Citation: Yoichi Enatsu, Yukihiko Nakata. Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate[J]. Mathematical Biosciences and Engineering, 2014, 11(4): 785-805. doi: 10.3934/mbe.2014.11.785
[1] | Guo Lin, Shuxia Pan, Xiang-Ping Yan . Spreading speeds of epidemic models with nonlocal delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7562-7588. doi: 10.3934/mbe.2019380 |
[2] | Fang Zhang, Wenzhe Cui, Yanfei Dai, Yulin Zhao . Bifurcations of an SIRS epidemic model with a general saturated incidence rate. Mathematical Biosciences and Engineering, 2022, 19(11): 10710-10730. doi: 10.3934/mbe.2022501 |
[3] | Manoj Kumar Singh, Anjali., Brajesh K. Singh, Carlo Cattani . Impact of general incidence function on three-strain SEIAR model. Mathematical Biosciences and Engineering, 2023, 20(11): 19710-19731. doi: 10.3934/mbe.2023873 |
[4] | Bruno Buonomo, Marianna Cerasuolo . The effect of time delay in plant--pathogen interactions with host demography. Mathematical Biosciences and Engineering, 2015, 12(3): 473-490. doi: 10.3934/mbe.2015.12.473 |
[5] | Hui Cao, Yicang Zhou, Zhien Ma . Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1399-1417. doi: 10.3934/mbe.2013.10.1399 |
[6] | Dongmei Li, Bing Chai, Weihua Liu, Panpan Wen, Ruixue Zhang . Qualitative analysis of a class of SISM epidemic model influenced by media publicity. Mathematical Biosciences and Engineering, 2020, 17(5): 5727-5751. doi: 10.3934/mbe.2020308 |
[7] | Shishi Wang, Yuting Ding, Hongfan Lu, Silin Gong . Stability and bifurcation analysis of $ SIQR $ for the COVID-19 epidemic model with time delay. Mathematical Biosciences and Engineering, 2021, 18(5): 5505-5524. doi: 10.3934/mbe.2021278 |
[8] | Hongfan Lu, Yuting Ding, Silin Gong, Shishi Wang . Mathematical modeling and dynamic analysis of SIQR model with delay for pandemic COVID-19. Mathematical Biosciences and Engineering, 2021, 18(4): 3197-3214. doi: 10.3934/mbe.2021159 |
[9] | Qian Yan, Xianning Liu . Dynamics of an epidemic model with general incidence rate dependent on a class of disease-related contact functions. Mathematical Biosciences and Engineering, 2023, 20(12): 20795-20808. doi: 10.3934/mbe.2023920 |
[10] | Fang Wang, Juping Zhang, Maoxing Liu . Dynamical analysis of a network-based SIR model with saturated incidence rate and nonlinear recovery rate: an edge-compartmental approach. Mathematical Biosciences and Engineering, 2024, 21(4): 5430-5445. doi: 10.3934/mbe.2024239 |
[1] | Nonlinear Analysis, 47 (2001), 4107-4115. |
[2] | Math. Biosci. Eng., 8 (2011), 931-952. |
[3] | Math. Biosci., 42 (1978), 43-61. |
[4] | Rocky Mountain J. Math., 9 (1979), 31-42. |
[5] | J. Biological Dynamics, 7 (2013), 21-30. |
[6] | Applied Mathematical Sciences, 110. Springer-Verlag, New York, 1995. |
[7] | Nonlinear Anal. RWA., 13 (2012), 2120-2133. |
[8] | Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 61-74. |
[9] | Chelsea, New York, 1959 (Translated from Russian). |
[10] | J. Math. Biol., 29 (1991), 271-287. |
[11] | SIAM Review, 42 (2000), 599-653. |
[12] | J. Math. Biol., 63 (2011), 125-139. |
[13] | Disc. Cont. Dynam. Sys. B, 15 (2011), 93-112. |
[14] | Bull. Math. Biol., 69 (2007), 1871-1886. |
[15] | Bull. Math. Biol., 68 (2006), 615-626. |
[16] | Math. Med. Biol., 22 (2005), 113-128. |
[17] | Academic Press, 1993. |
[18] | Nonlinear Anal. RWA., 6 (2005), 495-507. |
[19] | J. Math. Biol., 23 (1986), 187-204. |
[20] | J. Math. Biol., 25 (1987), 359-380. |
[21] | Math. Biosci. Eng., 7 (2010), 837-850. |
[22] | Nonlinear Anal. RWA., 12 (2011), 1897-1910. |
[23] | Disc. Cont. Dynam. Sys. Supplement, II (2011), 1119-1128. |
[24] | 3rd ed., McGraw-Hill, New York, 1976. |
[25] | J. Differ. Equations, 188 (2003), 135-163. |
[26] | Texts in Applied Mathematics Vol. 57, Springer, Berlin, 2011. |
[27] | Nonlinear Anal. TMA., 42 (2000), 931-947. |
[28] | Math. Biosci. Eng., 3 (2006), 267-279. |
[29] | Math. Biosci., 208 (2007), 419-429. |
[30] | Chaos, Solitons & Fractals, 41 (2009), 2319-2325. |
[31] | Disc. Cont. Dynam. Sys. B, 13 (2010), 195-211. |
1. | Yingke Li, Zhidong Teng, Cheng Hu, Qing Ge, Global stability of an epidemic model with age-dependent vaccination, latent and relapse, 2017, 105, 09600779, 195, 10.1016/j.chaos.2017.10.027 | |
2. | Junyuan Yang, Xiaoxia Li, Fengqin Zhang, Global dynamics of a heroin epidemic model with age structure and nonlinear incidence, 2016, 09, 1793-5245, 1650033, 10.1142/S1793524516500339 | |
3. | Zhiting Xu, Youqing Xu, Stability of a CD4+ T cell viral infection model with diffusion, 2018, 11, 1793-5245, 1850071, 10.1142/S1793524518500717 | |
4. | Yuming Chen, Shaofen Zou, Junyuan Yang, Global analysis of an SIR epidemic model with infection age and saturated incidence, 2016, 30, 14681218, 16, 10.1016/j.nonrwa.2015.11.001 | |
5. | Junyuan Yang, Maia Martcheva, Lin Wang, Global threshold dynamics of an SIVS model with waning vaccine-induced immunity and nonlinear incidence, 2015, 268, 00255564, 1, 10.1016/j.mbs.2015.07.003 | |
6. | Hiroshi Ito, Interpreting models of infectious diseases in terms of integral input-to-state stability, 2020, 32, 0932-4194, 611, 10.1007/s00498-020-00272-w | |
7. | Junyuan Yang, Yuming Chen, Toshikazu Kuniya, Threshold dynamics of an age-structured epidemic model with relapse and nonlinear incidence, 2017, 82, 0272-4960, 629, 10.1093/imamat/hxx006 | |
8. | Yukihiko Nakata, Yoichi Enatsu, Hisashi Inaba, Toshikazu Kuniya, Yoshiaki Muroya, Yasuhiro Takeuchi, Stability of epidemic models with waning immunity, 2014, 50, 0916-5746, 10.55937/sut/1424972727 | |
9. | Toshikazu Kuniya, 2023, 9780323995573, 145, 10.1016/B978-0-32-399557-3.00010-7 | |
10. | Nursanti Anggriani, Lazarus Kalvein Beay, Meksianis Z. Ndii, Fatuh Inayaturohmat, Sanubari Tansah Tresna, A mathematical model for a disease outbreak considering waning-immunity class with nonlinear incidence and recovery rates, 2024, 25889338, 10.1016/j.jobb.2024.05.005 |