Citation: Brian W. Miller, Leonardo Frid, Tony Chang, Nathan Piekielek, Andrew J. Hansen, Jeffrey T. Morisette. Combining state-and-transition simulations and species distribution models to anticipate the effects of climate change[J]. AIMS Environmental Science, 2015, 2(2): 400-426. doi: 10.3934/environsci.2015.2.400
[1] | Miller BW, Morisette JT (2014) Integrating research tools to support resource management under climate change. Ecol Soc 19: 41. |
[2] | Guisan A, Thuiller W (2005) Predicting species distribution: Offering more than simple habitat models. Ecol Lett 8: 993-1009. doi: 10.1111/j.1461-0248.2005.00792.x |
[3] | Sinclair SJ, White MD, Newell GR (2010) How useful are species distribution models for managing biodiversity under future climates? Ecol Soc 15: 8. |
[4] | Daniel CJ, Frid L (2012) Predicting landscape vegetation dynamics using state-and-transition simulation models, In: Kerns BK, Shlisky AJ, Daniel CJ, technical editors, Proc First Landscape State-and-Transition Sim Model Conf, June 14–16, 2011, Portland, OR, Gen Tech Rep PNW-GTR-869, Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 5-22. |
[5] | Franklin J (2009) Mapping species distributions: Spatial inference and prediction. Cambridge, UK: Cambridge University Press. |
[6] | Franklin J (2013) Species distribution models in conservation biogeography: Developments and challenges. Div Distr 19: 1217-1223. doi: 10.1111/ddi.12125 |
[7] | Dobrowski SZ, Thorne JH, Greenberg JA, et al. (2011) Modeling plant ranges over 75 years of climate change in California, USA: Temporal transferability and species traits. Ecol Monogr 81:241-257. doi: 10.1890/10-1325.1 |
[8] | Bell DM, Bradford JB, Lauenroth WK (2014) Early indicators of change: Divergent climate envelopes between tree life stages imply range shifts in the western United States. Global Ecol Biogeog 23: 168-180. doi: 10.1111/geb.12109 |
[9] | Stephenson NL (1998) Actual evapotranspiration and deficit: Biologically meaningful correlates of vegetation distribution across spatial scales. J Biogeogr 25: 855-870. doi: 10.1046/j.1365-2699.1998.00233.x |
[10] | Benito-Garzón M, Ha-Duong M, Frascaria-Lacoste N, et al. (2013) Habitat restoration and climate change: Dealing with climate variability, incomplete data, and management decisions with tree translocations. Restor Ecol 21: 530-536. doi: 10.1111/rec.12032 |
[11] | Schwartz MW (2012) Using niche models with climate projections to inform conservation management decisions. Biol Cons 155: 149-156. doi: 10.1016/j.biocon.2012.06.011 |
[12] | Iverson LR, Prasad AM, Matthews SN, et al. (2011) Lessons learned while integrating habitat, dispersal, disturbance, and life-history traits into species habitat models under climate change. Ecosystems 14: 1005-1020. doi: 10.1007/s10021-011-9456-4 |
[13] | Westoby M, Walker B, Noy-Meir I (1989) Opportunistic management for rangelands not at equilibrium. J Range Manage 42: 266-274. doi: 10.2307/3899492 |
[14] | Bestelmeyer BT, Brown JR, Havstad KM, et al. (2003) Development and use of state-and-transition models for rangelands. J Range Manage 56: 114-126. doi: 10.2307/4003894 |
[15] | Stringham TK, Krueger WC, Shaver PL (2001) States, transitions, and thresholds: Further refinement for rangeland applications. Special Report Number 1024, Oregon State University Agricultural Experiment Station: 1-15. |
[16] | Parker DC, Manson SM, Janssen MA, et al. (2003) Multi-agent systems for the simulation of land-use and land-cover change: A review. Ann Assoc American Geogr 93: 314-337. doi: 10.1111/1467-8306.9302004 |
[17] | Li H, Reynolds JF (1997) Modeling effects of spatial pattern, drought, and grazing on rates of rangeland degradation: A combined Markov and cellular automaton approach, In: Quattrochi DA, Goodchild MF, editors, Scale in Remote Sensing and GIS, Boca Raton, FL: Lewis Publishers,211-230. |
[18] | Balzter H, Braun PW, Köhler W (1998) Cellular automata models for vegetation dynamics. Ecol Model 107: 113-125. doi: 10.1016/S0304-3800(97)00202-0 |
[19] | Bestelmeyer BT, Goolsby DP, Archer SR (2011) Spatial perspectives in state-and-transition models: A missing link to land management? J Appl Ecol 48: 746-757. doi: 10.1111/j.1365-2664.2011.01982.x |
[20] | Forbis TA, Provencher L, Frid L, et al. (2006) Great Basin land management planning using ecological modeling. Environ Manage 38: 62-83. doi: 10.1007/s00267-005-0089-2 |
[21] | Provencher L, Forbis TA, Frid L, et al. (2007) Comparing alternative management strategies of fire, grazing, and weed control using spatial modeling. Ecol Model 209: 249-263. doi: 10.1016/j.ecolmodel.2007.06.030 |
[22] | Frid L, Wilmshurst JF (2009) Decision analysis to evaluate control strategies for Crested Wheatgrass (Agropyron cristatum) in Grasslands National Park of Canada. Invasive Plant Sci Manage 2: 324-336. doi: 10.1614/IPSM-09-006.1 |
[23] | Costanza JK, Hulcr J, Koch FH, et al. (2012) Simulating the effects of the southern pine beetle on regional dynamics 60 years into the future. Ecol Model 244: 93-103. doi: 10.1016/j.ecolmodel.2012.06.037 |
[24] | Keane RE, Holsinger LM, Parsons RA, et al. (2008) Climate change effects on historical range and variability of two large landscapes in western Montana, USA. Forest Ecol Manage 254:375-389. doi: 10.1016/j.foreco.2007.08.013 |
[25] | Strand EK, Vierling LA, Bunting SC, et al. (2009) Quantifying successional rates in western aspen woodlands: Current conditions, future predictions. Forest Ecol Manage 257: 1705-1715. doi: 10.1016/j.foreco.2009.01.026 |
[26] | Halofsky JE, Hemstrom MA, Conklin DR, et al. (2013) Assessing potential climate change effects on vegetation using a linked model approach. Ecol Model 266: 131-143. doi: 10.1016/j.ecolmodel.2013.07.003 |
[27] | Hemstrom MA, Halofsky JE, Conklin DR, et al. (2014) Developing climate-informed state-and-transition models, In: Halofsky JE, Creutzburg MK, Hemstrom MA, editors, Integrating Social, Economic, and Ecological Values Across Large Landscapes, Gen Tech Rep PNW-GTR-896, Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 175-202. |
[28] | Yospin GI, Bridgham SD, Neilson RP, et al. (2014) A new model to simulate climate change impacts on forest succession for local land management. Ecol Appl 25:226-242. |
[29] | Chang T, Hansen AJ, Piekielek N (2014) Patterns and variability of projected bioclimatic habitat for Pinus albicaulis in the Greater Yellowstone Area. PLoS ONE 9: e111669. doi: 10.1371/journal.pone.0111669 |
[30] | Whitlock C (1993) Postglacial vegetation and climate of Grand Teton and southern Yellowstone National Parks. Ecol Monogr 63: 173-198. doi: 10.2307/2937179 |
[31] | Greater Yellowstone Coordinating Committee Whitebark Pine Subcommittee (2011) Whitebark Pine Strategy for the Greater Yellowstone Area. US Dept of Agriculture, Forest Service, Forest Health Protection, and Grand Teton National Park. |
[32] | Gibson K, Skov K, Kegley S, et al. (2008) Mountain pine beetle impacts in high-elevation five-needle pines: current trends and challenges. US Department of Agriculture, Forest Service, Forest Health Protection. |
[33] | Larson ER, Kipfmueller KF (2012) Ecological disaster or the limits of observation? Reconciling modern declines with the long-term dynamics of whitebark pine communities. Geogr Compass 6:189-214. |
[34] | Romme WH, Turner MG (1991) Implications of global climate change for biogeographic patterns in the Greater Yellowstone Ecosystem. Conserv Biol 5: 373-386. doi: 10.1111/j.1523-1739.1991.tb00151.x |
[35] | Bartlein PJ, Whitlock C, Shafer SL (1997) Future climate in the Yellowstone national park region and its potential impact on vegetation. Conserv Biol 11: 782-792. doi: 10.1046/j.1523-1739.1997.95383.x |
[36] | Schrag AM, Bunn AG, Graumlich LJ (2008) Influence of bioclimatic variables on tree‐line conifer distribution in the Greater Yellowstone Ecosystem: Implications for species of conservation concern. J Biogeogr 35(4): 698-710. |
[37] | U.S. Fish and Wildlife Service (2011) Whitebark pine to be designated a candidate for endangered species protection. Available from: http://www.fws.gov/Wyominges/Pages/Species/Findings/2011_WBP.html |
[38] | Freire J (2012) Making computations and publications reproducible with VisTrails. Comput Sci Eng 14: 18-25. doi: 10.1109/MCSE.2012.76 |
[39] | Morisette JT, Jarnevich CS, Holcombe TR, et al. (2013) VisTrails SAHM: Visualization and workflow management for species habitat modeling. Ecography 36: 129-135. doi: 10.1111/j.1600-0587.2012.07815.x |
[40] | Lockman IB, DeNitto GA, Courter A, et al. (2007) WLIS: The whitebarklimber pine information system and what it can do for you. In: Proceedings of the Conference Whitebark Pine: A Pacific Coast Perspective. Ashland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Region, 146-147. |
[41] | Greater Yellowstone Whitebark Pine Monitoring Working Group (2011) Interagency Whitebark Pine Monitoring Protocol for the Greater Yellowstone Ecosystem, Version 1.1. Greater Yellowstone Coordinating Committee, Bozeman, MT. Available from: http://fedgycc.org/documents/GYE.WBP.MonitoringProtocol.V1.1June2011.pdf |
[42] | Smith WB (2002) FIA: Forest inventory and analysis: a national inventory and monitoring program. Environ Pollut 116: S233-S242. doi: 10.1016/S0269-7491(01)00255-X |
[43] | Gibson J, Moisen G, Frescino T, et al. (2014) Using publicly available forest inventory data in climate-based models of tree species distribution: Examining effects of true versus altered location coordinates. Ecosystems 17: 43-53. doi: 10.1007/s10021-013-9703-y |
[44] | Drake BG, Gonzàlez-Meler MA, Long SP (1997) More efficient plants: A consequence of rising atmospheric CO2? Annu Rev Plant Biol 48: 609-639. doi: 10.1146/annurev.arplant.48.1.609 |
[45] | Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: A misleading measure of the performance of predictive distribution models. Global Ecol Biogeogr 17: 145-151. doi: 10.1111/j.1466-8238.2007.00358.x |
[46] | Voldoire A, Sanchez-Gomez E, Salas y Mélia, et al. (2013) The CNRM-CM5. 1 global climate model: Description and basic evaluation. Clim Dynam 40: 2091-2121. |
[47] | Martin GM, Bellouin N, Collins WJ, et al. (2011) The HadGEM2 family of met office unified model climate configurations. Geosci Model Dev 4: 723-757. doi: 10.5194/gmd-4-723-2011 |
[48] | Deser C, Phillips AS, Alexander MA, et al. (2014) Projecting North American climate over the next 50 years: Uncertainty due to internal variability. J Climate 27: 2271-2296. doi: 10.1175/JCLI-D-13-00451.1 |
[49] | Apex Resource Management Solutions (2014) ST-Sim state-and-transition simulation model software. Available from: www.apexrms.com/stsm |
[50] | Rollins MG (2009) LANDFIRE: A nationally consistent vegetation, wildland fire, and fuel assessment. Int J Wildland Fire 18: 235-249. doi: 10.1071/WF08088 |
[51] | Landenburger L, Lawrence RL, Podruzny S, et al. (2008) Mapping regional distribution of a single tree species: Whitebark Pine in the Greater Yellowstone Ecosystem. Sensors 8: 4983-4994. doi: 10.3390/s8084983 |
[52] | Aukema BH, Carroll AL, Zhu J, et al. (2006) Landscape level analysis of mountain pine beetle in British Columbia, Canada: Spatiotemporal development and spatial synchrony within the present outbreak. Ecography 29: 427-441. doi: 10.1111/j.2006.0906-7590.04445.x |
[53] | An L, Linderman M, Qi J, et al. (2005) Exploring complexity in a human-environment system: An agent-based spatial model for multidisciplinary and multiscale integration. Ann Assoc American Geogr 95, 54-79. |
[54] | Miller BW, Breckheimer I, McCleary AL, et al. (2010) Using stylized agent-based models for population-environment research: a case study from the Galápagos Islands. Popul Environ 31:401-426. doi: 10.1007/s11111-010-0110-4 |
[55] | Frid L, Hanna D, Korb N, et al. (2013) Evaluating alternative weed management strategies for three Montana landscapes. Invasive Plant Sci Manage 6: 48-59. doi: 10.1614/IPSM-D-11-00054.1 |
[56] | Frid L, Holcombe T, Morisette JT, et al. (2013) Using state-and-transition modeling to account for imperfect detection in invasive species management. Invasive Plant Sci Manage 6: 36-47. doi: 10.1614/IPSM-D-11-00065.1 |
[57] | Windrum P, Fagiolo G, Moneta A (2007) Empirical validation of agent-based models: Alternatives and prospects. J Artif Soc Soc Simulat 10: 8. |
[58] | Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation, and confirmation of numerical models in the earth sciences. Science 263: 641-646. doi: 10.1126/science.263.5147.641 |
[59] | Oreskes N (1998) Evaluation (not validation) of quantitative models. Environmental Health Perspectives 106: 1453-1460. doi: 10.1289/ehp.98106s61453 |
[60] | Grimm V, Revilla E, Berger U, et al. (2005) Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science 310: 987-991. doi: 10.1126/science.1116681 |
[61] | Jørgensen SE (1986) Fundamentals of Ecological Modelling. Amsterdam: Elsevier. |
[62] | Macfarlane WW, Logan JA, Kern WR (2009) Using the landscape assessment system (LAS) to assess mountain pine beetle-caused mortality of whitebark pine, Greater Yellowstone Ecosystem, 2009. Project report prepared for the Greater Yellowstone Coordinating Committee, Whitebark Pine Subcommittee, Jackson, WY. |
[63] | Shanahan E, Irvine KM, Roberts D, et al. (2014) Status of whitebark pine in the Greater Yellowstone Ecosystem: A step-trend analysis comparing 2004-2007 to 2008- 2011. Natural Resource Technical Report NPS/GRYN/NRTR—2014/917. Fort Collins, CO: National Park Service. |
[64] | Régnière J, Bentz BJ (2007) Modeling cold tolerance in the mountain pine beetle, Dendroctonus pondersoae. J Insect Physiol 53: 559-572. doi: 10.1016/j.jinsphys.2007.02.007 |
[65] | Logan JA, Macfarlane WW, Wilcox L (2010) Whitebark pine vulnerability to climate-driven mountain pine beetle disturbance in the Greater Yellowstone Ecosystem. Ecol Appl 20: 895-902. doi: 10.1890/09-0655.1 |
[66] | Keane RE (2001) Successional dynamics: Modeling an anthropogenic threat, In: Tomback DF, Arno SF, Keane RE, editors, Whitebark Pine Communities: Ecology and Restoration. Washington, DC: Island Press, 159-192. |
[67] | Whitlock C, Millspaugh, SH (2001) A paleoecologic perspective on past plant invasions in Yellowstone. West N Am Naturalist 61: 316-327. |
[68] | LANDFIRE (Landscape Fire and Resource Management Planning Tools Project) dataset. Available online at www.landfire.gov. |
[69] | Teste FP, Lieffers VJ, Landhausser SM (2011) Viability of forest floor and canopy seed banks in Pinus contorta var. latifoia (Pinaceas) forests after a mountain pine beetle outbreak. American Journal of Botany 98: 630-637. |
[70] | MTBS (Monitoring Trends in Burn Severity) dataset. Available from: at www.mtbs.gov. |
[71] | USFS (United States Forest Service), Species life history information. Available from: www.fs.fed.us. |
[72] | Johnson EA, Fryer GI (1996) Why Engelmann spruce does not have a persistent seed bank. Canadian Journal of Forest Research, 26: 872-878 doi: 10.1139/x26-095 |
[73] | Hatala JA, Crabtree, RL (2009) Modelling the spread of blister rust in the Greater Yellowstone Ecosystem. Nutcracker Notes, Whitebark Pine Ecosystem Foundation 16: 17-18. |