This review is inspired by the increasing shortage of fresh water in areas of the world, and is written in response to the expanding demand for sustainable technologies due to the prevailing crisis of depleting natural water resources. It focuses on comprehending different solar energy-based technologies. Since the increasing population has resulted in the rising demand for freshwater, desalination installation volume is rapidly increasing globally. Conventional ways of desalination technologies involve the use of fossil fuels to extract thermal energy which imparts adverse impacts on the environment. To lessen the carbon footprint left by energy-intensive desalination processes, the emphasis has shifted to using renewable energy sources to drive desalination systems. The growing interest in combining solar energy with desalination with an emphasis on increasing energy efficiency has been sparked by the rapid advancements in solar energy technology, particularly solar thermal. This review paper aims to reflect various developments in solar thermal desalination technologies and presents prospects of solar energy-based desalination techniques. This paper reviews direct and indirect desalination techniques coupled with solar energy, and goes on to explain recent trends in technologies. This review also summarizes the emerging trends in the field of solar thermal desalination technologies. The use of nanoparticles and photo-thermal materials for localized heating in solar desalination systems has decreased energy consumption and enhanced the efficiency of the system. Solar power combined with emerging processes like membrane distillation (MD) has also a recent resurgence.
Citation: Laveet Kumar, Jahanzaib Soomro, Hafeez Khoharo, Mamdouh El Haj Assad. A comprehensive review of solar thermal desalination technologies for freshwater production[J]. AIMS Energy, 2023, 11(2): 293-318. doi: 10.3934/energy.2023016
This review is inspired by the increasing shortage of fresh water in areas of the world, and is written in response to the expanding demand for sustainable technologies due to the prevailing crisis of depleting natural water resources. It focuses on comprehending different solar energy-based technologies. Since the increasing population has resulted in the rising demand for freshwater, desalination installation volume is rapidly increasing globally. Conventional ways of desalination technologies involve the use of fossil fuels to extract thermal energy which imparts adverse impacts on the environment. To lessen the carbon footprint left by energy-intensive desalination processes, the emphasis has shifted to using renewable energy sources to drive desalination systems. The growing interest in combining solar energy with desalination with an emphasis on increasing energy efficiency has been sparked by the rapid advancements in solar energy technology, particularly solar thermal. This review paper aims to reflect various developments in solar thermal desalination technologies and presents prospects of solar energy-based desalination techniques. This paper reviews direct and indirect desalination techniques coupled with solar energy, and goes on to explain recent trends in technologies. This review also summarizes the emerging trends in the field of solar thermal desalination technologies. The use of nanoparticles and photo-thermal materials for localized heating in solar desalination systems has decreased energy consumption and enhanced the efficiency of the system. Solar power combined with emerging processes like membrane distillation (MD) has also a recent resurgence.
[1] | UNESCO World Water Assessment Programme: UN World Water Development Report 2021: 'Valuing Water', 2021. Available from: https://unesdoc.unesco.org/ark:/48223/pf0000375724. |
[2] | World Resource Institute: Aqueduct projected water stress country rankings, 2015. Tech Note. Available from: https://www.wri.org/research/aqueduct-projected-water-stress-country-rankings. |
[3] | Al-Othman A, Darwish NN, Qasim M, et al. (2019) Nuclear desalination: A state-of-the-art review. Desalination 457: 39–61. https://doi.org/10.1016/j.desal.2019.01.002 doi: 10.1016/j.desal.2019.01.002 |
[4] | Ghazi ZM, Rizvi SWF, Shahid WM, et al. (2022). An overview of water desalination systems integrated with renewable energy sources. Desalination 542: 116063. https://doi.org/10.1016/j.desal.2022.116063 doi: 10.1016/j.desal.2022.116063 |
[5] | Chen C, Jiang Y, Ye Z, et al. (2019) Sustainably integrating desalination with solar power to overcome future freshwater scarcity in China. Global Energy Interconnect 2: 98–113. https://doi.org/10.1016/j.gloei.2019.07.009 doi: 10.1016/j.gloei.2019.07.009 |
[6] | Brendel LP, Shah VM, Groll EA, et al. (2020) A methodology for analyzing renewable energy opportunities for desalination and its application to Aruba. Desalination 493: 114613. https://doi.org/10.1016/j.desal.2020.114613 doi: 10.1016/j.desal.2020.114613 |
[7] | Gude VG (2016) Geothermal source potential for water desalination: Current status and future perspective. Renewable Sustainable Energy Rev 57: 1038–1065. https://doi.org/10.1016/j.rser.2015.12.186 doi: 10.1016/j.rser.2015.12.186 |
[8] | l-Nory M, El-Beltagy M (2014) An energy management approach for renewable energy integration with power generation and water desalination. Renewable Energy 72: 377–385. https://doi.org/10.1016/j.renene.2014.07.032 doi: 10.1016/j.renene.2014.07.032 |
[9] | Ghaffour N, Lattemann S, Missimer T, et al. (2014). Renewable energy-driven innovative energy-efficient desalination technologies. Appl Energy 136: 1155–1165. https://doi.org/10.1016/j.apenergy.2014.03.033 doi: 10.1016/j.apenergy.2014.03.033 |
[10] | Fang S, Tu W, Mu L, et al. (2019) Saline alkali water desalination project in Southern Xinjiang of China: A review of desalination planning, desalination schemes and economic analysis. Renewable Sustainable Energy Rev 113: 109268. https://doi.org/10.1016/j.rser.2019.109268 doi: 10.1016/j.rser.2019.109268 |
[11] | Chen C, Jiang Y, Ye Z, et al. (2019) Sustainably integrating desalination with solar power to overcome future freshwater scarcity in China. Global Energy Interconnect 2: 98–113. https://doi.org/10.1016/j.gloei.2019.07.009 doi: 10.1016/j.gloei.2019.07.009 |
[12] | Huang L, Jiang H, Wang Y, et al. (2020) Enhanced water yield of solar desalination by thermal concentrated multistage distiller. Desalination 477: 114260. https://doi.org/10.1016/j.desal.2019.114260 doi: 10.1016/j.desal.2019.114260 |
[13] | Zheng Y, Hatzell KB (2020) Technoeconomic analysis of solar thermal desalination. Desalination 474: 114168. https://doi.org/10.1016/j.desal.2019.114168 doi: 10.1016/j.desal.2019.114168 |
[14] | Calise F, d'Accadia MD, Piacentino A (2014) A novel solar trigeneration system integrating PVT (photovoltaic/thermal collectors) and SW (seawater) desalination: Dynamic simulation and economic assessment. Energy 67: 129–148. https://doi.org/10.1016/j.energy.2013.12.060 doi: 10.1016/j.energy.2013.12.060 |
[15] | Thomson M, Miranda MS, Infield D (2003) A small-scale seawater reverse-osmosis system with excellent energy efficiency over a wide operating range. Desalination 153: 229–236. https://doi.org/10.1016/S0011-9164(02)01141-4 doi: 10.1016/S0011-9164(02)01141-4 |
[16] | Karavas CS, Arvanitis G, Kyriakarakos G, et al. (2018) A novel autonomous PV powered desalination system based on a DC microgrid concept incorporating short-term energy storage. Sol Energy 159: 947–961. https://doi.org/10.1016/j.solener.2017.11.057 doi: 10.1016/j.solener.2017.11.057 |
[17] | Joyce A, Loureiro D, Rodrigues C, et al. (2001). Small reverse osmosis units using PV systems for water purification in rural places. Desalination 137: 39–44. https://doi.org/10.1016/S0011-9164(01)00202-8 doi: 10.1016/S0011-9164(01)00202-8 |
[18] | Li Y, Samad S, Ahmed FW, et al. (2020) Analysis and enhancement of PV efficiency with hybrid MSFLA–FLC MPPT method under different environmental conditions. J Cleaner Prod 271: 122195. https://doi.org/10.1016/j.jclepro.2020.122195 doi: 10.1016/j.jclepro.2020.122195 |
[19] | Delgado-Torres AM, García-Rodríguez L, del Moral MJ (2020) Preliminary assessment of innovative seawater reverse osmosis (SWRO) desalination powered by a hybrid solar photovoltaic (PV)-Tidal range energy system. Desalination 477: 114247. https://doi.org/10.1016/j.desal.2019.114247 doi: 10.1016/j.desal.2019.114247 |
[20] | Bait O (2020) Direct and indirect solar-powered desalination processes loaded with nanoparticles: A review. Sustainable Energy Technol Assess 37: 100597. https://doi.org/10.1016/j.seta.2019.100597 doi: 10.1016/j.seta.2019.100597 |
[21] | Maka AO, O'Donovan TS (2020) A review of thermal load and performance characterisation of a high concentrating photovoltaic (HCPV) solar receiver assembly. Sol Energy 206: 35–51. https://doi.org/10.1016/j.solener.2020.05.022 doi: 10.1016/j.solener.2020.05.022 |
[22] | lminshawy NA, Gadalla MA, Bassyouni M, et al. (2020). A novel concentrated photovoltaic-driven membrane distillation hybrid system for the simultaneous production of electricity and potable water. Renewable Energy 162: 802–817. https://doi.org/10.1016/j.renene.2020.08.041 doi: 10.1016/j.renene.2020.08.041 |
[23] | Mahmoudi H, Spahis N, Goosen MF, et al. (2009) Assessment of wind energy to power solar brackish water greenhouse desalination units: a case study from Algeria. Renewable Sustainable Energy Rev 13: 2149–2155. https://doi.org/10.1016/j.rser.2009.03.001 doi: 10.1016/j.rser.2009.03.001 |
[24] | Ma Q, Lu H (2011) Wind energy technologies integrated with desalination systems: Review and state-of-the-art. Desalination 277: 274–280. https://doi.org/10.1016/j.desal.2011.04.041 doi: 10.1016/j.desal.2011.04.041 |
[25] | Abdelkareem MA, Assad ME, Sayed ET, et al. (2018) Corrigendum to "Recent progress in the use of renewable energy sources to power water desalination plants" (vol 435, pg 97, 2018). Desalination 444: 178–178. https://doi.org/10.1016/j.desal.2018.05.003 doi: 10.1016/j.desal.2018.05.003 |
[26] | Vargas SA, Esteves GRT, Maçaira PM, et al. (2019) Wind power generation: A review and a research agenda. J Cleaner Prod 218: 850–870. https://doi.org/10.1016/j.jclepro.2019.02.015 doi: 10.1016/j.jclepro.2019.02.015 |
[27] | Baxter J, Walker C, Ellis G, et al. (2020) Scale, history and justice in community wind energy: An empirical review. Energy Res Soc Sci 68: 101532. https://doi.org/10.1016/j.erss.2020.101532 doi: 10.1016/j.erss.2020.101532 |
[28] | Díaz H, Soares CG (2020) Review of the current status, technology and future trends of offshore wind farms. Ocean Eng 209: 107381. https://doi.org/10.1016/j.oceaneng.2020.107381 doi: 10.1016/j.oceaneng.2020.107381 |
[29] | Bundschuh J, Ghaffour N, Mahmoudi H, et al. (2015) Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes. Renewable Sustainable Energy Rev 43: 196–206. https://doi.org/10.1016/j.rser.2014.10.102 doi: 10.1016/j.rser.2014.10.102 |
[30] | Aguilar-Jiménez JA, Velázquez N, López-Zavala R, et al. (2020). Low-temperature multiple-effect desalination/organic Rankine cycle system with a novel integration for fresh water and electrical energy production. Desalination 477: 114269. https://doi.org/10.1016/j.desal.2019.114269 doi: 10.1016/j.desal.2019.114269 |
[31] | Kabay N, Köseoğlu P, Yapıcı D, et al. (2013) Coupling ion exchange with ultrafiltration for boron removal from geothermal water-investigation of process parameters and recycle tests. Desalination 316: 17–22. https://doi.org/10.1016/j.desal.2013.01.027 doi: 10.1016/j.desal.2013.01.027 |
[32] | Çermikli E, Şen F, Altıok E, et al. (2020) Performances of novel chelating ion exchange resins for boron and arsenic removal from saline geothermal water using adsorption-membrane filtration hybrid process. Desalination 491: 114504. https://doi.org/10.1016/j.desal.2020.114504 doi: 10.1016/j.desal.2020.114504 |
[33] | Jang J, Kang Y, Han JH, et al. (2020) Developments and future prospects of reverse electrodialysis for salinity gradient power generation: Influence of ion exchange membranes and electrodes. Desalination 491: 114540. https://doi.org/10.1016/j.desal.2020.114540 doi: 10.1016/j.desal.2020.114540 |
[34] | Ahmed FE, Hashaikeh R, Hilal N (2019) Solar powered desalination—Technology, energy and future outlook. Desalination 453: 54–76. https://doi.org/10.1016/j.desal.2018.12.002 doi: 10.1016/j.desal.2018.12.002 |
[35] | Reif JH, Alhalabi W (2015) Solar-thermal powered desalination: Its significant challenges and potential. Renewable Sustainable Energy Rev 48: 152–165. https://doi.org/10.1016/j.rser.2015.03.065 doi: 10.1016/j.rser.2015.03.065 |
[36] | Tarazona-Romero BE, Campos-Celador A, Maldonado-Muñoz YA (2022) Can solar desalination be small and beautiful? A critical review of existing technology under the appropriate technology paradigm. Energy Res Soc Sci 88: 102510. https://doi.org/10.1016/j.erss.2022.102510 doi: 10.1016/j.erss.2022.102510 |
[37] | Sohani A, Hoseinzadeh S, Berenjkar K (2021) Experimental analysis of innovative designs for solar still desalination technologies; an in-depth technical and economic assessment. J Energy Storage 33: 101862. https://doi.org/10.1016/j.est.2020.101862 doi: 10.1016/j.est.2020.101862 |
[38] | Rufuss DDW, Iniyan S, Suganthi L, et al. (2016) Solar stills: A comprehensive review of designs, performance and material advances. Renewable Sustainable Energy Rev 63: 464–496. https://doi.org/10.1016/j.rser.2016.05.068 doi: 10.1016/j.rser.2016.05.068 |
[39] | Shukla A, Kant K, Sharma A (2017) Solar still with latent heat energy storage: A review. Innovative Food Sci Emerging Technol 41: 34–46. https://doi.org/10.1016/j.ifset.2017.01.004 doi: 10.1016/j.ifset.2017.01.004 |
[40] | Thakur AK, Sathyamurthy R, Sharshir SW, et al. (2021) Performance analysis of a modified solar still using reduced graphene oxide coated absorber plate with activated carbon pellet. Sustainable Energy Technol Assess 45: 101046. https://doi.org/10.1016/j.seta.2021.101046 doi: 10.1016/j.seta.2021.101046 |
[41] | Shoeibi S, Saemian M, Kargarsharifabad H, et al. (2022) A review on evaporation improvement of solar still desalination using porous material. Int Commun Heat Mass Transfer 138: 106387. https://doi.org/10.1016/j.icheatmasstransfer.2022.106387 doi: 10.1016/j.icheatmasstransfer.2022.106387 |
[42] | Yin X, Zhang Y, Guo Q, et al. (2018) Macroporous double-network hydrogel for high-efficiency solar steam generation under 1 sun illumination. ACS Appl Mater Interfaces 10: 10998–11007. https://doi.org/10.1021/acsami.8b01629 doi: 10.1021/acsami.8b01629 |
[43] | Iqbal A, Mahmoud MS, Sayed ET, et al. (2021) Evaluation of the nanofluid-assisted desalination through solar stills in the last decade. J Environ Manage 277: 111415. https://doi.org/10.1016/j.jenvman.2020.111415 doi: 10.1016/j.jenvman.2020.111415 |
[44] | Parsa SM, Rahbar A, Koleini MH, et al. (2020) A renewable energy-driven thermoelectric-utilized solar still with external condenser loaded by silver/nanofluid for simultaneously water disinfection and desalination. Desalination 480: 114354. https://doi.org/10.1016/j.desal.2020.114354 doi: 10.1016/j.desal.2020.114354 |
[45] | Yu S, Zhang Y, Duan H, et al. (2015) The impact of surface chemistry on the performance of localized solar-driven evaporation system. Sci Rep 5: 13600. https://doi.org/10.1038/srep13600 doi: 10.1038/srep13600 |
[46] | Moustafa SMA, Jarrar DI, El-Mansy HI (1985) Performance of a self-regulating solar multistage flash desalination system. Sol Energy 35: 333–340. https://doi.org/10.1016/0038-092X(85)90141-0 doi: 10.1016/0038-092X(85)90141-0 |
[47] | Garg K, Khullar V, Das SK, et al. (2018) Performance evaluation of a brine-recirculation multistage flash desalination system coupled with nanofluid-based direct absorption solar collector. Renewable Energy 122: 140–151. https://doi.org/10.1016/j.renene.2018.01.050 doi: 10.1016/j.renene.2018.01.050 |
[48] | Alsehli M (2021) Experimental validation of a solar powered multistage flash desalination unit with alternate storage tanks. Water 13: 2143. https://doi.org/10.3390/w13162143 doi: 10.3390/w13162143 |
[49] | Babaeebazaz A, Gorjian S, Amidpour M (2021) Integration of a solar parabolic dish collector with a small-scale multi-stage flash desalination unit: Experimental evaluation, exergy and economic analyses. Sustainability 13: 11295. https://doi.org/10.3390/su132011295 doi: 10.3390/su132011295 |
[50] | Vahland S (2013) Analysis of parabolic trough solar energy integration into different geothermal power generation concepts. Available from: http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Akth%3Adiva-129093. |
[51] | Khoshrou I, Nasr MJ, Bakhtari K (2017) New opportunities in mass and energy consumption of the Multi-Stage Flash Distillation type of brackish water desalination process. Sol Energy 153: 115–125. https://doi.org/10.1016/j.solener.2017.05.021 doi: 10.1016/j.solener.2017.05.021 |
[52] | Al-Mutaz IS, Wazeer I (2014) Comparative performance evaluation of conventional multi-effect evaporation desalination processes. Appl Therm Eng 73: 1194–1203. https://doi.org/10.1016/j.applthermaleng.2014.09.025 doi: 10.1016/j.applthermaleng.2014.09.025 |
[53] | Calise F, d'Accadia MD, Piacentino A (2015) Exergetic and exergoeconomic analysis of a renewable polygeneration system and viability study for small isolated communities. Energy 92: 290–307. https://doi.org/10.1016/j.energy.2015.03.056 doi: 10.1016/j.energy.2015.03.056 |
[54] | Calise F, Cipollina A, d'Accadia MD, et al. (2014) A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment. Appl Energy 135: 675–693. https://doi.org/10.1016/j.apenergy.2014.03.064 doi: 10.1016/j.apenergy.2014.03.064 |
[55] | Alhaj M, Tahir F, Al-Ghamdi SG (2022) Life-cycle environmental assessment of solar-driven Multi-Effect Desalination (MED) plant. Desalination 524: 115451. https://doi.org/10.1016/j.desal.2021.115451 doi: 10.1016/j.desal.2021.115451 |
[56] | Liu X, Chen W, Gu M, et al. (2013) Thermal and economic analyses of solar desalination system with evacuated tube collectors. Sol Energy 93: 144–150. https://doi.org/10.1016/j.solener.2013.03.009 doi: 10.1016/j.solener.2013.03.009 |
[57] | Qasem NA, Lawal DU, Aljundi IH, et al. (2022). Novel integration of a parallel-multistage direct contact membrane distillation plant with a double-effect absorption refrigeration system. Appl Energy 323: 119572. https://doi.org/10.1016/j.apenergy.2022.119572 doi: 10.1016/j.apenergy.2022.119572 |
[58] | Drioli E, Ali A, Macedonio F (2015) Membrane distillation: Recent developments and perspectives. Desalination 356: 56–84. https://doi.org/10.1016/j.desal.2014.10.028 doi: 10.1016/j.desal.2014.10.028 |
[59] | Banat F, Jumah R, Garaibeh M (2002) Exploitation of solar energy collected by solar stills for desalination by membrane distillation. Renewable Energy 25: 293–305. https://doi.org/10.1016/S0960-1481(01)00058-1 doi: 10.1016/S0960-1481(01)00058-1 |
[60] | Thomas N, Mavukkandy MO, Loutatidou S, et al. (2017). Membrane distillation research & implementation: Lessons from the past five decades. Sep Purif Technol 189: 108–127. https://doi.org/10.1016/j.seppur.2017.07.069 doi: 10.1016/j.seppur.2017.07.069 |
[61] | Banat F, Jwaied N, Rommel M, et al. (2007) Desalination by a "compact SMADES" autonomous solarpowered membrane distillation unit. Desalination 217: 29–37. https://doi.org/10.1016/j.desal.2006.11.028 doi: 10.1016/j.desal.2006.11.028 |
[62] | Chafidz A, Al-Zahrani S, Al-Otaibi MN, et al. (2014) Portable and integrated solar-driven desalination system using membrane distillation for arid remote areas in Saudi Arabia. Desalination 345: 36–49. https://doi.org/10.1016/j.desal.2014.04.017 doi: 10.1016/j.desal.2014.04.017 |
[63] | Guillén-Burrieza E, Zaragoza G, Miralles-Cuevas S, et al. (2012) Experimental evaluation of two pilot-scale membrane distillation modules used for solar desalination. J Membr Sci 409: 264–275. https://doi.org/10.1016/j.memsci.2012.03.063 doi: 10.1016/j.memsci.2012.03.063 |
[64] | Shafieian A, Azhar MR, Khiadani M, et al. (2020) Performance improvement of thermal-driven membrane-based solar desalination systems using nanofluid in the feed stream. Sustainable Energy Technol Assess 39: 100715. https://doi.org/10.1016/j.seta.2020.100715 doi: 10.1016/j.seta.2020.100715 |
[65] | Shafieian Dastjerdi A (2020) A solar‐driven membrane‐based water desalination/purification system. Available from: https://ro.ecu.edu.au/theses/2323. |
[66] | Ullah R, Khraisheh M, Esteves RJ, et al. (2018) Energy efficiency of direct contact membrane distillation. Desalination 433: 56–67. https://doi.org/10.1016/j.desal.2018.01.025 doi: 10.1016/j.desal.2018.01.025 |
[67] | González D, Amigo J, Suárez F (2017) Membrane distillation: Perspectives for sustainable and improved desalination. Renewable Sustainable Energy Rev 80: 238–259. https://doi.org/10.1016/j.rser.2017.05.078 doi: 10.1016/j.rser.2017.05.078 |
[68] | Myyas REN, Al-Dabbasa M, Tostado-Véliz M, et al. (2022) A novel solar panel cleaning mechanism to improve performance and harvesting rainwater. Sol Energy 237: 19–28. https://doi.org/10.1016/j.rser.2017.05.078 doi: 10.1016/j.rser.2017.05.078 |
[69] | Porrazzo R, Cipollina A, Galluzzo M, et al. (2013) A neural network-based optimizing control system for a seawater-desalination solar-powered membrane distillation unit. Comput Chem Eng 54: 79–96. https://doi.org/10.1016/j.compchemeng.2013.03.015 doi: 10.1016/j.compchemeng.2013.03.015 |
[70] | Lee JG, Kim WS, Choi JS, et al. (2018) Dynamic solar-powered multi-stage direct contact membrane distillation system: Concept design, modeling and simulation. Desalination 435: 278–292. https://doi.org/10.1016/j.desal.2017.04.008 doi: 10.1016/j.desal.2017.04.008 |
[71] | Khalifa A, Ahmad H, Antar M, et al. (2017) Experimental and theoretical investigations on water desalination using direct contact membrane distillation. Desalination 404: 22–34. https://doi.org/10.1016/j.desal.2016.10.009 doi: 10.1016/j.desal.2016.10.009 |
[72] | Elzahaby AM, Kabeel AE, Bassuoni MM, et al. (2016) Direct contact membrane water distillation assisted with solar energy. Energy Convers Manage 110: 397–406. https://doi.org/10.1016/j.enconman.2015.12.046 doi: 10.1016/j.enconman.2015.12.046 |
[73] | Zuo G, Wang R, Field R, et al. (2011) Energy efficiency evaluation and economic analyses of direct contact membrane distillation system using Aspen Plus. Desalination 283: 237–244. https://doi.org/10.1016/j.desal.2011.04.048 doi: 10.1016/j.desal.2011.04.048 |
[74] | Ahmed FE, Lalia BS, Hashaikeh R, et al. (2020) Alternative heating techniques in membrane distillation: A review. Desalination 496: 114713. https://doi.org/10.1016/j.desal.2020.114713 doi: 10.1016/j.desal.2020.114713 |
[75] | Nakoa K, Rahaoui K, Date A, et al. (2016) Sustainable zero liquid discharge desalination (SZLDD). Sol Energy 135: 337–347. https://doi.org/10.1016/j.solener.2016.05.047 doi: 10.1016/j.solener.2016.05.047 |
[76] | Shafieian A, Khiadani M (2019) A novel solar-driven direct contact membrane-based water desalination system. Energy Convers Manage 199: 112055. https://doi.org/10.1016/j.enconman.2019.112055 doi: 10.1016/j.enconman.2019.112055 |
[77] | Bouguecha ST, Aly SE, Al-Beirutty MH, et al. (2015) Solar driven DCMD: Performance evaluation and thermal energy efficiency. Chem Eng Res Des 100: 331–340. https://doi.org/10.1016/j.cherd.2015.05.044 doi: 10.1016/j.cherd.2015.05.044 |
[78] | Huang J, Hu Y, Bai Y, et al. (2020) Novel solar membrane distillation enabled by a PDMS/CNT/PVDF membrane with localized heating. Desalination 489: 114529. https://doi.org/10.1016/j.desal.2020.114529 doi: 10.1016/j.desal.2020.114529 |
[79] | Ma Q, Ahmadi A, Cabassud C (2018) Direct integration of a vacuum membrane distillation module within a solar collector for small-scale units adapted to seawater desalination in remote places: Design, modeling & evaluation of a flat-plate equipment. J Membr Sci 564: 617–633. https://doi.org/10.1016/j.memsci.2018.07.067 doi: 10.1016/j.memsci.2018.07.067 |
[80] | Kim YD, Thu K, Ghaffour N, et al. (2013) Performance investigation of a solar-assisted direct contact membrane distillation system. J Membr Sci 427: 345–364. https://doi.org/10.1016/j.memsci.2012.10.008 doi: 10.1016/j.memsci.2012.10.008 |
[81] | Tlili I, Sajadi SM, Baleanu D, et al. (2022) Flat sheet direct contact membrane distillation study to decrease the energy demand for solar desalination purposes. Sustainable Energy Technol Assess 52: 102100. https://doi.org/10.1016/j.seta.2022.102100 doi: 10.1016/j.seta.2022.102100 |
[82] | Krnac A, Araiz M, Rana S, et al. (2019) Investigation of direct contact membrane distillation coupling with a concentrated photovoltaic solar system. Energy Procedia 160: 246–252. https://doi.org/10.1016/j.egypro.2019.02.143 doi: 10.1016/j.egypro.2019.02.143 |
[83] | Laqbaqbi M, García-Payo MC, Khayet M, et al. (2019) Application of direct contact membrane distillation for textile wastewater treatment and fouling study. Sep Purif Technol 209: 815–825. https://doi.org/10.1016/j.seppur.2018.09.031 doi: 10.1016/j.seppur.2018.09.031 |
[84] | Kumar L, Hasanuzzaman M, Rahim NA (2019) Global advancement of solar thermal energy technologies for industrial process heat and its future prospects: A review. Energy Convers Manage 195: 885–908. https://doi.org/10.1016/j.enconman.2019.05.081 doi: 10.1016/j.enconman.2019.05.081 |
[85] | Moravej M, Saffarian MR, Li LK, et al. (2020) Experimental investigation of circular flat-panel collector performance with spiral pipes. J Therm Anal Calorim 140: 1229–1236. https://doi.org/10.1007/s10973-019-08879-1 doi: 10.1007/s10973-019-08879-1 |
[86] | Kumar L, Hasanuzzaman M, Rahim NA, et al. (2021) Modeling, simulation and outdoor experimental performance analysis of a solar-assisted process heating system for industrial process heat. Renewable Energy 164: 656–673. https://doi.org/10.1016/j.renene.2020.09.062 doi: 10.1016/j.renene.2020.09.062 |
[87] | Dongare PD, Alabastri A, Pedersen S, et al. (2017) Nanophotonics-enabled solar membrane distillation for off-grid water purification. Proc Natl Acad Sci 114: 6936–6941. https://doi.org/10.1073/pnas.1701835114 doi: 10.1073/pnas.1701835114 |
[88] | Eykens L, De Sitter K, Dotremont C, et al. (2017) Wetting resistance of commercial membrane distillation membranes in waste streams containing surfactants and oil. Appl Sci 7: 118. https://doi.org/10.3390/app7020118 doi: 10.3390/app7020118 |
[89] | Li C, Li X, Du X, et al. (2020) Elucidating the trade-off between membrane wetting resistance and water vapor flux in membrane distillation. Environ Sci Technol 54: 10333–10341. https://doi.org/10.1021/acs.est.0c02547 doi: 10.1021/acs.est.0c02547 |
[90] | Xie B, Xu G, Jia Y, et al. (2021) Engineering carbon nanotubes enhanced hydrophobic membranes with high performance in membrane distillation by spray coating. J Membr Sci 625: 118978. https://doi.org/10.1016/j.memsci.2020.118978 doi: 10.1016/j.memsci.2020.118978 |
[91] | Li J, Ren LF, Zhou HS, et al. (2021) Fabrication of superhydrophobic PDTS-ZnO-PVDF membrane and its anti-wetting analysis in direct contact membrane distillation (DCMD) applications. J Membr Sci 620: 118924. https://doi.org/10.1016/j.memsci.2020.118924 doi: 10.1016/j.memsci.2020.118924 |
[92] | Zou L, Zhang X, Gusnawan P, et al. (2021) Crosslinked PVDF based hydrophilic-hydrophobic dual-layer hollow fiber membranes for direct contact membrane distillation desalination: from the seawater to oilfield produced water. J Membr Sci 619: 118802. https://doi.org/10.1016/j.memsci.2020.118802 doi: 10.1016/j.memsci.2020.118802 |
[93] | Yin Y, Jeong N, Tong T (2020) The effects of membrane surface wettability on pore wetting and scaling reversibility associated with mineral scaling in membrane distillation. J Membr Sci 614: 118503. https://doi.org/10.1016/j.memsci.2020.118503 doi: 10.1016/j.memsci.2020.118503 |
[94] | Martínez‐Díez L, Vázquez‐Gonzàlez MI (1996) Temperature polarization in mass transport through hydrophobic porous membranes. AIChE J 42: 1844–1852. https://doi.org/10.1002/aic.690420706 doi: 10.1002/aic.690420706 |
[95] | Wang P (2018) Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environ Sci: Nano 5: 1078–1089. https://doi.org/10.1039/C8EN00156A doi: 10.1039/C8EN00156A |
[96] | Wang Z, Horseman T, Straub AP, et al. (2019). Pathways and challenges for efficient solar-thermal desalination. Sci Adv 5: eaax0763. https://doi.org/10.1126/sciadv.aax0763 doi: 10.1126/sciadv.aax0763 |
[97] | Lotfy HR, Staš J, Roubík H (2022) Renewable energy powered membrane desalination—review of recent development. Environ Sci Pollut Res 29: 46552–46568. https://doi.org/10.1007/s11356-022-20480-y doi: 10.1007/s11356-022-20480-y |
[98] | Ang WL, Mohammad AW, Johnson D, et al. (2019) Forward osmosis research trends in desalination and wastewater treatment: A review of research trends over the past decade. J Water Process Eng 31: 100886. https://doi.org/10.1016/j.jwpe.2019.100886 doi: 10.1016/j.jwpe.2019.100886 |
[99] | Khan MA, Rehman S, Al-Sulaiman FA (2018) A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review. Renewable Sustainable Energy Rev 97: 456–477. https://doi.org/10.1016/j.rser.2018.08.049 doi: 10.1016/j.rser.2018.08.049 |
[100] | Ranganathan S (2017) Final Scientific/Technical Report for Program Title: Solar Powered Dewvaporation Desalination System (No. DOE-PTI-15837). Polestar Technologies Inc., Needham Heights, MA (United States). Available from: https://www.osti.gov/biblio/1347924-final-scientific-technical-report-program-title-solar-powered-dewvaporation-desalination-system. |
[101] | Hamieh BM, Beckman JR (2006) Seawater desalination using dewvaporation technique: Experimental and enhancement work with economic analysis. Desalination 195: 14–25. https://doi.org/10.1016/j.desal.2005.09.035 doi: 10.1016/j.desal.2005.09.035 |
[102] | Yao M, Tijing LD, Naidu G, et al. (2020) A review of membrane wettability for the treatment of saline water deploying membrane distillation. Desalination 479: 114312. https://doi.org/10.1016/j.desal.2020.114312 doi: 10.1016/j.desal.2020.114312 |
[103] | Cornejo PK, Santana MV, Hokanson DR, et al. (2014) Carbon footprint of water reuse and desalination: A review of greenhouse gas emissions and estimation tools. J Water Reuse Desalination 4: 238–252. https://doi.org/10.2166/wrd.2014.058 doi: 10.2166/wrd.2014.058 |