[1]
|
Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35: 25–34. doi: 10.1023/A:1005810616885
|
[2]
|
Department of Agriculture Sabah (2017) Department of Agriculture Sabah: Laporan Tahunan 2017. Available from: https://tani.sabah.gov.my/wp-content/uploads/2019/11/4-PEMBANGUNAN-1.pdf.
|
[3]
|
Low KO, Lee YF (2012) Investigation the relationship between Kadazandusun beliefs about paddy sprits, riddling in harvest-time and paddy related sundait. SEA J Gen Stud 13: 71–97.
|
[4]
|
Vaughan DA, Morishima H, Kadowaki K (2003) Diversity in the Oryza genus. Curr Opin Plant Biol 6: 139–146. doi: 10.1016/S1369-5266(03)00009-8
|
[5]
|
Jiang L, Liu L (2006) New evidence for the origins of sedentism and rice domestication in the Lower YangZi River, China. Antiquity 80: 335–361. doi: 10.1017/S0003598X00093674
|
[6]
|
Lang NT, Buu BC (2004) Quantitative analysis on amylose content by DNA markers through backcross populations of rice (Oryza sativa L.). Omonrice 12: 13–18.
|
[7]
|
Kong S, Lee J (2010) Antioxidants in milling fractions of black rice cultivars. Food Chem 120: 278–281. doi: 10.1016/j.foodchem.2009.09.089
|
[8]
|
Bita CF, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4: 273.
|
[9]
|
Tong W, He Q, Park YJ (2017) Genetic variation architecture of mitochondrial genome reveals the differentiation in Korean landrace and weedy rice. Sci Rep 7: 43327. doi: 10.1038/srep43327
|
[10]
|
Skuza L, Szućko I, Filip E, et al. (2019) Genetic diversity and relationship between cultivaled, weedy and wild rye species as revealed by chloroplast and mitochondrial DNA non-coding regions analysis. PLoS One 14: e0213023. doi: 10.1371/journal.pone.0213023
|
[11]
|
Tian XJ, Zheng J, Hu SN, et al. (2006) The rice mitochondrial genomes and their variations. Plant Physiol 140: 401–410. doi: 10.1104/pp.105.070060
|
[12]
|
Huang SB, Shingaki-Wells RN, Taylor NL, et al. (2013) The rice mitochondria proteome and its response during development and to the environment. Front Plant Sci 4: 16. doi: 10.3389/fpls.2013.00016
|
[13]
|
Capaldi RA (1990) Structure and function of cytochrome c oxidase. Annu Rev Biochem 59: 569–596. doi: 10.1146/annurev.bi.59.070190.003033
|
[14]
|
Remacle C, Coosemans N, Jans F, et al. (2010) Knock-down of the COX3 and COX17 gene expression of cytochrome c oxidase in the unicellular green alga Chlamydomonas reinhardtii. Plant Mol Biol 74: 223–233. doi: 10.1007/s11103-010-9668-6
|
[15]
|
Wei X, Wang R, Cao L, et al. (2012) Origin of Oryza sativa in China inferred by nucleotide polymorphisms of organelle DNA. PLoS One 7: e49546. doi: 10.1371/journal.pone.0049546
|
[16]
|
Chong ETJ, Goh LPW, Wong JJ, et al. (2018) Genetic diversity and relationship of Sabah traditional rice varieties as revealed by RAPD markers. Pertanika J Trop Agri Sci 41: 177–190.
|
[17]
|
Sharma K, Bhattacharjee R, Sartie A, et al. (2013) An improved method of DNA extraction from plants for pathogen detection and genotyping by polymerase chain reaction. Afr J Biotechnol 12: 1894–1901. doi: 10.5897/AJB12.2096
|
[18]
|
Tamura K, Stecher G, Peterson D, et al. (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30: 2725–2729.
|
[19]
|
Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.
|
[20]
|
Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–452. doi: 10.1093/bioinformatics/btp187
|
[21]
|
Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3: 418–426.
|
[22]
|
Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133: 693–709.
|
[23]
|
Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.
|
[24]
|
Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16: 37–48. doi: 10.1093/oxfordjournals.molbev.a026036
|
[25]
|
Wright S (1951) The genetical structure of populations. Ann Eugen 15: 323–354.
|
[26]
|
Mansilla N, Racca S, Gras DE, et al. (2018) The complexity of mitochondrial complex IV: an update of cytochrome c oxidase biogenesis in plants. Int J Mol Sci 19: 662. doi: 10.3390/ijms19030662
|
[27]
|
Luo Y, Gao W, Gao Y, et al. (2008) Mitochondrial genome analysis of Ochotona curzoniae and implication of cytochrome c oxidase in hypoxic adaption. Mitochondrion 8: 352–357. doi: 10.1016/j.mito.2008.07.005
|
[28]
|
Scott GR, Schulte PM, Egginton S, et al. (2011) Molecular evolution of cytochrome c oxidase underlies high-altitude adaption in the bar-headed goose. Mol Biol Evol 28: 351–363. doi: 10.1093/molbev/msq205
|
[29]
|
Lee JS, Torollo G, Ndayiragije A, et al. (2018) Genetic relationship of tropical region-bred temperate japonica rice (Oryza sativa) plants and their grain yield variations in three different tropical environments. Plant Breed 137: 857–864. doi: 10.1111/pbr.12646
|
[30]
|
The 3,000 rice genome project (2014) The 3,000 rice genome projects. GigaSci 3: 7.
|
[31]
|
Hou Y, Lou AR (2011) Population genetic diversity and structure of a naturally isolated plant species, Rhodiola dumulosa (Crassulaceae). PLoS One 6: e24497. doi: 10.1371/journal.pone.0024497
|
[32]
|
Zhang YX, He CZ, Dudgeon D, et al. (2011) Mountain ridge and sea: geographic-barrier effects on genetic diversity and differentiation of the Hong Kong newt (Paramesotriton hongkongensis) revealed by AFLP. Ann Zool Fenn 48: 119–127. doi: 10.5735/086.048.0204
|