Citation: Yoichi Enatsu, Yukihiko Nakata. Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate[J]. Mathematical Biosciences and Engineering, 2014, 11(4): 785-805. doi: 10.3934/mbe.2014.11.785
[1] | Nonlinear Analysis, 47 (2001), 4107-4115. |
[2] | Math. Biosci. Eng., 8 (2011), 931-952. |
[3] | Math. Biosci., 42 (1978), 43-61. |
[4] | Rocky Mountain J. Math., 9 (1979), 31-42. |
[5] | J. Biological Dynamics, 7 (2013), 21-30. |
[6] | Applied Mathematical Sciences, 110. Springer-Verlag, New York, 1995. |
[7] | Nonlinear Anal. RWA., 13 (2012), 2120-2133. |
[8] | Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 61-74. |
[9] | Chelsea, New York, 1959 (Translated from Russian). |
[10] | J. Math. Biol., 29 (1991), 271-287. |
[11] | SIAM Review, 42 (2000), 599-653. |
[12] | J. Math. Biol., 63 (2011), 125-139. |
[13] | Disc. Cont. Dynam. Sys. B, 15 (2011), 93-112. |
[14] | Bull. Math. Biol., 69 (2007), 1871-1886. |
[15] | Bull. Math. Biol., 68 (2006), 615-626. |
[16] | Math. Med. Biol., 22 (2005), 113-128. |
[17] | Academic Press, 1993. |
[18] | Nonlinear Anal. RWA., 6 (2005), 495-507. |
[19] | J. Math. Biol., 23 (1986), 187-204. |
[20] | J. Math. Biol., 25 (1987), 359-380. |
[21] | Math. Biosci. Eng., 7 (2010), 837-850. |
[22] | Nonlinear Anal. RWA., 12 (2011), 1897-1910. |
[23] | Disc. Cont. Dynam. Sys. Supplement, II (2011), 1119-1128. |
[24] | 3rd ed., McGraw-Hill, New York, 1976. |
[25] | J. Differ. Equations, 188 (2003), 135-163. |
[26] | Texts in Applied Mathematics Vol. 57, Springer, Berlin, 2011. |
[27] | Nonlinear Anal. TMA., 42 (2000), 931-947. |
[28] | Math. Biosci. Eng., 3 (2006), 267-279. |
[29] | Math. Biosci., 208 (2007), 419-429. |
[30] | Chaos, Solitons & Fractals, 41 (2009), 2319-2325. |
[31] | Disc. Cont. Dynam. Sys. B, 13 (2010), 195-211. |