autom. Control, 64 (2019), 5207-5213. doi: 10.1109/TAC.2019.2911182
    [44] Z. Quanxin, $p$th Moment exponential stability of impulsive stochastic functional differential equations with Markovian switching, J. Franklin Inst., 351 (2014), 3965-3986. doi: 10.1016/j.jfranklin.2014.04.001
    [45] W. Hu, Q. Zhu, Stability analysis of impulsive stochastic delayed differential systems with unbounded delays, Syst. Control Lett., 136 (2020), 104606. doi: 10.1016/j.sysconle.2019.104606
    [46] A. Vinodkumar, T. Senthilkumar, X. Li, Exponential stability results on random and fixed time impulsive differential systems with infinite delay, Mathematics, 7 (2019), 843. doi: 10.3390/math7090843
    [47] M. A. De Menezes, R. Z. Dos Santos, The onset of mackey-glass leukemia at the edge of chaos, Int. J. Mod. Phys. C, 11 (2000), 1545-1553. doi: 10.1142/S0129183100001346
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2497) PDF downloads(162) Cited by(16)

Article outline

Figures and Tables

Figures(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog