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Abstract: State-and-transition simulation models (STSMs) are known for their ability to explore the
combined effects of multiple disturbances, ecological dynamics, and management actions on
vegetation. However, integrating the additional impacts of climate change into STSMs remains a
challenge. We address this challenge by combining an STSM with species distribution modeling
(SDM). SDMs estimate the probability of occurrence of a given species based on observed presence
and absence locations as well as environmental and climatic covariates. Thus, in order to account for
changes in habitat suitability due to climate change, we used SDM to generate continuous surfaces of
species occurrence probabilities. These data were imported into S7-Sim, an STSM platform, where
they dictated the probability of each cell transitioning between alternate potential vegetation types at
each time step. The STSM was parameterized to capture additional processes of vegetation growth
and disturbance that are relevant to a keystone species in the Greater Yellowstone
Ecosystem—whitebark pine (Pinus albicaulis). We compared historical model runs against historical
observations of whitebark pine and a key disturbance agent (mountain pine beetle, Dendroctonus
ponderosae), and then projected the simulation into the future. Using this combination of correlative
and stochastic simulation models, we were able to reproduce historical observations and identify key
data gaps. Results indicated that SDMs and STSMs are complementary tools, and combining them is
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an effective way to account for the anticipated impacts of climate change, biotic interactions, and
disturbances, while also allowing for the exploration of management options.

Keywords: climate change; Greater Yellowstone Ecosystem; mountain pine beetle; spatially explicit
simulation; ST-Sim; VisTrails:SAHM; whitebark pine

1. Introduction

There is a challenging dichotomy in the resource management community. On the one hand,
there is a need to know and understand fundamental physical processes at a very specific and local
level. On the other, there is also a need to know the larger context within which the system works.
This is particularly true for integrating climate change into natural resource management practices.
Ecological restoration and management actions require an understanding of local conditions (such as
species competition, disturbance conditions, micro topography, and a given jurisdiction’s
management options), but climate impacts are often measured and modeled at a coarser scale and
imply the need to consider the wider landscape. Recent work has called for integrating various
methods in order to overcome limitations of individual tools and the challenges associated with
climate change adaptation [1].

Species distribution modeling (SDM) has proven useful for estimating the potential impacts of
climate change and other abiotic factors on species distributions. Many SDMs are popular due to
their ability to generate complex predictions without high computational requirements; however,
there has been increasing recognition of the limitations of SDMs related to interspecific interactions,
dispersal, equilibria, stochastic events, and fundamental niche space [2,3]. In addition to their
inherent limitations, there are some specific questions that are not appropriate or possible within the
framework of correlative modeling but may be of keen interest to natural resource managers. For
example, what would happen to a species if the budget for a given restoration project was doubled or
cut in half?

State-and-transition simulation models (STSMs) provide a spatial and quantitative framework to
explore “what if” scenarios, which can be used to explore both management options and evaluate the
sensitivity of the system to specific parameterizations or assumptions [4]. STSMs have been
recognized as useful tools for incorporating the effects of multiple disturbances, biotic interactions,
and management scenarios, but lack statistically robust techniques for relating climate data to species
distributions. Together, STSMs and SDMs are well-equipped to account for the various facets of
natural resource management challenges, at both regional and local scales, and combine them in a
spatial simulation framework.

Our case study of whitebark pine in the Greater Yellowstone Ecosystem serves as a
proof-of-concept for combining stochastic simulation models (STSMs) and correlative models
(SDMs), and sets the stage for future exploration of management options. This research offers two
novel contributions: 1) accounting for climate change and other dynamics through a combination of
SDMs and STSMs; and 2) outlining an approach for validating STSMs based on recent
developments in agent-based modeling, which remains an active area of exploration.
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2. Background
2.1. Species distribution models

Species distribution models (SDMs) refer to a variety of empirical methods that associate
species with the attributes of their preferred bioclimatic environment, also sometimes referred to as
“habitat” [5,6]. SDMs evolved over the last several decades from our conceptual understanding of
niche theory combined with the increased availability of geospatial datasets and geographic
information systems with which to quantify bioclimatic attributes and their variation across space.
SDMs typically represent individual species presence (and/or absence) at the spatial resolution of
commonly available climate data (usually ~ 1 km or coarser) at temporal resolutions of decades or
longer (often 30 year averages). More recently, interest in the ecological impacts of climate change
has spurred rapid development and growth in application of SDMs because they are relatively easy
to train on contemporary conditions and apply to projected future conditions. Future SDM
projections often support commonly held assumptions about climate change and species extinctions
and range shifts, although their temporal transferability (i.e., ability to be calibrated for one time
period and make predictions for another) is rarely considered [7].

There are numerous challenges to producing actionable science using SDMs including that: they
often represent unknown mechanistic relationships between species and their environments [8];
empirical methods do not always capture the direct effects of climate on species in ecologically
meaningful ways [9]; there is often a mismatch of spatial and temporal resolution between SDMs
and management action [10]; and SDMs rarely consider climate change impacts to communities of
species and functional types whereas management is often charged with preserving assemblages of
species and ecosystem function [11]. Numerous refinements of SDMs have been proposed [12];
however, the above challenges suggest that there remains a need to develop new methods that better
produce scientific information that is useful to natural resource managers who are engaged in climate
adaptation planning.

2.2. State-and-transition models

State-and-transition models originated as conceptual models that represented groups of
vegetation communities and the shifts between them [13]. The definition of states often depends on
the modeling objectives and data availability, but can generally be thought of as suites of vegetation
communities that have distinct functional groups, ecosystem processes, and structure [14].
Transitions include natural events, management interventions, or a combination of both [15].
State-and-transition models are typically represented using box and arrow diagrams, in which boxes
or nested boxes represent vegetation phases and states, and arrows represent the transitions between
them.

These conceptual models remain at the heart of more recent quantitative computer-based
state-and-transition models, or state-and-transition simulation models (STSMs, reviewed by Daniel
and Frid [4]). In STSMs, transitions can be deterministic (e.g., growth, aging) or probabilistic (e.g.,
fire, invasion), and can be aspatial or spatially explicit. Spatially explicit STSMs are analogous to
joint cellular automata-Markov models [16], hybrid Markov-cellular automaton models [17], and
spatio-temporal Markov chains [18]. Bestelmeyer et al. [19] note that spatial context is important for
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conceptual state-and-transition models because spatial dynamics such as contagion, feedbacks
between patches, spatial patterns in historical legacies, and variation in soils, topography, and climate
can all affect the likelihood and location of transitions. These spatial dynamics can similarly be
incorporated into spatially explicit STSMs.

STSMs can be used to compare and evaluate different resource management scenarios [20-23],
and can incorporate climate effects [24-28]. Here we present a novel approach to incorporating the
effects of climate on vegetation into STSMs that is spatially explicit and based on correlative models
of habitat suitability.

2.3. Study area

Whitebark pine (Pinus albicaulis) is an iconic member of the subalpine forest community in the
western North American mountains and is highly valued for the ecosystem services it provides. It is
considered a keystone species because it has strong influence on ecosystem properties. Whitebark pine
(WBP) is able to tolerate the harsh conditions typical of mountainous terrain and creates forest in
high-elevation locations that would otherwise be shrubs and herb. By colonizing open subalpine
patches, it provides safe sites for subalpine fir (4bies lasiocarpa) and other species resulting in greater
forest cover. In addition to providing habitat for many wildlife species the unusual reproductive
strategy of producing large crops of cones with large nutritious seeds every few years provides a rich
food source to the threatened Grizzly bear and other wildlife species. In addition to these positive
effects on high-elevation ecosystems, the species has strong social values. The unique umbrella shape,
large size, and grizzled appearance developed over its centuries-long lifespan evokes strong emotional
appeal to people visiting these mountain haunts.

The Greater Yellowstone Ecosystem (GYE), which includes Yellowstone National Park, Grand
Teton National Park, and a number of state and federally managed forests, is a mid- to high-latitude
region in the Northern Rocky Mountains of western North America. Conifers are dominant in the
range, with forest types composed of Pinus contorta, Abies lasiocarpa, Pseudotsuga menziesii, Pinus
albicaulis, Juniperus scopulorum, Pinus flexis and Picea engelmannii, although the deciduous
hardwood Populus tremuloides, is also wide spread. Plateaus and lowlands are dominated by species
of Artemisia tridentata and open grasslands of mixed composition. The GYE study area encompasses
150,700 km® with an elevational gradient from 522-4,206 m that represents 14 surrounding mountain
ranges [29].

WRBP is present in the GYE from below 2,100 m to nearly 3,300 m, an elevation range that spans
the montane and subalpine zones [30]. WBP is subdominant to other conifer species in the lower
portion of its distribution and is dominant in many locations at upper treeline [31]. The WBP
population in the GYE has been particularly hard hit in recent years: in some areas whitebark pine
mortality has exceeded 95% of cone bearing trees (DBH > 15 cm) [32] due to factors related to
warming climate, mountain pine beetle (Dendroctonus ponderosae), and an exotic fungal pathogen
(Cronartium ribicola) associated with white pine blister rust [33]. Beyond the current forest die-off,
resource managers are concerned because the area of suitable habitat for WBP in the GYE is projected
to decline dramatically in the coming century due to projected climate change [29,34,35,36].
Consequently, the US Fish and Wildlife Service listed the WBP on the U.S. candidate species list [37].
Yet questions remain as to how best to manage WBP under these various threats.
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Figure 1. Study area, highlighting the approximate extent of the Greater Yellowstone
Ecosystem.

3. Methods
3.1. Species distribution modeling

For the SDM portion of the research, we used the VisTrails:SAHM software package to
preprocess data, select predictor variables, compare model algorithms, produce model diagnostics,
and capture data and workflow provenance. VisTrails is a free open source scientific workflow
software [38] that has been customized for SDM using a set of add-on tools that comprise the
Software for Assisted Habitat Modeling (SAHM) [39].

Field observations of adult tree presences and absences were compiled from the Forest
Inventory and Analysis (FIA) program, Whitebark/Limber Pine Information System [40], and long
term monitoring plots established by the National Park Service Greater Yellowstone Inventory and
Monitoring Network [41]. “Adult” class WBP were selected for modeling based on a recorded
diameter at breast height (DBH > 20 cm). WBP within central Montana are reported to reach 100
years of age at approximately 8—12 m in height with DBH 15-20 cm. Given previous silvicultural
studies, it was assumed that 20 cm DBH for WBP represent adult class individuals for the GYE, with
potential to reproduce. First, 2,545 WBP observations from the Forest Inventory and Analysis (FIA) [42]
program were assembled. FIA plots are located on a regular gridded sampling design with one plot at
approximately every 2,500 forested hectares, with swapped and fuzzed exact plot locations within
1.6 km to protect privacy. Gibson et al. [43] found that model accuracy was not dramatically affected
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by data fuzzing, but to provide the most spatial accuracy, this study culled FIA field points where
measured elevation were > 300 m different than a 30 m USGS digital elevation model. In order to
generate probability of occurrence surfaces for competitor species, separate species distribution
models for spruce-fir' and lodgepole pine were constructed using 2,489 FIA plots.

Probability surfaces were generated using a random forest algorithm. Random forest is an
ensemble learning technique that generates independent random classification trees using a subset of
the total predictor variables and classifies a bootstrap random subsample of the data. The predictor
variables were 30-year means (1950-1980) of Parameter-elevation Regressions on Independent Slopes
Model (PRISM) variables and Thornthwaite-based dynamic water balance model variables [29]. We
used a maximum correlation filter of 0.75 (all pairs of variables) to avoid collinearity issues, and
physiologically relevant variables were determined by expert analysis and literature review [29]. A
total of eight predictor variables were used to determine the probability of WBP occurrence:
minimum temperature January, vapor pressure deficit March, precipitation April, snow water
equivalent April, maximum temperature July, actual evapotranspiration July, potential
evapotranspiration August, precipitation September. Atmospheric CO2 concentrations were not in the
list of available predictors, but are noteworthy because they could affect tree physiology and
response to warming [44].

Accuracy for the model was evaluated by calculating the receiver operator characteristic curve
(AUC). Although AUC alone does not provide an explicit description of commission and omission
error rates within a model, it does serve as an index of how likely a model can discriminate a
presence versus an absence [45]. As a general rule of thumb, an AUC of 0.5 indicates performance
no better than random and 1.0 indicates perfect model prediction. AUC measures above
approximately 0.7 are generally considered to be good and above 0.9 excellent [46]. After fitting, our
WBP model reported an AUC value of 0.94, displaying high specificity and sensitivity. In addition to
examining the AUC for WBP, the out-of-bag (OOB) error estimation was also examined and found a
rate of commission (13.1%) and omission (10.9%) for ensemble bagged trees, demonstrating low test
error. Evaluation of AUC for the other species displayed good/excellent skill for present day climate
conditions.

A post-hoc comparison of habitat niche fit with seedling class WBP (< 2.54 cm DBH, n = 497)
was also constructed, displaying a spatial distribution for WBP analogous to adults (Figure 2). Binary
classification of presence and absence based on a probability threshold, where sensitivity and
specificity were equal, generated near equivalent distribution maps for adults and seedlings despite
seedlings presenting lower occurrence probabilities as a result of lower empirical sample prevalence.
Comparison of predicted presence distributions across predictor variables again verified similar
environmental gradients for both adults and seedlings (Figure 3). This post-hoc analysis rationalizes
use of the “adult” fit distribution probabilities under future climate for state and transition
simulations as potential suitable habitats for dispersed recruit colonization (details below) due to its
more complete empirical representation of the population on the landscape.

Following model fitting and applying the model to a historic climate period (1950-1980 and
1980-2010, respectively), we projected our SDM under two global climate models (GCMs) and two
carbon concentration scenarios. Using a Bias-Correction Spatial Disaggregation (BCSD) approach,

" Since Englemann spruce and sub-alpine fir are often sympatric and this analysis is focused on WBP, the spruce
and fir probability surfaces were combined in order to generate a single spruce-fir probability surface.
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an archive of 9 statistically downscaled CMIP5 climate projections for the conterminous United
States at 30-arc-second spatial resolution was assembled by the NASA Center for Climate
Simulation NEX-DCP30. For this analysis, two GCMs that represented the greatest and least change
in total WBP habitat in the GYE by the year 2099 (CNRM-CMS5 [46] and HadGEM2-AO [47],
respectively), and two representative concentration pathway (RCP) scenarios were used to project
WBP occurrence probabilities. RCP 4.5 was the first, representing increased radiative forcing until
stabilization of greenhouse emissions between 2040 and 2050. RCP 8.5 was the second, representing
the ““business as usual” scenario, with uncontrolled radiative forcing with stabilization by 2099.
Using this approach, we sought to demonstrate the “bookends” of range for projected WBP probable
habitat under the high uncertainty and variability of global climate models [48]. Occurrence
probability surfaces were constructed for the 2040, 2070, and 2099 climate projections.

P.albicaulis adult 2010 Palbicaulis seedling 2010
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Figure 2. Modeled suitable bioclimatic envelope for adult WBP (938 presence, 1631
absence; accuracy rate of about 93%) (left panel), and for seedlings (497 presence,
2072 absence; accuracy rate of about 84%) (right panel).
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Figure 3. Binary classification of modeled presence for WBP adults (blue) and
seedlings (red) display similar environmental gradient distributions.

3.2. State-and-transition modeling

We implemented the STSM in the S7-Sim modeling platform [49]. ST-Sim’s graphical user
interface streamlines the process of defining distributions and probabilities, managing model inputs
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and outputs, viewing results, and creating and comparing alternative simulation scenarios.

Within S7-Sim, we defined state-and-transition pathways for each potential vegetation type (or
stratum) in the model. Strata and state classes were defined based on vegetation dynamics models
developed for the area as part of the Landscape Fire and Resource Management Planning Tools
Project (LANDFIRE) [50]; specifically, we created three forest types (WBP, lodgepole, and
spruce-fir) based on the dominant species in three LANDFIRE biophysical settings (BPS) (northern
rocky mountain subalpine woodland and parkland, rocky mountain lodgepole pine forest, and rocky
mountain subalpine mesic-wet spruce-fir forest and woodland). We also included an alpine stratum
as a potential location for WBP colonization, and a shrub-herb stratum for forest that underwent a
mortality event. The pathway diagrams for each forest stratum were then updated based on available
information in the literature on species life histories.

We initialized the model with multiple sources of spatial data. The extent of the spruce-fir and
lodgepole forest types were based on spatial data from LANDFIRE, and WBP was based on a
previously published dataset that was generated with Landsat ETM+ imagery [51]. Cells that were
classified as WBP by the LANDFIRE biophysical settings data, but not by the Landenburger et al.
dataset were reclassified as spruce-fir because there was greater overlap in its BPS description than
lodgepole. The location of state classes within each biophysical setting were spatially randomized in
proportion to the LANDFIRE mapped state class distributions.

The entire simulated landscape covers just over 15 million hectares centered on the GYE, at a
spatial resolution approximately 64 hectares per cell. The simulation was initiated in the year 1920
and run for 30 years to allow the model (specifically, tree populations) to stabilize. The historical
period covers 1950-2010, and the model was then projected to 2100. The model included transitions
for reproduction, aging, mortality, and competition. Modeled disturbances included replacement fire,
mixed fire, disease, insect pathogens, and wind/weather. Parameters for these and other probabilistic
transitions were derived from a variety of published sources (see Supplementary Material).
Deterministic parameters (age-based transitions) were based on LANDFIRE pathway diagrams and
life histories of the three main tree species. Fire size, seed dispersal distances, and mountain pine
beetle outbreak size distributions were estimated based on the Monitoring Trends in Burn Severity
(MTBS) dataset, U.S. Forest Service species information, and published literature [52].

The relationship between probabilities of mountain pine beetle infection and temperature was
estimated using a modified logistic function:

L
RGO (1)

p

where L is the maximum probability, u is the 2-year moving average annual minimum temperature
anomaly, M is the mean annual minimum temperature anomaly for 1999-2009, and « is adjusted so
the resulting probability matches observed beetle mortality for the same period. In order to calculate
annual temporal multipliers, this probability was then divided by the historical rates of insect and
disease infection from the LANDFIRE model (0.003). This relationship was used for both historical
model runs (1950-2010) and model projections (2010-2100) in order to vary the probability of
mountain pine beetle through time. Other probabilistic transitions were held constant through time.
Unfortunately, data was insufficient to parameterize blister rust in detail. There is a wide range
of estimates of blister rust infection rates across locations within the GYE [31], and little information
on the size of blister rust outbreaks. Moreover, the mortality of WBP with blister rust is often
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associated with other disturbances (mountain pine beetle, fire). Modeling blister rust is further
complicated by the complex relationship between blister rust and climate (temperature and humidity
both influence the spread of blister rust), and the fungus’ dependence on multiple hosts. As a result,
we did not explore the influence of blister rust on WBP beyond including it in the model and
ensuring that the modeled prevalence of infection and mortality matched observations from the GYE.

The establishment of new forest stands after disturbance was dependent on dispersal distances
(from the literature), and on habitat suitability as defined by SDM output data. SDM output for each
period (1950-1980, 1980-2010, 2010-2040, 2040-2070, 2070-2100) and each forest type (WBP,
spruce-fir, lodgepole pine) were used as spatial multipliers to dictate probabilities of forest
establishment (Figure 4). If establishment failed, the cell returned to the open state in the shrub-herb
stratum.

Open 14
Shrub-Herb
Forest ¥
Propagule Seedling » Mature

Spatial Multiplier = SDM Habitat
Suitability

Figure 4. Simplified pathway diagram of the integration of species distribution
model output into the state-and-transition simulation model, including dispersal
(blue arrow), depletion of the seedbank or mortality of juvenile trees (black arrow),
successful establishment (whose probability is characterized by the SDM output, red
arrow), and aging (green arrow). Other transitions (e.g., MPB infection, blister rust
infection, fire) were omitted from the figure due to space considerations and because each
forest stratum had a unique pathway diagram.

We verified realistic model function and then evaluated model outputs to ensure they
corresponded to real-world patterns (similar to techniques used in agent-based modeling [53,54]). In
particular, verification involved model debugging and parameter calibration, and validation included
sensitivity analysis and pattern evaluation. We calibrated the equation that dictated the relationship
between mountain pine beetle and minimum annual temperature anomaly (Equation 1) to match
observations (a similar approach to Frid et al. [55,56]). In particular, we compared observed levels of
beetle and blister rust infection in GYE to results from simulations using four logistic curves with

AIMS Environmental Science Volume 2, Issue 2, 400-426.



410

different maxima for the probability of beetle infection.

Evaluation of simulation models remains a significant challenge [57,58,59]. Our evaluation
effort was limited by the availability of independent datasets, but we implemented sensitivity
analysis and pattern evaluation [60] to check the validity of our model. We sought to reproduce the
recent large-scale dynamics of WBP population and disturbance. We compared mountain pine beetle
induced WBP mortality using different stratum shift (dead forest stands to open shrub-herb)
probabilities to observations from the U.S. Forest Service aerial detection survey. Modeled results
were subset by the area flown in each year of the aerial survey.

To test the robustness of our model to parameter uncertainty, we performed sensitivity analysis
by running the model for the historical period with different values for parameters that might change
substantially with climate or had lower certainty (were unknown or estimated, see Supplementary
Material). In particular, we varied the probabilities of alpine colonization by WBP, replacement fire,
and spruce-fir replacement of WBP stands by +/—50% [54, 61]. We ran 40 Monte Carlo simulations
(iterations or model runs) for each perturbation, and compared the means of our primary outcome
variables (WBP population, and mountain pine beetle mortality and infection at year 2010) to those
from the original model specification. The sensitivity index [61] was calculated as:

S = dx/x )
" dp/p

where p is the value of the independent variable, dp is the value for a change of p, x is the value of
the dependent variable, and dx is the corresponding change in X in response to the change in p.

After model verification and validation we ran the STSM using a no climate change scenario
and multiple scenarios that included combinations of two GCMs (CNRM-CMS5 and HadGEM2-A0O)
and two RCPs (4.5 and 8.5) to capture the range of change in projected WBP habitat suitability. We
compared temporal patterns and values of key outcome variables at 2100 for these four climate
scenarios and a no climate change scenario. The no climate change scenario used SDM output from
1950-1980 and the mean probability of mountain pine beetle infection for the same period.

4. Results
4.1. Verification and validation

Calibration of the relationship between annual minimum temperature anomaly and mountain
pine beetle infection indicated that 0.15 was a reasonable estimate of the maximum probability of
beetle infection. This value produced estimates of beetle infection and mortality, and blister rust
infection that were comparable to observations from the literature (Figure 5); about half of
sub-watersheds in the GYE had high to complete mortality from mountain pine beetle [62], and the
proportion of infected WBP trees in 2010 was around 20% [63].
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Figure 5. Results of model calibration using four different maxima for the
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observations (points). Columns represent the means of 40 Monte Carlo simulations and
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We also tested the sensitivity of key model outputs (total WBP, live mature WBP, beetle kill
WBP, and beetle infected WBP) to changes in parameters with less certainty (alpine colonization,
replacement fire, and spruce-fir competition) (Table 1). Perturbations of all of the three parameters
produced significant differences in one of the three main model outputs. Reducing (by 50%) the time
required for spruce-fir forest to replace WBP produced the largest sensitivity index values.
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Table 1. Sensitivity analysis results.

Parameter Default Perturbation = Total WBP Live Mature WBP Beetle Kill WBP Beetle Infected WBP
Value Value
“ “ Hectares Sensitivity ~ Hectares Sensitivity Hectares Sensitivity ~ Hectares Sensitivity
(% Change) (% Change) (% Change) (% Change)
Alpine 0.0001 0.0002 561,060 0.30% 163,524 1.14% 146,815 N/A 6,838 N/A
colonization (0.30) (1.14) (—0.05) (—0.68)
(probability)™
Replacement fire 0.001-0.003  0.0015-0.0045 586,759 9.79% 161,757 N/A 142,137 —6.48% 6,674 N/A
(probability)(b) (4.90) (0.05) (-3.24) (—3.06)
0.0005-0.0015 531,778 9.86% 162,647 -1.19% 152,048 —7.02% 6,923 N/A
(—4.93) (0.60) (3.51) (0.56)
Spruce-Fir 350 175 459,347 35.76% 123,146 47.67% 103,335 59.31% 4,818 60.03%
Competition (—17.88) (—23.83) (—29.65) (—30.01)
(years)
525 567,269 2.83% 164,816 3.88% 150,577 5.01% 6,537 —10.10%
(1.41) (1.94) (2.51) (-5.05)

Outcome values are means of 40 model runs measured at year 2010. These values are compared to baseline model output using t tests; significant differences (p < 0.05 for the two-tailed

distribution) are shown in bold, and sensitivity values are reported for statistically significant differences. Percent changes from the baseline model are in parentheses.

@ Alpine colonization could not be decreased further or increased by a smaller increment due to the limitations of the software (i.e., precision was limited to four decimal places)

The probability of replacement fire varied by state class; default and perturbation values for replacement fire are listed as ranges due to space considerations
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In terms of pattern evaluation, the relationship between the probability of beetle infection and
annual minimum temperature anomaly for the historical period were similar to simulated beetle
survival published elsewhere [64, Figure 2A in 65]. Additionally, the final model specification (value
of 0.1 for the probability of a stratum shift from dead forest to open shrub-herb) closely matched
temporal patterns of mountain pine beetle induced WBP mortality from the aerial detections survey
data, especially when compared to model specifications using other stratum shift values (0.05 and
0.0333) and a no climate change scenario (Figure 6). Model output for the total area of WBP in
National Forest and National Park Service lands in 2010 (536,664 hectares) was also comparable to
the observed area of WBP dominant stands (531,999 hectares) [31].
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Figure 6. Comparison of mountain pine beetle mortality for four different model
specifications (three different probabilities of the shift from dead forest to open
shrub-herb, and a no climate change scenario).

4.2. Projections

The area of WBP in 2100 was lower for all climate change projections as compared to the no
climate change scenario (Figure 7), although this difference does not become pronounced until mid-
to late-century (Figure 8). The no climate change scenario resulted in less spruce-fir and more
lodgepole as compared to the GCM/RCP scenarios.

Despite the appearance of diminishing mountain pine beetle mortality over time and projections
of low mountain pine beetle mortality in 2100 (Figure 9), beetle infected and killed WBP stands
accounted for about 40% of susceptible WBP in all climate scenarios at the end of the century.
Moreover, by 2100 late seral stage WBP was nearly absent from the landscape in all climate
projections except for the no climate change scenario.
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Figure 7. Mean areas of three forest types in 2100 under five different climate
scenarios. Error bars represent the 95% percentile range for 40 Monte Carlo simulations.
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Figure 8. Projected area of WBP forest under five different climate scenarios. Lines
represent the means of 40 Monte Carlo simulations and shaded regions represent the 95%
percentile range.
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Figure 9. Projected area of WBP mortality from mountain pine beetle under five
different climate scenarios. Lines represent the means of 40 Monte Carlo simulations and
shaded regions represent the 95% percentile range.

5. Discussion

Results of the sensitivity analysis suggest that some of the less certain model parameters had a
substantial effect on model output. The time for WBP stands to transition to spruce-fir forest had the
largest effect. More detailed information on this dynamic would likely improve model reliability.
Estimates for seral (as opposed to climax) WBP communities for this parameter range from 100-200
years [66]. Although the 350-year replacement time used in the model produced relatively
conservative estimates of WBP persistence, a more nuanced approach could link spruce-fir
competition to other factors (e.g., elevation). It is possible that this and other influential parameters,
such as the rate of WBP colonization of the alpine zone and variation in the probability of stand
replacing fires with climate, could be estimated based on fire, reforestation, and climatic patterns that
have been reconstructed from fossil records [30,67].

Another limitation of this modeling effort was the use of output from SDMs of adult trees as
input for seedling establishment. In other words, the spatial multiplier files used in our model
represent the probability of the presence of adult trees, but dictated the probability of seedling
establishment. However, these probability surfaces were based on 30-year moving averages of
climate variables, so, depending on the age of the adult trees, these data may indeed represent the
climate conditions during establishment. Moreover, our comparison of the presence and absence
locations of mature and seedling WBP suggests that the distribution of seedlings is very similar to
that of adults. In sum, without additional data points for the presence and absence of seedlings to
parameterize more robust seedling SDMs, and given the overlap in WBP adult and seedling
distributions it seems reasonable to have used the available SDM output for seedling establishment
within the STSM.

Despite these limitations, the model produced results that closely matched historical point
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estimates and temporal patterns of WBP and mountain pine beetle activity in the GYE, indicating
realistic model function. The counterintuitive finding of less spruce-fir under no climate change is
likely the result of mountain pine beetle activity; the no climate change scenario had lower beetle
infection probabilities, less beetle mortality, and thus fewer opportunities for spruce-fir to colonize
cells vacated by beetle-killed lodgepole and WBP. Future work could incorporate SDM output of
historic and projected mountain pine beetle habitat suitability in order to provide more nuanced and
spatially explicit infection probabilities.

Output for key WBP variables were comparable across GCMs and RCPs. All scenarios showed
a substantial decline in WBP forest, and especially late seral stage forest. The differential effects of
climate projections may have been attenuated by similar levels of mountain pine beetle activity
across climate scenarios. Across all climate projections, the probability of mountain pine beetle
infection reaches a maximum by early- to mid-century.

Overall, this modeling effort integrated a wide range of available information on WBP ecology,
reproduced observed patterns of WBP mortality in the GYE, and set the stage for future exploration
of WBP management scenarios. The sensitivity analyses and findings also point to the importance of
accounting for climate, disturbances, biotic interactions, and habitat suitability together. The
approach outlined here for combining the SDMs and STSMs provides a strong foundation for
exploring alternative approaches to managing resources under the combined pressures of climate
change, insects, disease, and interspecific competition.

6. Conclusion

This research demonstrated the benefits of integrating correlative and stochastic simulation
models. In particular, we combined SDM’s ability to produce statistically robust estimates of the
relationship between climate and habitat with STSM’s ability to account for disturbances and biotic
interactions. The resulting model reproduced observed patterns of WBP in the GYE.

Another important outcome from this research is the identification of data gaps and
opportunities for the integration of additional datasets and modeling approaches. Our framework for
model validation not only served to corroborate model function, but also identified important
research needs, including the ability of WBP to colonize alpine zones, the rate of spruce-fir
replacement of WBP across different parts of the landscape, and changes in fire regime. Looking to
the historical and paleontological record could help address these shortcomings.

This model and the software platform offer a basis for exploring resource management
scenarios such as thinning to protect high value trees from fire, prescribed fires, and the application
of pesticides and pheromones to deter mountain pine beetles [31]. Ideally, the specific management
scenarios would be carefully developed in conjunction with resource managers. Scenarios could then
be implemented in S7-Sim by altering transition probabilities to further explore parameter space and
model sensitivity, setting management targets for a given outcome (e.g., area of beetle mortality), or
setting limits on expenditures for a given action (e.g., pesticide application). Moreover, these
scenarios could be applied to specific management units (e.g., National Forests, National Parks),
locations (e.g., < 10 km from roadways), and time periods. The costs of implementing management
actions or achieving particular targets could also be tracked through time.

STSMs can integrate a variety of data types and sources to create spatially explicit, flexible, and
verifiable representations of ecological dynamics. When paired with SDMs, they offer an especially
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powerful approach for anticipating the effects of climate change, and ultimately, exploring options
for managing species in the face of an uncertain future.
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Supplementary
Appendix S1. Probabilistic transition parameter values, sources, and associated transition constraints.
From Veg. From Class To Veg. To Class  Transition Type Probability Age Source & Notes Other Transition Constraints
Type Type (years)
All Forest  Propagule All Forest  Juvenile Establishment From SDM >1 SDM output (habitat suitability grids)
All forest ~ Dead-Fire Shrub-Herb Open Succession Deterministic >2 Allows for seed dispersal to open cells after
fire
Alpine Open WBP Propagule Colonization 0.0001 >1 Estimated/unknown; tested with sensitivity
analysis
Lodgepole Late-Close  Spruce-Fir  Mature Competition Deterministic 350 LANDFIRE BPS 2110550 [68] Min. time-since-transition (TST)
(establishment) = 350 yr.
Lodgepole Mid-Close  Lodgepole  Mid-Close Competition/Main 0.0020 20-79
tenance
Lodgepole MPB Lodgepole  Dead- Death-MPB Deterministic > 20 Probability of death incorporated into Min. TST (MPB infection) = 2 yr.
MPB probability of infection (as in LANDFIRE)
Lodgepole  Propagule Shrub-Herb  Open Establishment 0.9500 >1 Probability assumed equal for all forest Min. TST (dispersal) = 11 yr.
Failure types (estimated based on MPB stands,
Teste et al. [69])
Lodgepole Mid-Close  Lodgepole @ MPB Infection-MPB 0.0030 20-79 LANDFIRE BPS 2110550 [68] Annual temporal multipliers vary
this parameter according to
Equation 1; outbreak size
distribution estimated based on
Aukema et al. [52]
Lodgepole Late-Close  Lodgepole =~ MPB Infection-MPB 0.0030 80-350
Lodgepole Late-Close  Lodgepole = Mid-Close Insect/Disease- 0.0060 80-350
Other
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Lodgepole

Lodgepole

Shrub-Herb

Spruce-Fir

Spruce-Fir

Spruce-Fir

Spruce-Fir
Spruce-Fir
Spruce-Fir
Spruce-Fir
Spruce-Fir
Spruce-Fir
WBP

WBP

WBP

All

Dead-MPB

Open

Propagule

Late-Close

Late-Close
Early

Mid-Close,
-Open
Late-Open
Early
Late-Open
Mid-Close

Late-Close

Mid-Close

Early

Lodgepole

Shrub-Herb

All Forest

Shrub-Herb

Spruce-Fir

Spruce-Fir

Spruce-Fir
Spruce-Fir
Spruce-Fir
Spruce-Fir
Spruce-Fir
Spruce-Fir
Spruce-Fir

WBP

WBP

Dead-Fire

Open

Propagule

Open

Late-Open

Late-Open
Dead-Fire

Dead-Fire
Dead-Fire
Mid-Open
Late-Close
Mid-Open
Mid-Close

Mid-Close

Early

Replacement Fire

Succession

Succession

Establishment
Failure
Insect/Disease-
Other

Mixed Fire

Replacement Fire

Replacement Fire

Replacement Fire
Succession
Succession
Wind/Weather/
Stress

Competition

Competition/
Maintenance
Competition/

Maintenance

0.0030

0.1000

0.2500

0.9500

0.0010

0.0050
0.0020

0.0020

0.0025

0.0010

0.0010

0.0010

Deterministic

0.0020

0.0050

> 150

> 150
1-39

40-149

> 150

1-39

> 150

40-149

350

50-129

1-49

LANDFIRE BPS 2110550 [68]; tested
with sensitivity analysis
Based on time for shrub-herb to early forest

(10-30yrs, Keane et al. [66]); used to track
amount of dead forest

Probability assumed equal for all forest

types

LANDFIRE BPS 2110560 [68]

LANDFIRE BPS 2110560 [68]; tested

with sensitivity analysis

LANDFIRE BPS 2110560 [68]

Based on LANDFIRE BPS 2110550 [68];
tested with sensitivity analysis
LANDFIRE BPS 2110460 [68]

Fire size distribution (MTBS [70])

Min. TST (MPB mortality) = 2 yr.

(loss of needles)

Seed dispersal distances (USFS

(71])
Min. TST (dispersal) = 3 yr.
(Johnson & Fryer [72])

Fire size distribution (MTBS [70])

Min. TST (establishment) = 350
YI.
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WBP

WBP

WBP
WBP

WBP

WBP
WBP
WBP
WBP

WBP

WBP

WBP

WBP

WBP

WBP
WBP

MPB, Rust
& MPB
Rust-Early

Rust-Mature
Propagule

Mid-Close

Late-Close
Mid-Open
Late-Open
Mid-Open,
-Close
Late-Open,

-Close

Early
Late-Close

Mid-Close
Late-Close

Mid-Open
Late-Open

WBP

WBP

WBP
Shrub-Herb

WBP

WBP
WBP
WBP
WBP

WBP

WBP

WBP

WBP

WBP

WBP
WBP

Dead-
MPB
Dead-Rust

Dead-Rust
Open

MPB

MPB

MPB

MPB

Rust-
Mature
Rust-
LANDFI
RE Mature
Rust-Early
Late-Open

Mid-Open
Late-Open

Mid-Open
Late-Open

Death-MPB

Death-Rust

Death-Rust
Establishment
Failure
Infection-MPB

Infection-MPB
Infection-MPB
Infection-MPB

Infection-Rust

Infection-Rust

Infection-Rust
Insect/Disease-
Other
Insect/Disease-
Other

Mixed Fire
Mixed Fire
Mixed Fire

Deterministic > 51

0.5213

0.5213
0.9500

0.0030

0.0030
0.0020
0.0020
0.0067

0.0067

0.0184

0.0020

0.0030

0.0020

0.0070
0.0070

130-350
50-129
>130
50-129

>130

149

130-350

50-129

130-350

50-129
>130

Probability of death combined with

probability of infection (as in LANDFIRE)

Keane et al. [66]

Probability assumed equal for all forest

types
LANDFIRE BPS 2110460 [68]

Logan et al. [65]; also similar to Keane et

al. [66]

Keane et al. [66]
LANDFIRE BPS 2110460 [68]

Min. TST (MPB infection) = 2 yr.

TST (rust infection) = 10-30yrs
(Hatala and Crabtree [73])

Min. TST (dispersal) = 4 yr.
(USFS [71], Keane et al. [66])
Annual temporal multipliers vary
this parameter according to
Equation 1; outbreak size
distribution estimated based on
Aukema et al. [52]

Initiated in 1970; outbreak size

distribution (estimated)
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WBP
WBP

WBP
WBP
WBP
WBP

WBP

WBP
WBP
WBP
WBP
WBP
WBP
WBP
WBP

WBP

Mid-Close
Dead-MPB

Dead-Rust
Rust-Early
Rust-Mature
MPB, Rust
& MPB
Early

Mid-Close
Late-Close
Mid-Open
Late-Open
Early
Mid-Open
Late-Open
Dead-MPB

Dead-Rust

WBP
WBP

WBP
WBP
WBP
WBP

WBP

WBP
WBP
WBP
WBP
WBP
WBP
WBP

Mid-Open
Dead-Fire

Dead-Fire
Dead-Fire
Dead-Fire
Dead-Fire

Dead-Fire

Dead-Fire
Dead-Fire
Dead-Fire
Dead-Fire
Mid-Open
Mid-Close
Late-Close

Shrub-Herb Open

Shrub-Herb Open

Mixed Fire

Replacement Fire

Replacement Fire
Replacement Fire
Replacement Fire

Replacement Fire

Replacement Fire

Replacement Fire
Replacement Fire
Replacement Fire
Replacement Fire
Succession
Succession
Succession

Succession

Succession

0.0040
0.0025

0.0025
0.0025
0.0025
0.0025

0.0010

0.0020
0.0020
0.0030
0.0030
0.0100
0.0500
0.0500
0.1000

0.1000

50-129
>52

>2
1-49
>50
>51

149

50-129
130-350
50-129
>130
1-49
50-129
>130
>52

Estimated based on fire probabilities from
BPS 2110460 (mixed evidence for
influence of beetle/rust kill on fire); tested

with sensitivity analysis

LANDFIRE BPS 2110460 [68]; tested

with sensitivity analysis

LANDFIRE BPS 2110460 [68]

Based on time to transition from
shrub-herb to early forest (10-30yrs,
Keane et al. [66]) in order to track amount
of dead forest

Fire size distribution (MTBS [70])

Fire size distribution (MTBS [70])

Min. TST (MPB mortality) = 2 yr.

(loss of needles)
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