Citation: Johan Garssen, Juandy Jo. Genetically-engineered T cells to treat viral hepatitis-associated liver cancer: is it possible?[J]. AIMS Allergy and Immunology, 2017, 1(1): 43-49. doi: 10.3934/Allergy.2017.1.43
[1] | June CH, Riddell SR, Schumacher TN (2015) Adoptive cellular therapy: a race to the finish line.Sci Transl Med 7: 280–287. |
[2] | Harris DT, Kranz DM (2016) Adoptive T cell therapies: a comparison of t cell receptors and chimeric antigen receptors. Trends Pharmacol Sci 37: 220–230. doi: 10.1016/j.tips.2015.11.004 |
[3] | Figueroa JA, Reidy A, Mirandola L, et al. (2015) Chimeric antigen receptor engineering: a right step in the evolution of adoptive cellular immunotherapy. Int Rev Immunol 34: 154–187. doi: 10.3109/08830185.2015.1018419 |
[4] | Ramos CA, Dotti G (2011) Chimeric antigen receptor (CAR)-engineered lymphocytes for cancer therapy. Expert Opin Biol Th 11: 855–873. doi: 10.1517/14712598.2011.573476 |
[5] | Porter DL, Levine BL, Kalos M, et al. (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. New Engl J Med 365: 725–733. doi: 10.1056/NEJMoa1103849 |
[6] | Brentjens RJ, Davila ML, Riviere I, et al. (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5: 177ra38. |
[7] | Grupp SA, Kalos M, Barrett D, et al. (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. New Engl J Med 368: 1509–1518. doi: 10.1056/NEJMoa1215134 |
[8] | Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. (2015) T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385: 517–528. |
[9] | Ramos CA, Heslop HE, Brenner MK (2016) CAR-T cell therapy for lymphoma. Annu Rev Med 67: 165–183. doi: 10.1146/annurev-med-051914-021702 |
[10] | Vigneron N (2015) Human tumor antigens and cancer immunotherapy. Biomed Res Int 2015: 948501. |
[11] | Linette GP, Stadtmauer EA, Maus MV, et al. (2013) Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122: 863–871. doi: 10.1182/blood-2013-03-490565 |
[12] | Morgan RA, Chinnasamy N, Abatedaga DD, et al. (2013) Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 36: 133–151. doi: 10.1097/CJI.0b013e3182829903 |
[13] | Walker A, Johnson R (2016) Commercialization of cellular immunotherapies for cancer. Biochem Soc Trans 44: 329–332. doi: 10.1042/BST20150240 |
[14] | Koh S, Shimasaki N, Suwanarusk R, et al. (2013) A practical approach to immunotherapy of hepatocellular carcinoma using T cells redirected against hepatitis B virus. Mol Ther Nucl Acids 2: e114. doi: 10.1038/mtna.2013.43 |
[15] | Bertoletti A, Ferrari C (2016) Adaptive immunity in HBV infection. J Hepatol 64: S71–83. doi: 10.1016/j.jhep.2016.01.026 |
[16] | Jo J, Lohmann V, Bartenschlager R, et al. (2011) Experimental models to study the immunobiology of hepatitis C virus. J Gen Virol 92: 477–493. doi: 10.1099/vir.0.027987-0 |
[17] | Pasetto A, Frelin L, Aleman S, et al. (2012) TCR-redirected human T cells inhibit hepatitis C virus replication: hepatotoxic potential is linked to antigen specificity and functional avidity. J Immunol 189: 4510–4519. doi: 10.4049/jimmunol.1201613 |
[18] | Sautto GA, Wisskirchen K, Clementi N, et al. (2016) Chimeric antigen receptor (CAR)-engineered T cells redirected against hepatitis C virus (HCV) E2 glycoprotein. Gut 65: 512–523. doi: 10.1136/gutjnl-2014-308316 |
[19] | Zhang Y, Liu YY, Moxley KM, et al. (2010) Transduction of human T cells with a novel T-cell receptor confers anti-HCV reactivity. PLoS Pathog 6: e1001018. doi: 10.1371/journal.ppat.1001018 |
[20] | Balasiddaiah A, Davanian H, Aleman S, et al. (2017) Hepatitis C virus-specific T cell receptor mRNA-engineered human t cells: impact of antigen specificity on functional properties. J Virol 91: e00010–17. |
[21] | Pawlotsky JM, Aghemo A, Back D (2017) EASL recommendations on treatment of hepatitis C 2016. J Hepatol 66: 153–194. doi: 10.1016/j.jhep.2016.09.001 |
[22] | Krebs K (2013) T cells expressing a chimeric antigen receptor that binds hepatitis B virus envelope proteins control virus replication in mice. Gastroenterology 145: 456–465. doi: 10.1053/j.gastro.2013.04.047 |
[23] | Gehring AJ, Xue SA, Ho ZZ, et al. (2011) Engineering virus-specific T cells that target HBV infected hepatocytes and hepatocellular carcinoma cell lines. J Hepatol 55: 103–110. doi: 10.1016/j.jhep.2010.10.025 |
[24] | Banu N, Chia A, Zi ZH, et al. (2014) Building and optimizing a virus-specific T cell receptor library for targeted immunotherapy in viral infections. Sci Rep 4: 4166–4175. |
[25] | Perz JF, Armstrong GL, Farrington LA, et al. (2006) The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 45: 529–538. doi: 10.1016/j.jhep.2006.05.013 |
[26] | Brechot C, Pourcel C, Louise A, et al. (1980) Presence of integrated hepatitis B virus DNA sequences in cellular DNA of human hepatocellular carcinoma. Nature 286: 533–535. doi: 10.1038/286533a0 |
[27] | Qasim W, Brunetto M, Gehring A, et al. (2015) Immunotherapy of HCC metastases with autologous T cell receptor redirected T cells, targeting HBsAg in a liver transplant patient. J Hepatol 62: 486–491. doi: 10.1016/j.jhep.2014.10.001 |
[28] | Koh S, Tan A, Li L, et al. (2016) Targeted therapy of hepatitis B virus-related hepatocellular carcinoma: present and future. Diseases 4: 10–16. doi: 10.3390/diseases4010010 |
[29] | Spear TT, Callender GG, Roszkowski JJ, et al. (2016) TCR gene-modified T cells can efficiently treat established hepatitis C-associated hepatocellular carcinoma tumors. Cancer Immunol Immun 65: 293–304. doi: 10.1007/s00262-016-1800-2 |