Citation: Yu-Ting Huang, Hui-Fen Liao, Shun-Li Wang, Shan-Yang Lin. Glycation and secondary conformational changes of human serum albumin: study of the FTIR spectroscopic curve-fitting technique[J]. AIMS Biophysics, 2016, 3(2): 247-260. doi: 10.3934/biophy.2016.2.247
[1] | Ruihong Ji, Liya Jiang, Wen Luo . Stability of the 3D MHD equations without vertical dissipation near an equilibrium. AIMS Mathematics, 2023, 8(5): 12143-12167. doi: 10.3934/math.2023612 |
[2] | Shujie Jing, Jixiang Guan, Zhiyong Si . A modified characteristics projection finite element method for unsteady incompressible Magnetohydrodynamics equations. AIMS Mathematics, 2020, 5(4): 3922-3951. doi: 10.3934/math.2020254 |
[3] | Huan Long, Suhui Ye . Global well-posedness for the 2D MHD equations with only vertical velocity damping term. AIMS Mathematics, 2024, 9(12): 36371-36384. doi: 10.3934/math.20241725 |
[4] | Ru Bai, Tiantian Chen, Sen Liu . Global stability solution of the 2D incompressible anisotropic magneto-micropolar fluid equations. AIMS Mathematics, 2022, 7(12): 20627-20644. doi: 10.3934/math.20221131 |
[5] | Feng Cheng . On the dissipative solutions for the inviscid Boussinesq equations. AIMS Mathematics, 2020, 5(4): 2869-2876. doi: 10.3934/math.2020184 |
[6] | Yousef Jawarneh, Humaira Yasmin, Wajid Ullah Jan, Ajed Akbar, M. Mossa Al-Sawalha . A neural networks technique for analysis of MHD nano-fluid flow over a rotating disk with heat generation/absorption. AIMS Mathematics, 2024, 9(11): 32272-32298. doi: 10.3934/math.20241549 |
[7] | Sadek Gala, Maria Alessandra Ragusa . A logarithmically improved regularity criterion for the 3D MHD equations in Morrey-Campanato space. AIMS Mathematics, 2017, 2(1): 16-23. doi: 10.3934/Math.2017.1.16 |
[8] | Ning Cui, Junhong Li . A new 4D hyperchaotic system and its control. AIMS Mathematics, 2023, 8(1): 905-923. doi: 10.3934/math.2023044 |
[9] | Caifeng Liu . Linear Rayleigh-Taylor instability for compressible viscoelastic fluids. AIMS Mathematics, 2023, 8(7): 14894-14918. doi: 10.3934/math.2023761 |
[10] | Haifaa Alrihieli, Musaad S. Aldhabani, Ghadeer M. Surrati . Enhancing the characteristics of MHD squeezed Maxwell nanofluids via viscous dissipation impact. AIMS Mathematics, 2023, 8(8): 18948-18963. doi: 10.3934/math.2023965 |
In recent few years, there have been substantial developments concerning the MHD equations, especially there is only partial or fractional dissipation. The MHD equations govern the motion of electrically conducting fluids such as plasmas, liquid metals, and electrolytes. The fundamental concept behind MHD is that magnetic fields can induce currents in a moving conductive fluid, which in turn polarizes the fluid and reciprocally changes the magnetic field itself. The set of equations that describe MHD are a combination of the Navier-Stokes equations of fluid dynamics and Maxwell's equations of electromagnetism. Since their initial derivation by the Nobel Laureate H. Alfvén [1] in 1924, the MHD equations have played vital roles in the study of many phenomena in geophysics, astrophysics, cosmology and engineering (see, e.g., [2,3]).
This paper establishes the stability of perturbations near a background magnetic field of the 3D MHD equations with mixed partial dissipation and magnetic diffusion in periodic domain.
$ {∂tu+u⋅∇u=−∇P+ν Δhu+B⋅∇B,x∈Ω,t>0,∂tB+u⋅∇B=ηΔhB+B⋅∇u,x∈Ω,t>0,∇⋅u=∇⋅B=0,x∈Ω,t>0, $
|
(1.1) |
where $ u $ denotes the velocity field of the fluid, $ P $ the total pressure, $ B $ the magnetic field, $ \nu > 0 $ and $ \eta > 0 $ are the viscosity and the magnetic diffusivity. We define the 3D periodic space domain $ \Omega = [0, L]^{2}\times \mathbb{R} $, the periodic solution means $ u(x+e_{i}, t) = u(x, t)\, \, (i = 1, 2, 3) $, for all $ x $ and $ t\geq 0 $, where $ e_{i} $ are the standard basis vectors, $ e_{1} = (1, 0, 0)^{t} $. We know that (1.1) admits the following steady state solution
$ u(0)=(0,0,0),B(0)=(1,0,0),P(0)=0. $
|
It is clear that a special solution of (1.1) is given by the zero velocity field and the background magnetic fields $ B^{(0)} = (1, 0, 0) $. The perturbation $ (u, b) $ with $ b = B-B^{(0)} $ obeys,
$ {∂tu+u⋅∇u=−∇P+ν Δhu+b⋅∇b+∂1b,x∈Ω,t>0,∂tb+u⋅∇b=ηΔhb+b⋅∇u+∂1u,x∈Ω,t>0,∇⋅u=∇⋅b=0,x∈Ω,t>0, $
|
(1.2) |
where, for notational convenience, we write
$ \partial_{i} = \partial_{x_{i}}, \, \, \, \nabla_h = (\partial_{1}, \partial_{2}), \, \, \, \triangle_h = \partial_1^{2}+\partial_2^{2}. $ |
In addition, for convenience, we define the norm for the $ L^{p}(\Omega) $ space, for $ p\in [1, \infty] $, is denoted by $ \|f\|_{p} $. The inner product of $ f $ and $ g $ in the $ L^{p}(\Omega) $ space is denoted by $ (f, g) = \iiint_{\Omega}fg\, dx_{1}dx_{2}dx_{3}: = \int_{\Omega}fg\, dx $. Respectively, the horizontal flow is defined in $ \Omega $ with $ \int_{[0, L]^{2}} u\, dx = 0 $ and $ \int_{[0, L]^{2}} b\, dx = 0 $.
This paper aims at the stability problem on the perturbation of (1.1) near $ (u^{(0)}, B^{(0)}) $. Equivalently, we establish a small data global well-posedness result for (1.2) supplemented with the initial condition
$ u{(x, 0)} = u_{0}{(x)}, \, \, \, b{(x, 0)} = b_{0}{(x)}. $ |
Our main result can be stated as follows.
Theorem 1.1. Consider (1.2) with initial data $ (u_0, b_0)\in H^2(\Omega) $ satisfies $ \nabla\cdot u_{0} = \nabla\cdot b_{0} = 0, \int_{[0, L]^{2}} u_{0}dx = 0 $ and $ \int_{[0, L]^{2}} b_{0}dx = 0 $. Then there exists a constant $ \delta = \delta(\nu, \eta) > 0 $ such that, if
$ ‖(u0,b0)‖H2≤δ, $
|
(1.3) |
then (1.2) has a unique global solution
$ (u,b)∈L∞(0,∞;H2(Ω)),∇hu,∇hb∈L2(0,∞;H2(Ω)), $
|
(1.4) |
satisfying
$ supτ∈[0,t](‖u(τ)‖2H2+‖b(τ)‖2H2)+2ν∫t0‖∇hu(τ)‖2H2dτ+2η∫t0‖∇hb(τ)‖2H2dτ≤Cδ2, $
|
(1.5) |
for any $ t > 0 $ and $ C = C(\nu, \eta) $ is a constant.
The MHD equation, especially those with partial dissipation have recently attracted considerable interests. There are substantial developments on two fundamental problems, the global regularity and stability problems, which have been successfully established by many authors via different approaches [4,5,6,7]. In particular, it is also worth mentioning the beautiful work of [8], which made further progress by providing the stability of perturbations near a background magnetic field of the 3D incompressible MHD equation with mixed partial dissipation and deal with the $ H^3 $-estimate. To give a more complete views of current studies on the stability, we also mention some of exciting results in [9,10,11,12]. In this paper, we mainly deal with the $ H^2 $-estimate for the solution of (1.2). The stability of the incompressible MHD equation with mixed partial dissipation is not well-solved, except in the periodic case. Our study of the stability problem on (1.2) is inspired by the recent important result in [13], which is different with the whole region is that helps to solve the periodic problem.
We employ the bootstrapping argument to prove the desired $ H^2 $-stability. And we define the $ H^2 $-energy E(t) by
$ E(t) = \sup\limits_{\tau\in[0, t]}(\|u(\tau)\|^{2}_{H^2}+\|b(\tau)\|^{2}_{H^2})+2\nu\int^{t}_{0}\|\nabla_{h} u(\tau)\|^{2}_{H^2}\, d\tau+2\eta\int^{t}_{0}\|\nabla_{h} b(\tau)\|^{2}_{H^2} \, d\tau, $ |
and prove that, for a constant $ C > 0 $ and any $ t\geq 0 $,
$ E(t)≤E(0)+CE(t)32. $
|
(1.6) |
Once (1.6) is established, an application of the bootstrapping argument would imply the desired global stability. The details are given in section 2. Due to the presence of the anisotropic dissipation, we make use of anisotropic estimates for triple products (see Lemma 2.1 in section 2).
The proof of Theorem 1.1 is not trivial. A natural starting point is to bound $ \|u\|_{H^3}+\|b\|_{H^3} $ via the energy estimates. However, due to the lack of the vertical dissipation, some of the nonlinear terms can not be controlled in terms of $ \|u\|_{H^3}+\|b\|_{H^3} $ or the dissipation parts $ \|\nabla_{h}u\|_{H^3} $ and $ \|\nabla_{h}b\|_{H^3} $. Thus, we show the stability of equations (1.1) by bootstrapping argument which will be shown in section 3, and we also show the uniqueness in that section.
This section applies the bootstrapping argument to prove Theorem 1.1. In addition, we provide the anisotropic inequality to be used in the proof of (2.1) in the subsequent section.
Roughly speaking, the bootstrapping argument starts with an ansatz that $ E(t) $ is bounded, say
$ E(t)\leq M, $ |
and show that $ E(t) $ actually admits a smaller bound, say
$ E(t)\leq \frac{1}{2}M, $ |
when the initial condition is sufficiently small. A rigorous statement of the abstract bootstrapping principle can be found in T. Tao's book (see[14]). To apply the bootstrapping argument to (2.1), we assume that
$ E(t)≤M=14C2, $
|
(2.1) |
When (2.1) holds, we have
$ CE(t)^{\frac{1}{2}}\leq \frac{1}{2}. $ |
It then follows from (1.6) that
$ E(t)≤E(0)+12E(t) or E(t)≤2E(0), $
|
(2.2) |
if we choose $ \delta > 0 $ sufficiently small such that
$ \delta^2 \leq\frac{M}{4}, $ |
then (1.3) and (2.2) imply that
$ E(t)\leq \frac{1}{2}M, $ |
the bootstrapping argument then leads to the desired global bound
$ E(t)\leq M, $ |
this completes the proof of Theorem 1.1.
As usual, the Sobolev space $ H^{1}(\Omega) = \{f\in L^{2}(\Omega):\nabla f\in L^{2}(\Omega)\} $. In addition, we define the following Hilbert space,
$ H_{h}^{1}(\Omega) = \{f\in L^{2}(\Omega):\nabla_{h} f\in L^{2}(\Omega)\}, $ |
that features the inner product $ (f, g)_{H_{h}^{1}(\Omega)} = (f, g)_{L^{2}(\Omega)}+(\nabla_{h} f, \nabla_{h} g)_{L^{2}(\Omega)} $.
The rest of this section provides the anisotropic inequality. The MHD system examined in this paper involves the estimates of quite a few triple terms. Anisotropic inequality appears to be necessary to deal with such partially dissipated system.
Lemma 2.1. Let $ f\in H^{1}(\Omega) $, $ g\in H^{1}_h(\Omega) $, $ h\in L^{2}(\Omega) $. Then,
$ ∫Ω|fgh|dx≤C(‖f‖2+‖∇hf‖2)12(‖f‖2+‖∂3f‖2)12‖g‖122(‖g‖2+‖∇hg‖2)12‖h‖2. $
|
The proof of Lemma 2.1 can be found in [9].
This section proves the major estimate in (1.6), namely
$ E(t)\leq E(0)+C E(t)^{\frac{3}{2}}. $ |
where $ E(t) $ is defined in (1.5). The core of the proof is to bound the $ H^2 $-norm of $ (u, b) $ suitably. For the sake of clarity, the proof is divided to two main parts, the first one is devoted to the $ H^{2} $-stability and the second one is to the uniqueness. The local existence can be obtained by a standard approach of Friedrichs' method of cutoff in Fourier space (see, e.g., [15]), we omit the details here.
Due to the equivalence of $ \|(u, b)\|_{H^2} $ with $ \|(u, b)\|_{L^2}+\|(u, b)\|_{{\dot{H}}^2} $, it suffices to bound the $ L^{2} $-norm and the $ {\dot{H}}^{2} $-norm of $ (u, b) $. By a simple energy estimate and $ \nabla\cdot u = \nabla\cdot b = 0 $, we find that the $ L^{2} $-norm of $ (u, b) $ obeys
$ ‖u(t)‖22+‖b(t)‖22+2ν∫t0‖∇hu(τ)‖22dτ+2η∫t0‖∇hb(τ)‖22dτ=‖u(0)‖22+‖b(0)‖22. $
|
(3.1) |
The rest of the proof focuses on the $ {{\dot{H}}^{2}} $-norm, applying $ \partial^{2}_{i}(i = 1, 2, 3) $ to (1.2) and then dotting by $ (\partial^{2}_{i} u, \partial^{2}_{i} b) $, we find
$ 12ddt3∑i=1(‖∂2iu‖22+‖∂2ib‖22)+ν‖∂2i∇hu‖22+η‖∂2i∇hb‖22=I1+I2+I3+I4+I5, $
|
(3.2) |
where
$ I1=3∑i=1∫Ω∂2i∂1b⋅∂2iu+∂2i∂1u⋅∂2ibdx,I2=−3∑i=1∫Ω∂2i(u⋅∇u)⋅∂2iudx,I3=3∑i=1∫Ω[∂2i(b⋅∇b)−b⋅∇∂2ib]⋅∂2iudx,I4=−3∑i=1∫Ω∂2i(u⋅∇b)⋅∂2ibdx,I5=3∑i=1∫Ω[∂2i(b⋅∇u)−b⋅∇∂2iu]⋅∂2ibdx. $
|
Note that
$ \int_{\Omega}b\cdot\nabla\partial_{i}^{2}b\cdot\partial_{i}^{2}u\, dx+\int_{\Omega}b\cdot\nabla\partial_{i}^{2}u\cdot\partial_{i}^{2}b\, dx = 0. $ |
Integrating by parts and $ u(x+e_{i}, t) = u(x, t)\, \, (i = 1, 2, 3) $, $ I_1 = 0 $. To bound $ I_2 $, we decompose it into two pieces
$ I2=−3∑i=1∫Ω∂2i(u⋅∇u)⋅∂2iudx=I21+I22. $
|
$ I_{21} $ involves the favorable partial derivatives in $ x_1 $ and $ x_2 $, respectively. Its handling is not difficult. In contrast, $ I_{22} $ has partial in terms of $ x_3 $ and the control of $ I_{22} $ is delicate.
By Lemma 2.1 with $ f = \partial_{i}^{k}u $, $ g = \partial_{i}^{2-k}\nabla u $, $ h = \partial_{i}^{2}u $ and Poincaré's inequality, we obtain
$ I21=−2∑i=12∑k=1Ck2∫Ω∂kiu⋅∂2−ki∇u⋅∂2iudx≤C2∑i=12∑k=1(‖∂kiu‖2+‖∂ki∇hu‖2)12(‖∂kiu‖2+‖∂3∂kiu‖2)12(‖∂2−ki∇u‖2+‖∂2−ki∇∇hu‖2)12‖∂2−ki∇u‖122‖∂2iu‖2≤C(‖u‖H2+‖∇hu‖H2)12(‖u‖H2+‖∇hu‖H2)12(‖u‖H2+‖∇hu‖H2)12‖u‖12H2‖u‖H2≤C‖∇hu‖32H2‖u‖12H2‖u‖H2≤C‖∇hu‖2H2‖u‖H2, $
|
(3.3) |
where we have used the Poincaré's inequality
$ ‖u‖H2≤C‖∇hu‖H2. $
|
We further decomposed $ I_{22} $ into two terms
$ I22=−∫Ω∂23(u⋅∇u)⋅∂23udx=−∫Ω∂23(uh⋅∇hu+u3⋅∂3u)⋅∂23udx=I221+I222. $
|
By Lemma 2.1,
$ I221=−2∑k=1Ck2∫Ω∂k3uh⋅∂2−k3∇hu⋅∂23udx≤C2∑k=1(‖∂2−k3∇hu‖2+‖∇h∂2−k3∇hu‖2)12(‖∂2−k3∇hu‖2+‖∂3∂2−k3∇hu‖2)12‖∂k3uh‖122(‖∂k3uh‖2+‖∇h∂k3uh‖2)12‖∂23u‖2≤C(‖u‖H2+‖∇hu‖H2)12(‖u‖H2+‖∇hu‖H2)12‖u‖12H2(‖u‖H2+‖∇hu‖H2)12‖u‖H2≤C‖u‖H2‖∇hu‖2H2. $
|
(3.4) |
Using Lemma 2.1 and $ \nabla\cdot u = 0 $, we obtain
$ I222=−2∑k=1Ck2∫Ω∂k3u3⋅∂2−k3∂3u⋅∂23udx=2∑k=1Ck2∫Ω∂k−13∇huh⋅∂2−k3∂3u⋅∂23udx≤C2∑k=1(‖∂k−13∇huh‖2+‖∇h∂k−13∇huh‖2)12(‖∂k−13∇huh‖2+‖∂3∂k−13∇huh‖2)12‖∂3−k3u‖122(‖∂3−k3u‖2+‖∇h∂3−k3u‖2)12‖∂23u‖2≤C(‖u‖H2+‖∇hu‖H2)12(‖u‖H2+‖∇hu‖H2)12‖u‖12H2(‖u‖H2+‖∇hu‖H2)12‖u‖H2≤C‖u‖H2‖∇hu‖2H2. $
|
(3.5) |
Combining (3.3)–(3.5), we find
$ I2≤C‖u‖H2‖∇hu‖2H2. $
|
We now turn to the estimates of $ I_{3} $,
$ I3=3∑i=12∑k=1Ck2∫Ω∂kib⋅∇∂2−kib⋅∂2iudx=I31+I32. $
|
By Lemma 2.1,
$ I31=2∑i=12∑k=1Ck2∫Ω∂kib⋅∇∂2−kib⋅∂2iudx≤C2∑i=12∑k=1(‖∂kib‖2+‖∇h∂kib‖2)12(‖∂kib‖2+‖∂3∂kib‖2)12‖∇∂2−kib‖122(‖∇∂2−kib‖2+‖∇h∇∂2−kib‖2)12‖∂2iu‖2≤C(‖b‖H2+‖∇hb‖H2)12(‖b‖H2+‖∇hb‖H2)12‖b‖12H2(‖b‖H2+‖∇hb‖H2)12‖u‖H2≤C‖u‖H2‖∇hb‖2H2. $
|
(3.6) |
Similar to $ I_{22} $, $ I_{32} $ is naturally split into two terms
$ I32=2∑k=1Ck2∫Ω∂k3b⋅∇∂2−k3b⋅∂23udx=I321+I322. $
|
By Lemma 2.1,
$ I321=2∫Ω∂3b⋅∇∂3b⋅∂23udx≤C(‖∂3b‖2+‖∇h∂3b‖2)12(‖∂3b‖2+‖∂3∂3b‖2)12‖∇∂3b‖122(‖∇∂3b‖2+‖∇h∇∂3b‖2)12‖∂23u‖2≤C(‖b‖H2+‖∇hb‖H2)12(‖b‖H2+‖b‖H2)12‖b‖12H2(‖b‖H2+‖∇hb‖H2)12‖u‖H2≤C‖u‖H2‖∇hb‖2H2. $
|
(3.7) |
Also
$ I322=∫Ω∂23b⋅∇b⋅∂23udx≤C(‖∇b‖2+‖∇h∇b‖2)12(‖∇b‖2+‖∂3∇b‖2)12‖∂23b‖122(‖∂23b‖2+‖∇h∂23b‖2)12‖∂23u‖2≤C(‖b‖H2+‖∇hb‖H2)12(‖b‖H2+‖b‖H2)12‖b‖12H2(‖b‖H2+‖∇hb‖H2)12‖u‖H2≤C‖u‖H2‖∇hb‖2H2. $
|
(3.8) |
Combining(3.6)–(3.8) yields
$ I3≤C‖u‖H2‖∇hb‖2H2. $
|
For $ I_{4} $,
$ I4=−3∑i=12∑k=1Ck2∫Ω∂kiu⋅∇∂2−kib⋅∂2ibdx=I41+I42. $
|
By Lemma 2.1,
$ I41=−2∑i=12∑k=1Ck2∫Ω∂kiu⋅∇∂2−kib⋅∂2ibdx≤C2∑i=12∑k=1(‖∂kiu‖2+‖∇h∂kiu‖2)12(‖∂kiu‖2+‖∂3∂kiu‖2)12‖∇∂2−kib‖122(‖∇∂2−kib‖2+‖∇h∇∂2−kib‖2)12‖∂2ib‖2≤C(‖u‖H2+‖∇hu‖H2)12(‖u‖H2+‖∇hu‖H2)12‖b‖12H2(‖b‖H2+‖∇hb‖H2)12‖b‖H2≤C‖b‖H2‖∇hb‖H2‖∇hu‖H2. $
|
(3.9) |
We decompose $ I_{42} $ into two terms
$ I42=−2∑k=1Ck2∫Ω∂k3u⋅∇∂2−k3b⋅∂23bdx=I421+I422. $
|
Using Lemma 2.1,
$ I421=2∫Ω∂3u⋅∇∂3b⋅∂23bdx≤C(‖∂3u‖2+‖∇h∂3u‖2)12(‖∂3u‖2+‖∂3∂3u‖2)12‖∇∂3b‖122(‖∇∂3b‖2+‖∇h∇∂3b‖2)12‖∂23b‖2.≤C(‖u‖H2+‖∇hu‖H2)12(‖u‖H2+‖u‖H2)12‖b‖12H2(‖b‖H2+‖∇hb‖H2)12‖b‖H2≤C‖b‖H2‖∇hb‖H2‖∇hu‖H2. $
|
(3.10) |
Similarly
$ I422=∫Ω∂23u⋅∇b⋅∂23bdx≤C(‖∇b‖2+‖∇h∇b‖2)12(‖∇b‖2+‖∂3∇b‖2)12‖∂23u‖122(‖∂23u‖2+‖∇h∂23u‖2)12‖∂23b‖2≤C(‖b‖H2+‖∇hb‖H2)12(‖b‖H2+‖b‖H2)12‖u‖12H2(‖u‖H2+‖∇hu‖H2)12‖b‖H2≤C‖b‖H2‖∇hb‖H2‖∇hu‖H2. $
|
(3.11) |
Combining all the estimates(3.9) through (3.11) yields
$ I4≤C‖b‖H2‖∇hb‖H2‖∇hu‖H2. $
|
It remains to estimate $ I_{5} $,
$ I5=3∑i=12∑k=1Ck2∫Ω∂kib⋅∇∂2−kiu⋅∂2ibdx=I51+I52. $
|
By Lemma 2.1,
$ I51=2∑i=12∑k=1Ck2∫Ω∂kib⋅∇∂2−kiu⋅∂2ibdx≤C2∑i=12∑k=1(‖∂kib‖2+‖∇h∂kib‖2)12(‖∂kib‖2+‖∂3∂kib‖2)12‖∇∂2−kiu‖122(‖∇∂2−kiu‖2+‖∇h∇∂2−kiu‖2)12‖∂2ib‖2≤C(‖b‖H2+‖∇hb‖H2)12(‖b‖H2+‖∇hb‖H2)12‖u‖12H2(‖u‖H2+‖∇hu‖H2)12‖b‖H2≤C‖b‖H2‖∇hu‖H2‖∇hb‖H2. $
|
(3.12) |
The difficult term is $ I_{52} $, which is further decomposed into two terms
$ I_{52} = \sum\limits_{k = 1}^{2}C_{2}^{k}\int_{\Omega}\partial_{3}^{k}b\cdot\nabla\partial_{3}^{2-k}u\cdot\partial_{3}^{2} b\, dx = I_{521}+I_{522}. $ |
By Lemma 2.1,
$ I521=2∫Ω∂3b⋅∇∂3u⋅∂23bdx≤C(‖∂3b‖2+‖∇h∂3b‖2)12(‖∂3b‖2+‖∂3∂3b‖2)12‖∇∂3u‖122(‖∇∂3u‖2+‖∇h∇∂3u‖2)12‖∂23b‖2.≤C(‖b‖H2+‖∇hb‖H2)12(‖b‖H2+‖b‖H2)12‖u‖12H2(‖u‖H2+‖∇hu‖H2)12‖b‖H2≤C‖b‖H2‖∇hu‖H2‖∇hb‖H2. $
|
(3.13) |
Similarly, $ I_{522} $ can be estimated as follows
$ I522=∫Ω∂23b⋅∇u⋅∂23bdx≤C(‖∇u‖2+‖∇h∇u‖2)12(‖∇u‖2+‖∂3∇u‖2)12‖∂23b‖122(‖∂23b‖2+‖∇h∂23b‖2)12‖∂23b‖2≤C(‖u‖H2+‖∇hu‖H2)12(‖u‖H2+‖u‖H2)12‖b‖12H2(‖b‖H2+‖∇hb‖H2)12‖b‖H2≤C‖b‖H2‖∇hu‖H2‖∇hb‖H2. $
|
(3.14) |
Combining (3.12)–(3.14), we have
$ I5≤C‖b‖H2‖∇hu‖H2‖∇hb‖H2. $
|
Therefore, if we set
$ E(t)=supτ∈[0,t](‖u(τ)‖2H2+‖b(τ)‖2H2)+2ν∫t0‖∇hu(τ)‖2H2dτ+2η∫t0‖∇hb(τ)‖2H2dτ. $
|
By Hölder's inequality, the time integral of the bounds for $ I_2, I_3, I_4 $ and $ I_5 $ can be estimated as follows
$ ∫t0|I2|dτ≤C∫t0‖u(τ)‖H2‖∇hu(τ)‖2H2dτ≤Csupτ∈[0,t]‖u(τ)‖H2∫t0‖∇hu(τ)‖2H2dτ≤CE(t)32, $
|
$ ∫t0|I3|dτ≤C∫t0‖u(τ)‖H2‖∇hb(τ)‖2H2dτ≤Csupτ∈[0,t]‖u(τ)‖H2∫t0‖∇hb(τ)‖2H2dτ≤CE(t)32, $
|
$ ∫t0|I4|dτ≤C∫t0‖b(τ)‖H2‖∇hu(τ)‖H2‖∇hb(τ)‖H2dτ≤CE(t)12E(t)12E(t)12=CE(t)32,∫t0|I5|dτ≤C∫t0‖b(τ)‖H2‖∇hu(τ)‖H2‖∇hb(τ)‖H2dτ≤CE(t)12E(t)12E(t)12=CE(t)32. $
|
Integrating (3.2) in time and combining with (3.1), we find
$ E(t)\leq E(0)+CE(t)^{\frac{3}{2}}. $ |
A bootstrapping argument implies that, there is $ \delta > 0 $, such that, if $ E(0) < \delta^{2} $, then
$ E(t)\leq C\delta^{2} $ |
for a pure constant C and for all $ t > 0 $, which implies $ H^{2} $-stability.
This subsection proves the uniqueness part of Theorem 1.1. We show that two solutions $ (u^{(1)}, P^{(1)}, b^{(1)}) $ and $ (u^{(2)}, P^{(2)}, b^{(2)}) $ of (1.2) in the regularity class (1.4) must coincide. Their difference $ (\widetilde{u}, \widetilde{P}, \widetilde{b}) $ with
$ \widetilde{u} = u^{(1)}-u^{(2)}, \, \, \widetilde{P} = P^{(1)}-P^{(2)}, \, \, \widetilde{b} = b^{(1)}-b^{(2)} $ |
satisfies, according to (1.2)
$ {∂t˜u+u(1)⋅∇˜u+˜u⋅∇u(2)=−∇˜P+ν Δh˜u+b(1)⋅∇˜b+˜b⋅∇b(2)+∂1˜b,∂t˜b+u(1)⋅∇˜b+˜u⋅∇b(2)=η Δh˜b+b(1)⋅∇˜u+˜b⋅∇u(2)+∂1˜u,∇⋅u=∇⋅b=0. $
|
(3.15) |
Basic energy estimates show that
$ 12ddt(‖˜u‖22+‖˜b‖22)+ν‖∇h˜u‖22+η‖∇h˜b‖22=K1+K2+K3+K4, $
|
where
$ K1=−∫Ω˜u⋅∇u(2)⋅˜udx,K2=∫Ω˜b⋅∇b(2)⋅˜udx,K3=−∫Ω˜u⋅∇b(2)⋅˜bdx,K4=∫Ω˜b⋅∇u(2)⋅˜bdx. $
|
By Lemma 2.1, $ K_{1} $, $ K_{2} $, $ K_{3} $, $ K_{4} $ can be bounded as follows
$ K1≤C(‖∇u(2)‖2+‖∇h∇u(2)‖2)12(‖∇u(2)‖2+‖∂3∇u(2)‖2)12‖˜u‖122(‖˜u‖2+‖∇h˜u‖2)12‖˜u‖2≤C‖∇h∇u(2)‖122(‖∇u(2)‖2+‖∂3∇u(2)‖2)12‖˜u‖2‖∇h˜u‖2≤ν6‖∇h˜u‖22+C‖˜u‖22‖∇h∇u(2)‖2(‖∇u(2)‖2+‖∂3∇u(2)‖2). $
|
(3.16) |
$ K2≤C(‖∇b(2)‖2+‖∇h∇b(2)‖2)12(‖∇b(2)‖2+‖∂3∇b(2)‖2)12‖˜b‖12L2(‖˜b‖2+‖∇h˜b‖2)12‖˜u‖2≤C‖∇h∇b(2)‖122(‖∇b(2)‖2+‖∂3∇b(2)‖2)12‖˜b‖122‖∇h˜b‖122‖∇h˜u‖2≤ν6‖∇h˜u‖22+η6‖∇h˜b‖22+C‖˜b‖22‖∇h∇b(2)‖22(‖∇b(2)‖2+‖∂3∇b(2)‖2)2. $
|
(3.17) |
$ K3≤C(‖∇b(2)‖2+‖∇h∇b(2)‖2)12(‖∇b(2)‖2+‖∂3∇b(2)‖2)12‖˜u‖122(‖˜u‖L2+‖∇h˜u‖2)12‖˜b‖L2≤C‖∇h∇b(2)‖122(‖∇b(2)‖2+‖∂3∇b(2)‖2)12‖˜u‖122‖∇h˜u‖122‖∇h˜b‖2≤ν6‖∇h˜u‖22+η6‖∇h˜b‖22+C‖˜u‖22‖∇h∇b(2)‖22(‖∇b(2)‖2+‖∂3∇b(2)‖2)2. $
|
(3.18) |
$ K4≤C(‖∇u(2)‖2+‖∇h∇u(2)‖2)12(‖∇u(2)‖2+‖∂3∇u(2)‖2)12‖˜b‖122(‖˜b‖2+‖∇h˜b‖2)12‖˜b‖2≤C‖∇h∇u(2)‖122(‖∇u(2)‖2+‖∂3∇u(2)‖2)12‖˜b‖2‖∇h˜b‖2≤ν6‖∇h˜b‖22+C‖˜b‖22‖∇h∇u(2)‖2(‖∇u(2)‖2+‖∂3∇u(2)‖2). $
|
(3.19) |
Combining (3.16)–(3.19), we set $ Y(t) = (\|\widetilde{u}(t)\|_{2}^{2}+\|\widetilde{b}(t)\|_{2}^{2}) $,
$ ddtY(t)+ν‖∇h˜u‖22+η‖∇h˜b‖22≤a(t)Y(t), $
|
(3.20) |
where
$ a(t)=C‖∇h∇u(2)‖2(‖∇u(2)‖2+‖∂3∇u(2)‖2)+C‖∇h∇b(2)‖22(‖∇b(2)‖2+‖∂3∇b(2)‖2)2. $
|
Since $ (u^{(2)}, b^{(2)}) $ is in the regularity class (1.4). For any $ T > 0 $, we have
$ ∫T0a(t)dt≤C∫T0‖∇h∇u(2)‖2(‖∇u(2)‖2+‖∂3∇u(2)‖2)+‖∇h∇b(2)‖22(‖∇b(2)‖2+‖∂3∇b(2)‖2)2dt≤C∫T0‖∇hu(2)‖2H2+‖∇hb(2)‖2H2‖b(2)‖2H2dt≤C∫T0‖∇hu(2)‖2H2dt+Csupτ∈[0,t]‖b(2)‖2H2∫T0‖∇hb(2)‖2H2dt≤C(T)<+∞. $
|
Gronwall's inequality applied to (3.20) implies that, for any $ T > 0 $,
$ ‖˜u(t)‖22+‖˜b(t)‖22≤(‖˜u(0)‖22+‖˜b(0)‖22)eC∫T0a(t)dt≤C(‖˜u(0)‖22+‖˜b(0)‖22). $
|
(3.21) |
In particular, the initial values of the two solutions in the regularity class (1.4), then (3.21) implies $ Y(t) = \|\widetilde{u}(t)\|_{2}^{2}+\|\widetilde{b}(t)\|_{2}^{2}\equiv0 $ for any $ T > 0 $. This completes the proof of the uniqueness.
In this paper, we gave the stability of the 3D incompressible MHD equations near a background magnetic field with horizontal dissipation in periodic domain by bootstrapping argument. The main part of bootstrapping argument relies on proof of inequality (2.1). We get through it by the anisotropic inequality, and Poincaré's inequality helps a lot in periodic domain.
We would like to thank the referees for giving us many helpful suggestions in improving our paper. Ji is supported by the National Natural Science Foundation of China (NSFC) under grant number 12001065.
The authors declare no conflict of interest.
[1] |
Vanhooren V,Navarrete Santos A,Voutetakis K, et al. (2015) Protein modification and maintenance systems as biomarkers of ageing. Mech Ageing Dev 151: 71–84. doi: 10.1016/j.mad.2015.03.009
![]() |
[2] |
Uribarri J, Woodruff S, Goodman S, et al. (2010) Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc 110: 911–916.e12 doi: 10.1016/j.jada.2010.03.018
![]() |
[3] |
Visentin S,Medana C,Barge A, et al. (2010) Microwave-assisted Maillard reactions for the preparation of advanced glycation end products (AGEs). Org Biomol Chem 8: 2473–2477. doi: 10.1039/c000789g
![]() |
[4] | Horvat S,Jakas A (2014) Peptide and amino acid glycation: new insights into the Maillard reaction. J Pept Sci 10: 119–137. |
[5] |
Zhang Q,Ames JM,Smith RD, et al. (2009) A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease. J Proteome Res 8: 754–769. doi: 10.1021/pr800858h
![]() |
[6] | Dar B, Dar M, Bashir S, et al. (2015) Glycosylated hemoglobin (HbA1c): A biomarker of anti-aging. Int J Biol Med Res 6: 5084–5086. |
[7] |
Sebeková K,Somoza V (2007) Dietary advanced glycation endproducts (AGEs) and their health effects--PRO. Mol Nutr Food Res 51: 1079–1084. doi: 10.1002/mnfr.200700035
![]() |
[8] | Arasteh A,Farahi S,Habibi-Rezaei M, et al. (2014) Glycated albumin: an overview of the in vitro models of an in vivo potential disease marker. J Diabetes Metab Disord 13: 49. |
[9] |
Uribarri J,del Castillo MD,de la Maza MP, et al. (2015) Dietary advanced glycation end products and their role in health and disease. Adv Nutr 6: 461–473. doi: 10.3945/an.115.008433
![]() |
[10] | Takahashi M (2014) Glycation of Proteins. In Glycoscience: Biology and Medicine, Endo T, Seeberger PH, Hart GW, Wong CH, Taniguchi N, eds., Springer Japan, pp. 1339–1345 |
[11] | Nursten HE (2005) The Maillard Reaction: Chemistry, Biochemistry, and Implications. RSC. |
[12] |
Laroque D, Inisan C, Berger C, et al. (2008) Kinetic study on the Maillard reaction: Consideration of sugar reactivity. Food Chem 111: 1032–1042 doi: 10.1016/j.foodchem.2008.05.033
![]() |
[13] | Sattarahmady N,Moosavi-Movahedi AA,Habibi-Rezaei M, et al. (2008) Detergency effects of nanofibrillar amyloid formation on glycation of human serum albumin. Carbohydr Res 343: 2229–2234. |
[14] |
Monnier VM (1990) Nonenzymatic glycosylation, the Maillard reaction and the aging process. J Gerontol 45: B105–111. doi: 10.1093/geronj/45.4.B105
![]() |
[15] |
Wei Y,Han CS,Zhou J, et al. (2012) D-ribose in glycation and protein aggregation. Biochim Biophys Acta 1820: 488–494. doi: 10.1016/j.bbagen.2012.01.005
![]() |
[16] |
Monnier VM, Cerami A (1981) Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science 211: 491–493. doi: 10.1126/science.6779377
![]() |
[17] |
Han C,Lu Y,Wei Y, et al. (2011) D-ribose induces cellular protein glycation and impairs mouse spatial cognition. PLoS ONE 6:e24623. doi: 10.1371/journal.pone.0024623
![]() |
[18] |
Syrový I (1994) Glycation of albumin: reaction with glucose, fructose, galactose, ribose or glyceraldehyde measured using four methods. J Biochem Biophys Methods 28: 115–121. doi: 10.1016/0165-022X(94)90025-6
![]() |
[19] |
Kong FL,Cheng W,Chen J, et al. (2011) D-Ribose glycates β(2)-microglobulin to form aggregates with high cytotoxicity through a ROS-mediated pathway. Chem Biol Interact 194: 69–78. doi: 10.1016/j.cbi.2011.08.003
![]() |
[20] | Khan MS,Dwivedi S,Priyadarshini M, et al. (2013) Ribosylation of bovine serum albumin induces ROS accumulation and cell death in cancer line (MCF-7). Eur Biophys J 42: 811–818. |
[21] |
Iannuzzi C,Maritato R,Irace G, et al. (2013) Glycation accelerates fibrillization of the amyloidogenic W7FW14F apomyoglobin. PLoS ONE 8: e80768. doi: 10.1371/journal.pone.0080768
![]() |
[22] |
Adrover M,Mariño L,Sanchis P, et al. (2014) Mechanistic insights in glycation-induced protein aggregation. Biomacromolecules 15: 3449–3462. doi: 10.1021/bm501077j
![]() |
[23] | Liu J, Ru Q, Ding Y (2012) Glycation a promising method for food protein modification: Physicochemical properties and structure, a review. Food Res Int 49: 170–183. |
[24] | Wei Y, Chen L, Chen J, et al. (2009) Rapid glycation with D-ribose induces globular amyloid-like aggregations of BSA with high cytotoxicity to SH-SY5Y cells. BMC Cell Biol 10: 10. |
[25] | Kragh-Hansen U,Chuang VT,Otagiri M (2002) Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biol Pharm Bull 25: 695–704. |
[26] | Santra MK,Banerjee A,Krishnakumar SS, et al. (2004) Multiple-probe analysis of folding and unfolding pathways of human serum albumin. Evidence for a framework mechanism of folding. Eur J Biochem 271: 1789–1797. |
[27] | Anguizola J,Matsuda R,Barnaby OS, et al. (2013) Review: Glycation of human serum albumin. Clin Chim Acta 2013; 425: 64–76. |
[28] | Singha Roy A,Ghosh P,Dasgupta S (2015) Glycation of human serum albumin alters its binding efficacy towards the dietary polyphenols: A comparative approach. J Biomol Struct Dyn Oct 7:1–46. [In press]. |
[29] | Peters T (1996) All about Albumin. Biochemistry, Genetics, and Medical Applications. Academic Press, San Diego, CA. |
[30] |
Khan MW,Rasheed Z,Khan WA, et al. (2007) Biochemical, biophysical, and thermodynamic analysis of in vitro glycated human serum albumin. Biochemistry (Mosc) 72: 146–152. doi: 10.1134/S0006297907020034
![]() |
[31] | Yang F,Zhang Y,Liang H (2014) Interactive association of drugs binding to human serum albumin. Int J Mol Sci 15: 3580–3595. |
[32] |
Lin SY,Wei YS,Li MJ,et al (2004). Effect of ethanol or/and captopril on the secondary structure of human serum albumin before and after protein binding. Eur J Pharm Biopharm 57: 457–464. doi: 10.1016/j.ejpb.2004.02.005
![]() |
[33] |
Lin SY, Wei YS, Li MJ (2004) Ethanol or/and captopril-induced precipitation and secondary conformational changes of human serum albumin. Spectrochim Acta A 60: 3107–3111. doi: 10.1016/j.saa.2004.03.001
![]() |
[34] |
Li MJ,Lin SY (2005) Vibrational spectroscopic studies on the disulfide formation and secondary conformational changes of captopril-HSA mixture after UV-B irradiation. Photochem Photobiol 81: 1404–1410. doi: 10.1562/2005-04-25-RN-497
![]() |
[35] |
Sadowska-Bartosz I,Galiniak S,Bartosz G (2014) Kinetics of glycoxidation of bovine serum albumin by glucose, fructose and ribose and its prevention by food components. Molecules 19: 18828–18849. doi: 10.3390/molecules191118828
![]() |
[36] |
Kosaraju SL,Weerakkody R,Augustin MA (2010) Chitosan-glucose conjugates: influence of extent of Maillard reaction on antioxidant properties. J Agric Food Chem 58: 12449–12455. doi: 10.1021/jf103484z
![]() |
[37] | Ajandouz EH, Tchiakpe LS, Ore FD, et al. (2001) Effects of pH on caramelization and Maillard reaction kinetics in fructose-lysine model systems. J Food Sci 66: 926–931. |
[38] | Monacelli F, Storace D, D’Arrigo C, et al. (2013)Structural alterations of human serum albumin caused by glycative and oxidative stressors revealed by circular dichroism analysis. Int J Mol Sci 14: 10694–10709. |
[39] |
Lee TH,Cheng WT,Lin SY (2010) Thermal stability and conformational structure of salmon calcitonin in the solid and liquid states. Biopolymers 93: 200–207. doi: 10.1002/bip.21323
![]() |
[40] | Ledesma-Osuna AI, Ramos-Clamont G, Vazquez-Moreno L (2008) Characterization of bovine serum albumin glycated with glucose, galactose and lactose. Acta Biochim Pol 55: 491–497. |
[41] |
Sompong W,Meeprom A,Cheng H, et al. (2013) A comparative study of ferulic acid on different monosaccharide-mediated protein glycation and oxidative damage in bovine serum albumin. Molecules 18: 13886–13903. doi: 10.3390/molecules181113886
![]() |
[42] | Wu CH, Huang SM, Lin JA, et al. (2011) Inhibition of advanced glycation endproduct formation by foodstuffs. Food Funct 2: 224–234. |
[43] |
Kato Y, Matsuda T, Kato N, et al. (1989) Maillard reaction of disaccharides with protein: suppressive effect of nonreducing end pyranoside groups on browning and protein polymerization. J Agric Food Chem 37: 1077–1081. doi: 10.1021/jf00088a057
![]() |
[44] | Suárez G,Rajaram R,Oronsky AL, et al.(1989). Nonenzymatic glycation of bovine serum albumin by fructose (fructation). Comparison with the Maillard reaction initiated by glucose. J Biol Chem 264: 3674–3679. |
[45] | McPherson JD,Shilton BH,Walton DJ (1988) Role of fructose in glycation and cross-linking of proteins. Biochemistry 27: 1901–1907. |
[46] | Siddiqui AA,Sohail A,Bhat SA, et al. (2015). Non-enzymatic glycation of almond cystatin leads to conformational changes and altered activity. Protein Pept Lett 22: 449–459. |
[47] |
Awasthi S,Murugan NA,Saraswathi NT (2015) Advanced glycation end products modulate structure and drug binding properties of albumin. Mol Pharmaceutics 12: 3312–3322. doi: 10.1021/acs.molpharmaceut.5b00318
![]() |
[48] |
Bouma B,Kroon-Batenburg LM,Wu YP, et al. (2003) Glycation induces formation of amyloid cross-beta structure in albumin. J Biol Chem 278: 41810–41819. doi: 10.1074/jbc.M303925200
![]() |
[49] |
Khajehpour M,Dashnau JL,Vanderkooi JM (2006) Infrared spectroscopy used to evaluate glycosylation of proteins. Anal Biochem 348: 40–48. doi: 10.1016/j.ab.2005.10.009
![]() |
[50] |
GhoshMoulick R,Bhattacharya J,Roy S, et al. (2007). Compensatory secondary structure alterations in protein glycation. Biochim Biophys Acta 1774: 233–242. doi: 10.1016/j.bbapap.2006.11.018
![]() |
[51] |
Yang H,Yang S,Kong J, et al. (2015). Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nat Protoc 10: 382–396. doi: 10.1038/nprot.2015.024
![]() |
[52] | Roy R,Boskey A,Bonassar LJ (2010) Processing of type I collagen gels using nonenzymatic glycation. J Biomed Mater Res A 93: 843–851. |
[53] | Haris PI (2013) Probing protein-protein interaction in biomembranes using Fourier transform infrared spectroscopy. Biochim Biophys Acta 1828: 2265–2271. |
[54] | Neault JF, Tajmir-Riahi HA (1998) Interaction of cisplatin with human serum albumin. Drug binding mode and protein secondary structure, Biochim. Biophys Acta 1384: 153–159. |
[55] | Bramanti E, Benedetti E (1996) Determination of the secondary structure of isomeric forms of human serum albumin by a particular frequency deconvolution procedure applied to Fourier transform IR analysis. Biopolymers 38: 639–653. |
[56] |
Zsila F (2013) Subdomain IB is the third major drug binding region of human serum albumin: toward the three-sites model. Mol Pharmaceutics 10: 1668–1682. doi: 10.1021/mp400027q
![]() |
[57] | Awasthi S,Murugan NA,Saraswathi NT (2015) Advanced glycation end products modulate structure and drug binding properties of albumin. Mol Pharmaceutics 12: 3312–3322. |
[58] |
Khan TA, Saleemuddin M, Naeem A (2011) Partially folded glycated state of human serum albumin tends to aggregate. Int J Pept Res Ther 17: 271–279. doi: 10.1007/s10989-011-9267-7
![]() |
[59] |
Oliveira LM,Lages A,Gomes RA, et al. (2011) Insulin glycation by methylglyoxal results in native-like aggregation and inhibition of fibril formation. BMC Biochem 5; 12:41. doi: 10.1186/1471-2091-12-41
![]() |
[60] | Lin SY,Chu HL,Wei YS (2002) Pressure-induced transformation of alpha-helix to beta-sheet in the secondary structures of amyloid beta (1–40) peptide exacerbated by temperature. J Biomol Struct Dyn 19: 619–625. |
[61] |
Ding F,Borreguero JM,Buldyrey SV, et al. (2003) Mechanism for the alpha-helix to beta-hairpin transition. Proteins 53: 220–228. doi: 10.1002/prot.10468
![]() |
[62] |
Garip S,Yapici E,Ozek NS, et al. (2010) Evaluation and discrimination of simvastatin-induced structural alterations in proteins of different rat tissues by FTIR spectroscopy and neural network analysis. Analyst 135: 3233–3241. doi: 10.1039/c0an00540a
![]() |
[63] | Yano K,Ohoshima S,Shimizu Y, et al. (1996) Evaluation of glycogen level in human lung carcinoma tissues by an infrared spectroscopic method. Cancer Lett 110: 29–34. |
[64] |
Podshyvalov A,Sahu RK,Mark S, et al. (2005) Distinction of cervical cancer biopsies by use of infrared microspectroscopy and probabilistic neural networks. Appl Opt 44: 3725–3734. doi: 10.1364/AO.44.003725
![]() |
[65] | Colagar AH,Chaichi MJ,Khadjvand T (2011) Fourier transform infrared microspectroscopy as a diagnostic tool for distinguishing between normal and malignant human gastric tissue. J Biosci 36: 669–677. |
[66] |
Nagai R, Shirakawa J, Fujiwara Y, et al. (2014) Detection of AGEs as markers for carbohydrate metabolism and protein denaturation. J Clin Biochem Nutr 55: 1–6. doi: 10.3164/jcbn.13-112
![]() |
[67] | Rondeau P,Bourdon E (2011) The glycation of albumin: structural and functional impacts. Biochimie 93: 645–658. |
[68] |
Basta G,Schmidt AM,De Caterina R (2004) Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res 63: 582–592. doi: 10.1016/j.cardiores.2004.05.001
![]() |
[69] |
Shivu B,Seshadri S,Li J, et al. (2013) Distinct β-sheet structure in protein aggregates determined by ATR-FTIR spectroscopy. Biochemistry 52: 5176–5183. doi: 10.1021/bi400625v
![]() |
[70] |
Natalello A,Doglia SM (2015) Insoluble protein assemblies characterized by fourier transform infrared spectroscopy. Methods Mol Biol 1258: 347–369. doi: 10.1007/978-1-4939-2205-5_20
![]() |
[71] | Clark AH,Saunderson DH,Suggett A (1981) Infrared and laser-Raman spectroscopic studies of thermally-induced globular protein gels. Int J Pept Protein Res 17: 353–364. |
[72] | Ruggeri FS,Longo G,Faggiano S, et al. (2015) Infrared nanospectroscopy characterization of oligomeric and fibrillar aggregates during amyloid formation. Nat Commun 6: 7831. |
[73] | Miller LM,Bourassa MW,Smith RJ (2013) FTIR spectroscopic imaging of protein aggregation in living cells. Biochim Biophys Acta 1828: 2339–2346. |
1. | Dahao Zheng, Jingna Li, Sharp decay estimates for 3D incompressible MHD system with mixed partial dissipation and magnetic diffusion, 2023, 521, 0022247X, 126915, 10.1016/j.jmaa.2022.126915 | |
2. | Kun Cheng, Yong Zeng, On regularity criteria for MHD system in anisotropic Lebesgue spaces, 2023, 31, 2688-1594, 4669, 10.3934/era.2023239 |