Research article

A class of thermal sub-differential contact problems

  • Received: 16 April 2017 Accepted: 28 November 2017 Published: 04 December 2017
  • We study a class of dynamic sub-differential contact problems with friction, and thermal e ects, for time depending long memory visco-elastic materials, with or without the clamped condition. We describe the mechanical problem, derive its variational formulation, and after specifying the assumptions on the data and operators, we prove an existence and uniqueness of weak solution on displacement and temperature fields. Then we present a fully discrete scheme for numerical approximations of the different solutions, and provide analysis of error order estimates. Finally various numerical computations in dimension two will be given.

    Citation: Oanh Chau. A class of thermal sub-differential contact problems[J]. AIMS Mathematics, 2017, 2(4): 658-681. doi: 10.3934/Math.2017.4.658

    Related Papers:

  • We study a class of dynamic sub-differential contact problems with friction, and thermal e ects, for time depending long memory visco-elastic materials, with or without the clamped condition. We describe the mechanical problem, derive its variational formulation, and after specifying the assumptions on the data and operators, we prove an existence and uniqueness of weak solution on displacement and temperature fields. Then we present a fully discrete scheme for numerical approximations of the different solutions, and provide analysis of error order estimates. Finally various numerical computations in dimension two will be given.


    加载中
    [1] O. Chau, V. V. Motreanu, Dynamic contact problems with velocity conditions, Int. J. Ap. Mat. Com-Pol, 12 (2002): 17-26.
    [2] O. Chau, Quelques problèmes d'évolution en mécanique de contact et en biochimie, Habilitation thesis, Saint Denis La Réunion: University Press, 2010.
    [3] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Contributions to Nonlinear Functional Analysis, Amsterdam: North Holland, 1978.
    [4] G. Duvaut, J. L. Lions, Les Inéquations en Mécanique et en Physique, Paris: Dunod, 1972.
    [5] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Contributions to Nonlinear Functional Analysis, Dunod et Gauthier-Villars, 1969.
    [6] P. D. Panagiotopoulos, Inequality Problems in Mechanics and Applications, Contributions to Nonlinear Functional Analysis, Basel: Birkhäuser, 1985.
    [7] P. D. Panagiotopoulos, Hemivariational Inequalities, applications in Mechanics and Engineering, Contributions to Nonlinear Functional Analysis, Springer-Verlag, 1993.
    [8] N. Costea, V. Radulescu, Hartman-Stampacchia results for stably pseudomonotone operators and non-linear hemivariational inequalities, Appl. Anal., 89 (2010): 175-88.
    [9] E. Zeidler, Nonlinear Functional Analysis and its Applications, Contributions to Nonlinear Functional Analysis, Springer Verlag, 1997.
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3989) PDF downloads(1018) Cited by(1)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog