Citation: Konrad Wojciech Nowak, Paweł Mielnik, Monika Sięda, Izabela Staniszewska, Anna Bieniek. The effect of ultrasound treatment on the extraction of lycopene and β-carotene from cherry silverberry fruits[J]. AIMS Agriculture and Food, 2021, 6(1): 247-254. doi: 10.3934/agrfood.2021016
[1] | Lee MS, Lee YK, Park OJ (2010) Cherry silverberry (Elaeagnus multiflora) extracts exert anti-inflammatory effects by inhibiting COX-2 and Akt signals in HT-29 colon cancer cells. Food Sci Biotechnol 19: 1673-1677. doi: 10.1007/s10068-010-0237-1 |
[2] | Lee JH, Seo WT, Cho KM (2011) Determination of phytochemical contents and biological activities from the fruits of elaeagnus multiflora. Int J Food Sci Nutr 16: 29-36. |
[3] | Bieniek A, Piłat B, Szałkiewicz M, et al. (2017) Evaluation of yield, morphology and quality of fruits of cherry silverberry (Elaeagnus multiflora Thunb.) biotypes under conditions of north-eastern Poland. Pol J Nat Sci 32: 61-70. |
[4] | Przybylska S (2020) Lycopene-a bioactive carotenoid offering multiple health benefits: a review. Int J Food Sci Technol 55: 11-32. doi: 10.1111/ijfs.14260 |
[5] | Di Mascio P, Kaiser S, Sies H (1989) Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 274: 532-538. doi: 10.1016/0003-9861(89)90467-0 |
[6] | Stahl W, Sies H (2003) Antioxidant activity of carotenoids. Mol Aspects Med 24: 345-351. doi: 10.1016/S0098-2997(03)00030-X |
[7] | Patel S (2015) Plant genus Elaeagnus: underutilized lycopene and linoleic acid reserve with permaculture potential. Fruits 70: 191-199. doi: 10.1051/fruits/2015014 |
[8] | Lachowicz S, Bieniek A, Gil Z, et al. (2019) Phytochemical parameters and antioxidant activity of new cherry silverberry biotypes (Elaeagnus multiflora Thunb.). Eur Food Res Technol 245: 1997-2005. doi: 10.1007/s00217-019-03317-w |
[9] | Galanakis CM (2013) Emerging technologies for the production of nutraceuticals from agricultural by-products: A viewpoint of opportunities and challenges. Food Bioprod Process 91: 575-579. doi: 10.1016/j.fbp.2013.01.004 |
[10] | Chendke PK, Fogler HS (1975) Macrosonics in industry. Part 4: Chemical processing. Ultrasonics 13: 31-37. doi: 10.1016/0041-624X(75)90020-7 |
[11] | McClements DJ (1995) Advances in the application of ultrasound in food analysis and processing. Trends Food Sci Technol 6: 293-299. doi: 10.1016/S0924-2244(00)89139-6 |
[12] | Eh AL-S, Teoh SG (2012) Novel modified ultrasonication technique for the extraction of lycopene from tomatoes. Ultrason Sonochem 19: 151-159. doi: 10.1016/j.ultsonch.2011.05.019 |
[13] | Dey S, Rathod VK (2013) Ultrasound assisted extraction of b-carotene from Spirulina platensis. Ultrason Sonochem 20: 271-276. doi: 10.1016/j.ultsonch.2012.05.010 |
[14] | Purohit AJ, Gogate PR (2015) Ultrasound-assisted extraction of β-carotene from waste carrot residue: effect of operating parameters and type of ultrasonic irradiation. Sep Sci Technol 50: 1507-1517. doi: 10.1080/01496395.2014.978472 |
[15] | Quiroz JQ, Naranjo Duran AM, Garcia MS, et al. (2019) Ultrasound-Assisted Extraction of Bioactive Compounds from Annatto Seeds, Evaluation of Their Antimicrobial and Antioxidant Activity, and Identification of Main Compounds by LC/ESI-MS Analysis. Int J Food Sci. Article ID 3721828. |
[16] | Blamo Jr PA, Thuy Pham HN, Nguyen TH (2021) Maximising phenolic compounds and antioxidant capacity from Laurencia intermedia using ultrasound-assisted extraction. AIMS Agric Food 6: 32-48. doi: 10.3934/agrfood.2021003 |
[17] | Soria AC, Villamiel M (2010) Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci Technol 21: 323-331. doi: 10.1016/j.tifs.2010.04.003 |
[18] | Nguyen ML, Schwartz SJ (1999) Lycopene: chemical and biological properties: Developing nutraceuticals for the new millenium. Food Technol 53: 38-45. |
[19] | Naviglio D, Pizzolongo F, Ferrara L, et al. (2008) Extraction of pure lycopene from industrial tomato waste in water using the extractor Naviglio. Afr J Food Sci 2: 37-44. |
[20] | Association of Official Analytical Chemists Official Methods of Analysis of AOAC International. 12th ed (1975) AOAC International, Washington, DC. |
[21] | Palmero P, Lemmens L, Ribas-Augusti A, et al. (2013) Novel targeted approach to better understand how natural structural barriers govern carotenoid in vitro bioaccessibillity in vegetable-based systems. Food Chem 141: 2036-2043. doi: 10.1016/j.foodchem.2013.05.064 |
[22] | Shi J, Le Maguer M (2000) Lycopene in tomatoes: chemical and physical properties affected by food processing. Crit Rev Food Sci Nutr 40: 1-42. doi: 10.1080/10408690091189275 |
[23] | Ax K, Mayer-Miebach E, Link B, et al. (2003) Stability of lycopene in oil-in-water emulsion. Eng Life Sci 3: 199-201. doi: 10.1002/elsc.200390028 |
[24] | Suslick KS (1990) Sonochemistry. Science 247: 1439-1445. doi: 10.1126/science.247.4949.1439 |
[25] | Ordóñez-Santos LE, Martínez-Girón J (2020) Thermal degradation kinetics of carotenoids, vitamin C and provitamin A in tree tomato juice. Int J Food Sci Tech 55: 201-210. doi: 10.1111/ijfs.14263 |
[26] | Makino K, Mossoba MM, Riesz P (1983) Chemical effects of ultrasound on aqueous solutions. Formation of hydroxyl radicals and hydrogen atoms. J Phys Chem 87: 1369-1377. doi: 10.1021/j100231a020 |
[27] | Portenlänger G, Heusinger H (1992) Chemical reactions induced by ultrasound and γ-rays in aqueous solutions of L-ascorbic acid. Carbohydr Res 232: 291-301. doi: 10.1016/0008-6215(92)80061-5 |
[28] | D'Evoli L, Lombardi-Boccia G, Lucarini M (2013) Influence of heat treatments on carotenoid content of cherry tomatoes. Foods 2: 352-363. doi: 10.3390/foods2030352 |
[29] | Anese M, Mirolo G, Beraldo P, et al. (2013) Effect of ultrasound treatments of tomato pulp on microstructure and lycopene in vitro bioaccessibility. Food Chem 136: 458-463. doi: 10.1016/j.foodchem.2012.08.013 |