Citation: Mark P. McHenry, P. V. Brady, M. M. Hightower. PV-Li-ion-micropump membrane systems for portable personal desalination[J]. AIMS Energy, 2016, 4(3): 444-460. doi: 10.3934/energy.2016.3.444
[1] | Belessiotis V, Delyannis E (2001) Water shortage and renewable energies (RE) desalination - possible technological applications. Desalination 139: 133–138. doi: 10.1016/S0011-9164(01)00302-2 |
[2] | Banat F, Jwaied N (2008) Economic evaluation of desalination by small-scale autonomous solar-powered membrane distillation units. Desalination 220: 566–573. doi: 10.1016/j.desal.2007.01.057 |
[3] | El-Nasher AM (2001) The economic feasibility of small solar MED seawater desalination plants for remote arid areas. Desalination 134: 173–186. |
[4] | Al-Karaghouli A, Renne D, Kazmerski LL (2009) Solar and wind opportunities for water desalination in the Arab regions. Renew Sust Energ Rev 13: 2397–2407. |
[5] | Al-Karaghouli A, Renne D, Kazmerski LL (2010) Technical and economic assessment of photovoltaic-driven desalination systems. Renew Energ 35: 323–328. doi: 10.1016/j.renene.2009.05.018 |
[6] | Gude VG, Nirmalakhandan N, Deng S (2010) Renewable and sustainable approaches for desalination. Renew Sust Energ Rev 14: 2641–2654. doi: 10.1016/j.rser.2010.06.008 |
[7] | Chaibi MT (2000) An overview of solar desalination for domestic and agriculture water needs in remote arid areas. Desalination 127: 119–133. doi: 10.1016/S0011-9164(99)00197-6 |
[8] | Risbey J, Kandlikar M, Dowlatabadi H, et al. (1999) Scale, context, and decision making in agricultural adaptation to climate variability and change. Mitig Adapt Strat Gl 4: 137–165. doi: 10.1023/A:1009636607038 |
[9] | Soric A, Cesaro R, Perez P, et al. (2012) Eausmose project desalination by reverse osmosis and batteryless solar energy: design for a 1 m3 per day delivery. Desalination 301: 67–74. doi: 10.1016/j.desal.2012.06.013 |
[10] | De Munari A, Capao DPS, Richards BS, et al. (2009) Application of solar-powered desalination in a remote town in South Australia. Desalination 248: 72–82. doi: 10.1016/j.desal.2008.05.040 |
[11] | Banat F, Qiblawey H, Al-Nasser Q (2012) Design and operation of small-scale photovoltaic-driven reverse osmosis (PV-RO) desalination plant for water supply in rural areas. CWEEE 1: 31–36. doi: 10.4236/cweee.2012.13004 |
[12] | Banasiak LJ, Schafer AI (2009) Removal of inorganic trace contaminants by electrodialysis in a remote Australian community. Desalination 248: 48–57. doi: 10.1016/j.desal.2008.05.037 |
[13] | Bennett R (2013) System and method for water purification and desalination. US, Lockheed Martin Corporation, 10. |
[14] | Lazarov V, Zarkov Z, Kanchev H, et al. (2012) Compensation of power fluctuations in PV systems with supercapacitors. E+E 47: 48–55. |
[15] | Glavin ME, Hurley WG (2012) Optimisation of a photovoltaic battery ultracapacitor hybrid energy storage system. Solar Energ 86: 3009–3020. doi: 10.1016/j.solener.2012.07.005 |
[16] | McHenry MP (2009) Remote area power supply system technologies in Western Australia: New developments in 30 years of slow progress. Renew Energ 34: 1348–1353. doi: 10.1016/j.renene.2008.09.008 |
[17] | McHenry MP (2009) Why are remote Western Australians installing renewable energy technologies in stand-alone power supply systems? Renew Energ 34: 1252–1256. doi: 10.1016/j.renene.2008.10.003 |
[18] | Architectural Energy Corporation (1991) Maintenance and operation of stand-alone photovoltaic systems. Albuquerque, New Mexico, and Boulder, Colorado, USA: Sandia National Laboratories. |
[19] | Anand S, Fernandes BG (2010) Optimal voltage level for DC microgrids. 36th Annual Conference on IEEE Industrial Electronics Society (IECON), Glendale, Arizona, USA. |
[20] | Lee KP, Arnot TC, Mattia D (2011) A review of reverse osmosis membrane materials for desalination - Development to date and future potential. J Membrane Sci 370: 1–22. doi: 10.1016/j.memsci.2010.12.036 |
[21] | Hassan AF, Fath HES (2013) Review and assessment of the newly developed MD for desalination processes. Desalin Water Treat 51: 574–585. doi: 10.1080/19443994.2012.697273 |
[22] | Wang EN, Karnik R (2012) Water desalination: Graphene cleans up water. Nat Nanotechnol 7: 552–554. doi: 10.1038/nnano.2012.153 |
[23] | Ahmadun F-R, Pendashteh A, Abdullah LC, et al. (2009) Review of technologies for oil and gas produced water treatment. J Hazard Mater 170: 530–551. doi: 10.1016/j.jhazmat.2009.05.044 |
[24] | Guillén-Burrieza E, Zaragoza G, Miralles-Cuevas S, et al. (2012) Experimental evaluation of two pilot-scale membrane distillation modules used for solar desalination. J Membrane Sci 409–410: 264–275. |
[25] | Guillén-Burrieza E, Blanco J, Zaragoza G, et al. (2011) Experimental analysis of an air gap membrane distillation solar desalination pilot system. J Membrane Sci 397: 386–396. |
[26] | Onsekizoglu P (2012) Membrane distillation: principle, advances, limitations and future prospects in food industry. In: Zereshki S, Ed. Distillation - advances from modeling to applications. Rijeka, Croatia, InTech, 233–266. |
[27] | Zhu C, Li H, Zeng XC, et al. (2013) Ideal desalination through graphyne-4 membrane: nanopores for quantized water transport. Condensed Matter arXiv: 1307.0208 |
[28] | Tang Q, Zhou Z, Chen Z (2013) Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale 5: 4541–4583. doi: 10.1039/c3nr33218g |
[29] | Cohen-Tanugi D, Grossman JC (2012) Water Desalination across Nanoporous Graphene. Nano Letters 12: 3602–3608. doi: 10.1021/nl3012853 |
[30] | Cohen-Tanugi D (2012) Nanoporous graphene as a desalination membane: a computational study. Department of Materials Science and Engineering, Cambridge, Massachusetts, USA, Massachusetts Institute of Technology. |
[31] | Ganesh BM, Isloor AM, Ismail AF (2013) Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination 313: 199–207. doi: 10.1016/j.desal.2012.11.037 |
[32] | Hu M, Mi B (2013) Enabling graphene oxide nanosheets as water separation membranes. Environ Sci Technol 47: 3715–3723. doi: 10.1021/es400571g |
[33] | Cranford SW, Buehler MJ (2011) Mechanical properties of graphyne. Carbon 49: 4111–4121. doi: 10.1016/j.carbon.2011.05.024 |
[34] | Zheng JJ, Zhao X, Zhao Y, et al. (2013) Two-dimensional carbon compounds derived from graphyne with chemical properties superior to those of graphene. Sci Rep 3: 1271. |
[35] | Department of Natural Resources Canada. RETScreen Version 4. (2010) Available from: http: //www.nrcan.gc.ca/energy/software-tools/7465. |
[36] | Goal Zero (2013) Available from: http: //www.goalzero.com/. |
[37] | KNF (2013) Diaphragm liquid pump data sheet NF 2.35. Available from: http: //www.knfusa.com/pdfs/nf2-35.pdf . |
[38] | Amouha MA, Gholam RNB, Behnam H (2011) Nanofiltration efficiency in nitrate removal from groundwater: a semi-industrial case study. International Conference on Environmental Engineering and Applications (ICEEA), Shanghai, China. |
[39] | The Dow Chemical Company (2013) Dow FilmtecTM NF90 nanofiltration elements for commercial systems. Available from: http: //www.dowwaterandprocess.com/en/products/f/filmtec-nf90_4040. |
[40] | Xie W, Geise GM, Freeman BD, et al. (2012) Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine. J Membrane Sci 403–404: 152–161. |