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Abstract. We analyze local asymptotic stability of an SIRS epidemic model

with a distributed delay. The incidence rate is given by a general saturated
function of the number of infective individuals. Our first aim is to find a class of

nonmonotone incidence rates such that a unique endemic equilibrium is always

asymptotically stable. We establish a characterization for the incidence rate,
which shows that nonmonotonicity with delay in the incidence rate is necessary

for destabilization of the endemic equilibrium. We further elaborate the stabil-

ity analysis for a specific incidence rate. Here we improve a stability condition
obtained in [Y. Yang and D. Xiao, Influence of latent period and nonlinear

incidence rate on the dynamics of SIRS epidemiological models, Disc. Cont.
Dynam. Sys. B 13 (2010) 195-211], which is illustrated in a suitable param-

eter plane. Two-parameter plane analysis together with an application of the

implicit function theorem facilitates us to obtain an exact stability condition.
It is proven that as increasing a parameter, measuring saturation effect, the

number of infective individuals at the endemic steady state decreases, while
the equilibrium can be unstable via Hopf bifurcation. This can be interpreted
as that reducing a contact rate may cause periodic oscillation of the number of

infective individuals, thus disease can not be eradicated completely from the

host population, though the level of the endemic equilibrium for the infective
population decreases. Numerical simulations are performed to illustrate our

theoretical results.

1. Introduction. In modeling of disease transmission dynamics an important in-
gredient is the incidence rate, describing the number of new infective individuals
arising in a host population per unit of time. It is often assumed that the inci-
dence rate is proportional to the number of infective and susceptible individuals,
thus the bilinear incidence rate is frequently used [11]. The bilinear incidence rate,
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however, may be insufficient to consider some diseases where, for example, multi-
ple exposures of infection are possible [10, 19, 20]. The authors in the paper [3]
introduce an SIR epidemic model with a saturated incidence rate by a system of
ordinary differential equations, motivated by a study of the cholera epidemic spread
in Bari in 1973. In the model equation, force of infection is given by a nonlinear
bounded function of the number of infective individuals, which can be interpreted
as saturation or psychological effect in the disease transmission dynamics. In the
same paper, the authors analyze stability and solution trajectories in the phase
plane and, then, compare the final size of an epidemic to that in the model with
the bilinear incidence rate.

Dynamical behavior of epidemic models with a nonlinear incidence rate has been
investigated by many authors, see [25, 19, 20, 10, 28] and references therein. For
SIRS and SEIRS epidemic models it is shown that periodic oscillation can appear
via Hopf bifurcation, if the incidence rate increases “faster” than the bilinear in-
cidence rate [19, 20]. It is also known that some nonlinear incidence rates do not
affect the qualitative dynamics of epidemic models. In [14, 15] the author considers
some epidemic models with a general incidence rate in which the basic reproduc-
tion number exactly determines whether the disease free equilibrium or a unique
endemic equilibrium is globally asymptotically stable. In [29] an SIRS epidemic
model with a nonmonotone incidence rate is formulated. Here force of infection
decreases as increasing the number of infective individuals for a large number of
infective individuals. The authors prove that the endemic equilibrium is globally
stable if it exists.

Time delays are introduced in epidemic models to capture a period in the course
of infection, e.g. an incubation period of diseases [4, 27, 1], a constant infectious
period [2] and a period of immunity [18], then, delay differential equation naturally
arises in the model equations. The threshold type result in [14, 15] is successfully
generalized to SIR epidemic models with distributed delay in [8, 21]. See also [12]
for the same direction. The authors in [31] aim to extend the stability results in
[29] for SIRS epidemic model with a discrete delay, where the saturated incidence
rate can be either a monotone type [30] or a nonmonotone type [29] depending on
a parameter. The authors analyze stability of an endemic equilibrium and obtain
sufficient conditions such that a stable endemic equilibrium becomes unstable via
Hopf bifurcation.

Though the importance of nonmonotonicity of the incidence rates is widely dis-
cussed [28, 29], qualitative description of dynamical behavior of delayed epidemic
models with nonmonotone incidence rates has not been fully understood, due to
the mathematical tractability. In [31] the authors obtain sufficient conditions for
stability and instability of an endemic equilibrium. The instability condition seems
to be difficult to interpret biologically.

In this manuscript, we first aim to detect a class of nonmonotone incidence rates
such that the endemic equilibrium is always asymptotically stable. To this aim we
consider an SIRS epidemic model with distributed delays. Here the incidece form is
not specified, but we assume that the probability of transmission of the disease de-
creases as increasing the infective population. Analyzing a characteristic equation,
we obtain a characterization for the nonmonotonicity such that the endemic equi-
librium is always asymptotically stable. We then derive an exact stability condition
for a specific incidence rate proposed in [31]. Two-parameter plane analysis together
with an application of the implicit function theorem facilitates us to analyze the
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characteristic equation in detail. It is shown that a parameter, measuring satura-
tion effect, is responsible for destabilization of the endemic equilibrium via Hopf
bifurcation, thus the number of infective individuals would fluctuate periodically.
This can be interpreted as that, if the nonmonotonicity is due to an intervention
policy during an epidemic outbreak as in [28], periodic oscillation is possible by
reducing the contact rate (as increasing the saturation level), though the level of
the endemic equilibrium decreases.

This paper is organized as follows. In Section 2 we introduce assumptions for
the incidence function to characterize crowding effect for a large number of infective
individuals. Then we formulate an SIRS epidemic model with distributed delays.
In Section 3, we prove unique existence of an endemic equilibrium if and only if the
basic reproduction number is greater than one. We derive a characteristic equation
for the endemic equilibrium. This section is divided into two subsections. In Section
3.1 we obtain a class of nonmonotone incidence rates such that an endemic equilib-
rium is asymptotically stable, whenever it exists. Here some known stability results
are generalized. In Section 3.2, we introduce a way of using a two-parameter plane
for a simplified characteristic equation to obtain instability results. In Section 4,
applying the results in Section 3, we improve a stability condition obtained in [31].
With an application of the implicit function theorem we explore the two-parameter
plane, introduced in Section 3.2, to find an exact stability condition. It is proven
that the endemic equilibrium is destabilized via Hopf bifurcation as increasing a
parameter measuring saturation effect. We perform numerical simulations to illus-
trate our theoretical results. In Section 5 we summarize our results comparing with
recent studies. Biological interpretations are also given.

2. Model. We denote by S(t) and I(t) the number of susceptible individuals and
the number of infective individuals at time t, respectively. Let G : R+ → R+.
Consider the following incidence rate:

βS(t)

∫ h

0

G(I(t− s))dη(s), (2.1)

where the function η : [0, h]→ R is nondecreasing and has a bounded variation such
that ∫ h

0

dη(s) = η(h)− η(0) = 1.

The integral has to be understood as a Riemann-Stieltjes integral, see e.g. Section
6.2 of [24].

For the incidence function we assume that the following holds.

Assumption 2.1.

(1) G(0) = 0
(2) x/G(x) is monotone increasing on R+ \ {0} with

lim
x→0+

x

G(x)
= 1. (2.2)

The first assumption is a natural requirement as no infection occurs in absence
of the infective population. In the second assumption the crowding effect in force
of infection is characterized, i.e., the probability of transmission of the disease per
unit of time given contact decreases as increasing the number of infective popula-
tion. The condition (2.2) implies that the force of infection linearly depends on the
number of infective individuals, if it is sufficiently small.
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In this paper we consider the following SIRS epidemic model with a saturated
incidence rate:

dS(t)

dt
= B − µ1S(t)− βS(t)

∫ h

0

G(I(t− s))dη(s) + δR(t), (2.3a)

dI(t)

dt
= βS(t)

∫ h

0

G(I(t− s))dη(s)− µ2I(t), (2.3b)

dR(t)

dt
= γI(t)− µ3R(t), (2.3c)

where S(t), I(t) and R(t) denote the numbers of susceptible, infective and recovered
individuals at time t, respectively. The positive constant B is the population birth
rate and the positive constant µ1 is the death rate of susceptible population. The
nonnegative constant γ is the recovery rate of infective population and the nonneg-
ative constant δ is the rate of loss of immunity to the disease. To save the number
of parameters we introduce µ2,3 that are respectively interpreted as

µ2 = death rate of infective population + recovery rate γ,

µ3 = death rate of recovered population + waning immunity rate δ.

Thus

γ < µ2, δ < µ3 (2.4)

holds. Here we note that SIRS models studied in [29, 31, 30] can be seen as special
cases of (2.3) with Assumption 2.1 for the incidence function.

We denote by C = C([−h, 0],R3), the Banach space of continuous functions map-
ping the interval [−h, 0] into R3 equipped with the sup-norm ‖φ‖ = supθ∈[−h,0] |φ(θ)|
for φ ∈ C. The nonnegative cone of C is defined as C+ := C([−h, 0],R3

+). Due to
the biological interpretation, we consider the initial conditions for (2.3) as follows:

(S, I,R) (θ) = (φ1, φ2, φ3) (θ), θ ∈ [−h, 0] ,

where (φ1, φ2, φ3) ∈ C+. Finally we assume that G is continuously differentiable on
R+ \ {0}. Since the right hand side of equations (2.3) is locally Lipschitzian on C
and a priori bound for solutions is given (see e.g. [7]), it can be shown that (2.3)
has a unique positive solution defined on (0,∞) for each initial function.

3. Linearized stability analysis. We start with introducing a nondimensional-
ized time t̃ := µ2t. We define

S̃(t̃) := S

(
t̃

µ2

)
, Ĩ(t̃) := I

(
t̃

µ2

)
, R̃(t̃) := R

(
t̃

µ2

)
.

Let

B̃ :=
B

µ2
, β̃ :=

β

µ2
, µ̃1 :=

µ1

µ2
, µ̃3 :=

µ3

µ2
, γ̃ :=

γ

µ2
, δ̃ :=

δ

µ2

with noting that h̃ = µ2h. Dropping the tilde we obtain

dS(t)

dt
= B − µ1S(t)− βS(t)

∫ h

0

G(I(t− s))dη(s) + δR(t), (3.1a)

dI(t)

dt
= βS(t)

∫ h

0

G(I(t− s))dη(s)− I(t), (3.1b)

dR(t)

dt
= γI(t)− µ3R(t). (3.1c)
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Condition (2.4) now becomes

γ < 1, δ < µ3. (3.2)

In the following we discuss existence of the endemic equilibrium. The basic repro-
duction number can be defined as

R0 :=
βB

µ1
. (3.3)

For x ∈ R+ \ {0} we define

H(x) := B − µ1x

βG(x)
−
(

1− γδ

µ3

)
x. (3.4)

We denote by (S∗, I∗, R∗) the endemic equilibrium, where every component is
strictly positive, if it exists.

Proposition 3.1. For (3.1a)-(3.1c) a unique endemic equilibrium exists if and only
if R0 > 1 holds. The second component of the endemic equilibrium, I∗, is computed
as a unique positive root of H(x) = 0. It holds that

S∗ =
I∗

βG(I∗)
, R∗ =

γI∗

µ3
. (3.5)

Proof. We provide a similar proof found in [7]. Consider the following equations:

0 = B − µ1S − βSG(I) + δR, (3.6a)

0 = βSG(I)− I, (3.6b)

0 = γI − µ3R (3.6c)

with (S, I,R) = (S∗, I∗, R∗). Let us assume existence of the solution of (3.6).
Then, from (3.6b) and (3.6c), the first component S∗ and the third component R∗

of the endemic equilibrium are respectively given as in (3.5). To compute I∗, by
substituting (3.5) into (3.6a), we obtain the equation H(x) = 0. Now let us assume
that R0 > 1 holds. Then it holds that

lim
x→0+

H(x) = B − µ1

β
=
µ1

β
(R0 − 1) > 0.

On the other hand, there exists a sufficiently large constant M such that H(M) < 0.
Using Assumption 2.1, one can see that H is strictly monotonically decreasing with
respect to x. Thus there exists a unique positive root of H(x) = 0, which is the
second component of the endemic equilibrium. Now it is obvious that if R0 ≤ 1
then there is no endemic equilibrium.

Remark 3.2. Assumption 2.1-(2) is a sufficient condition for the uniqueness of the
endemic equilibrium. Without Assumption 2.1-(2) SIRS model (3.1) may admit
multiple endemic equilibria, see [25, 19, 13].

We introduce our main tool, so called the principle of linearized stability, see
Chapter VII of [6], to analyze asymptotic stability of the endemic equilibrium.

Proposition 3.3. The characteristic equation of (3.1) for the endemic equilibrium
is given as

λ3 + a1λ
2 + a2λ+ a3 −

I∗G′(I∗)

G(I∗)

(
λ2 + b1λ+ b2

) ∫ h

0

e−λsdη(s) = 0, (3.7)
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where

a1 := µ1 + βG(I∗) + 1 + µ3,

a2 := µ3 + (µ3 + 1) (µ1 + βG(I∗)) ,

a3 := (µ1 + βG(I∗))µ3 − γδβG(I∗),

b1 := µ1 + µ3,

b2 := µ1µ3.

If all roots of (3.7) have negative real parts, then the endemic equilibrium is locally
exponentially stable. If, on the other hand, there exists a root with positive real part,
then the endemic equilibrium is unstable.

Proof. We define a function as

J(x) :=
xG′(x)

G(x)
, x ∈ R+ \ {0} . (3.8)

Let us define a matrix as

M(λ) :=

 −µ1 − βG(I∗) −J(I∗)
∫ h
0
e−λsdη(s) δ

βG(I∗) J(I∗)
∫ h
0
e−λsdη(s)− 1 0

0 γ −µ3

 .

The characteristic equation of (3.1) for the endemic equilibrium can be given as

det (M(λ)− λE) = 0,

where E is the identity matrix of size 3. By the straightforward calculation one
obtains (3.7). The statement regarding the stability follows from Theorem 6.8 in
Chapter VII of [6].

3.1. Stability conditions. First we consider an instantaneous infectious incidence.
We assume that

η(s) =

{
0, s = 0,
1, s ∈ (0, h] .

(3.9)

One obtains a system of ordinary differential equations for (3.1) via∫ h

0

G(I(t− s))dη(s) = G(I(t)).

First we prove the following theorem:

Theorem 3.4. Let us assume that R0 > 1 and (3.9) hold. The endemic equilibrium
of (3.1) is locally asymptotically stable.

Proof. From (3.9) we have ∫ h

0

e−λsdη(s) = 1.

For convenience, we write I instead of I∗. The characteristic equation (3.7) now
becomes

λ3 + (a1 − J(I))λ2 + (a2 − J(I)b1)λ+ (a3 − J(I)b2) = 0, (3.10)

where we use J defined in (3.8) in the proof of Proposition 3.3. In order to show
that all roots of (3.10) have negative real parts, we now apply the Routh-Hurwitz
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stability criterion, see e.g. Gantmacher [9]. From (2) in Assumption 2.1 one can
see that

d

dx

(
x

G(x)

)
=

1− J(x)

G(x)
≥ 0, x ∈ R+ \ {0} ,

thus J(x) ≤ 1 holds for x ∈ R+ \ {0}. Then we obtain that

a1 − J(I) > 0, a2 − J(I)b1 > 0.

From (3.2) one has µ3 − γδ > 0. It then follows that

a3 − J(I)b2 = µ1µ3 (1− J(I)) + (µ3 − γδ)βG(I) > 0.

We have

(a1 − J(I)) (a2 − J(I)b1)− (a3 − J(I)b2)

= (a1 − J(I)− µ3) (a2 − J(I)b1) + µ3 (a2 − J(I)b1)− (a3 − J(I)b2) .

It is easy to see that a1 − J(I)− µ3 > 0. We now compute that

µ3 (a2 − J(I)b1)− (a3 − J(I)b2)

=µ2
3 (1 + µ1 + βG(I)− J(I)) + µ3 (µ1 + βG(I)− µ1J(I))

− µ3 (µ1 + βG(I)) + γδβG(I) + µ1µ3J(I)

=µ2
3 (1− J(I) + µ1 + βG(I)) + γδβG(I)

>0.

Hence all roots have negative real parts. By Proposition 3.3 we obtain the conclu-
sion.

In the following we analyze the characteristic equation (3.7) for a general η. To
facilitate the analysis we introduce the following result.

Lemma 3.5. For all ω ∈ R+ it holds that(∫ h

0

cos(ωs)dη(s)

)2

+

(∫ h

0

sin(ωs)dη(s)

)2

≤ 1. (3.11)

Proof. Note that the two integrals exist, since the functions cos(ωs) and sin(ωs) are
continuous. Let us fix ω ∈ R+ arbitrarily. We define a function as

h(x) :=

(∫ h

0

cos2(ωs)dη(s)

)
x2 + 2

(∫ h

0

cos(ωs)dη(s)

)
x+

∫ h

0

dη(s)

for x ∈ R. Since it holds that

h(x) =

∫ h

0

(cos(ωs) · x+ 1)
2
dη(s) ≥ 0,

the equation h(x) = 0 has either a single real root or no real roots. Thus(∫ h

0

cos(ωs)dη(s)

)2

−
∫ h

0

cos2(ωs)dη(s)

∫ h

0

dη(s) ≤ 0 (3.12)

holds. Similarly one can obtain that(∫ h

0

sin(ωs)dη(s)

)2

−
∫ h

0

sin2(ωs)dη(s)

∫ h

0

dη(s) ≤ 0. (3.13)

Then from (3.12) and (3.13) we get (3.11).
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Now we deduce a sufficient stability condition for the endemic equilibrium of
(3.1).

Theorem 3.6. Let R0 > 1. If

I∗G′(I∗)

G(I∗)
≥ −1 (3.14)

holds, then the endemic equilibrium is locally asymptotically stable.

Proof. For convenience, we write I instead of I∗. First we prove that all roots of
(3.7) locate in the left half complex plane when γδ = 0 holds. The characteristic
equation (3.7) with γδ = 0 is

0 = (λ+ µ3)

{
(λ+ µ1 + βG(I)) (λ+ 1)− J(I)(λ+ µ1)

∫ h

0

e−λsdη(s)

}
, (3.15)

where J(I) = IG′(I)
G(I) as defined in (3.8) in the proof of Proposition 3.3. One can

immediately see that (3.15) has a root λ = −µ3. Furthermore, if J(I) = 0 then
(3.15) has roots λ = −1, − (µ1 + βG(I)). Let us assume that J(I) 6= 0. We suppose
that

(λ+ µ1 + βG(I)) (λ+ 1)− J(I)(λ+ µ1)

∫ h

0

e−λsdη(s) = 0

holds for some λ = κ+ iω with (κ, ω) ∈ R+ × R. Then it holds that

|J(I)| = |(κ+ iω + µ1 + βG(I))(κ+ iω + 1)|
|(κ+ iω + µ1)

∫ h
0
e−(κ+iω)sdη(s)|

.

We obtain the following estimation:∣∣∣∣(κ+ iω + µ1)

∫ h

0

e−(κ+iω)sdη(s)

∣∣∣∣
=|κ+ iω + µ1|

∣∣∣∣ ∫ h

0

e−κs {cos (ωs)− i sin (ωs)} dη(s)

∣∣∣∣
≤|κ+ iω + µ1|.

For the last inequality, we use Lemma 3.5 as follows:∣∣∣∣ ∫ h

0

e−κs {cos (ωs)− i sin (ωs)} dη(s)

∣∣∣∣
≤
{(∫ h

0

cos(ωs)dη(s)

)2

+

(∫ h

0

sin(ωs)dη(s)

)2} 1
2

≤1.

Thus we get

|J(I)| ≥ |κ+ iω + µ1 + βG(I)| |κ+ iω + 1|
|κ+ iω + µ1|

> |κ+ iω + 1| > 1. (3.16)

However, Assumption 2.1 together with (3.14) implies that

|J(I)| ≤ 1, (3.17)

which contradicts (3.16). Thus all roots of (3.15) are located in the left half complex
plane. Hence, the endemic equilibrium is locally asymptotically stable when γδ = 0.
Therefore the endemic equilibrium is locally asymptotically stable for sufficiently
small γδ > 0 see, e.g. Lemma 2.8 in Chapter XI in [6]. Next we suppose that there
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exists either γ or δ such that there exists a purely imaginary root λ = iω, ω ∈ R+.
Substituting λ = iω into (3.7) we obtain the following two equations:

−ω3 + a2ω = J(I)

{
b1ω

∫ h

0

cos(ωs)dη(s) +
(
ω2 − b2

) ∫ h

0

sin(ωs)dη(s)

}
, (3.18)

−a1ω2 + a3 = J(I)

{
b1ω

∫ h

0

sin(ωs)dη(s)−
(
ω2 − b2

) ∫ h

0

cos(ωs)dη(s)

}
. (3.19)

Using Lemma 3.5 we get

(−ω3 + a2ω)2 + (−a1ω2 + a3)2 ≤ (J(I))
2 {
b21ω

2 + (ω2 − b2)2
}
,

which is equivalent to

0 ≥ ω6 + c1ω
4 + c2ω

2 + c3,

where

c1 := a21 − 2a2 − (J(I))
2
,

c2 := a22 − 2a1a3 − (J(I))
2
b21 + 2 (J(I))

2
b2,

c3 := a23 − (J(I))
2
b22.

We show a contradiction by proving positivity of the coefficients c1, c2 and c3. For
the presentation we write G for G(I) and J for J(I). We compute that

c1 =(µ1 + βG)2 + (1 + µ3)2 − 2µ3 − J2

=(µ1 + βG)2 + µ2
3 + (1− J2)

>0

and that

c2 =µ2
3 + (µ3 + 1)

2
(µ1 + βG)

2
+ 2µ3 (µ3 + 1) (µ1 + βG)

− 2{(µ1 + βG)
2
µ3 + (µ3 + 1) (µ1 + βG)µ3 − a1γδβG}

− J2 (µ1 + µ3)
2

+ 2J2µ1µ3

=µ2
3 + (µ1 + βG)

2 (
1 + µ2

3

)
+ 2a1γδβG− J2

(
µ2
1 + µ2

3

)
=
(
1− J2

) (
µ2
1 + µ2

3

)
+ µ2

1µ
2
3 +

{
2µ1βG+ (βG)2

}
(1 + µ2

3) + 2a1γδβG

>0.

Since one has that µ3− γδ > 0 from (3.2) and J ∈ [−1, 1] from (3.17), it holds that

c3 = (a3 + Jb2) (a3 − Jb2)

= {µ1µ3 (1 + J) + (µ3 − γδ)βG} {µ1µ3 (1− J) + (µ3 − γδ)βG}
>0.

Thus we get a contradiction. Hence, all roots of (3.7) have negative real parts.

Remark 3.7. IfG is a monotone increasing function then (3.14) follows. Thus SIRS
model (3.1) with any monotone saturated incidence rate, which satisfies Assumption
2.1, does not admit an unstable endemic equilibrium.

As an interesting corollary from Theorem 3.6 we introduce the following result.
Since the proof is straightforward, we omit it here.
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Corollary 3.8. If
d

dx
(xG(x)) ≥ 0, x ∈ R+ (3.20)

then (3.14) follows.

One can easily see that the following nonmonotone incidence function

G(x) =
x

1 + αx2
(3.21)

satisfies the condition (3.20) in Corollary 3.8. Thus, with the incidence function
given as in (3.21), the endemic equilibrium is asymptotically stable. The result is
given in Theorem 3.2 in [31], assuming the same death rate for every compartment.

3.2. Instability analysis. In this section from [5, 6] we introduce a way of using a
two-parameter plane to obtain instability conditions. We simplify the characteristic
equation (3.7) by assuming that

µ1 = 1, γδ = 0 (3.22)

and that for some τ ∈ (0, h)

η(s) =

{
0, s ∈ [0, τ ] ,

1, s ∈ (τ, h] .

Note that now one has a discrete delay as∫ h

0

G(I(t− s))dη(s) = G(I(t− τ)).

Via the transformation

λ̃ := λτ

the characteristic equation (3.7) becomes

1

τ
λ+ 1 + βG(I∗)− I∗G′(I∗)

G(I∗)
e−λ = 0, (3.23)

where we omit the tilde for convenience.
Consider the prototype equation:

1

τ
λ+ ν1 − ν2e−λ = 0 for (ν1, ν2) ∈ R2. (3.24)

In Chapter XI in [6] the location of the roots of (3.24) is studied using a two-
parameter plane, normalizing the parameter τ to 1. The transcendental equation
(3.24) has been revisited several times in the literature, see e.g. [5, 26, 17]. We here
summarize results from [6] without normalizing the parameter τ . Let us define the
intervals as

I0 := (0, π)

with

I−k := ((2k − 1)π, 2kπ) , I+k := (2kπ, (2k + 1)π)

for k ∈ N+ \ {0}. We then define curves that are parametrized by ω in the ν1-ν2
parameter plane as

C0 :=
{(
−ω cosω

τ sinω
,− ω

τ sinω

)
, ω ∈ I0

}
,

C±k :=
{(
−ω cosω

τ sinω
,− ω

τ sinω

)
, ω ∈ I±k

}



STABILITY AND BIFURCATION ANALYSIS OF EPIDEMIC MODELS 795

-4

-2

 0

 2

 4

-6 -4 -2  0  2  4  6

i 2

i1

0

2

4

6

1

3

5

C0

C1
+

C2
+

C1
-

C2
-

-4

-2

 0

 2

 4

-6 -4 -2  0  2  4  6

i 2

i1

0

2

4

6

1

3

5

C0

C1
+

C2
+

C1
-

C2
-

-4

-2

 0

 2

 4

-6 -4 -2  0  2  4  6

i 2

i1

0

2

4

6

1

3

5

C0

C1
+

C2
+

C1
-

C2
-

-4

-2

 0

 2

 4

-6 -4 -2  0  2  4  6

i 2

i1

0

2

4

6

1

3

5

C0

C1
+

C2
+

C1
-

C2
-

-4

-2

 0

 2

 4

-6 -4 -2  0  2  4  6

i 2

i1

0

2

4

6

1

3

5

C0

C1
+

C2
+

C1
-

C2
-

-4

-2

 0

 2

 4

-6 -4 -2  0  2  4  6

i 2

i1

0

2

4

6

1

3

5

C0

C1
+

C2
+

C1
-

C2
-

Figure 3.1. Curves and the number of roots of (3.24) that are
located in the right half complex plane are illustrated in ν1-ν2 pa-
rameter plane. The arrows in the curves indicate the direction of
increasing ω. The equation (3.24) has 0 as a root in the straight
line: ν2 = ν1.

for k ∈ N+ \ {0}. With those ingredients the number of roots of (3.24) that are
located in the right half complex plane is illustrated as in Figure 3.1. See Chapter
XI in [6] for qualitative aspects of the curves such as monotonicity of the order of
the curves.

If one sets

(ν1, ν2) =

(
1 + βG(I∗),

I∗G′(I∗)

G(I∗)

)
in (3.24), then (3.24) becomes the characteristic equation (3.23). Thus if one can
plot the point

P :=

(
1 + βG(I∗),

I∗G′(I∗)

G(I∗)

)
(3.25)

in the ν1-ν2 plane, it is possible to deduce the number of roots that have positive
real parts, comparing with Figure 3.1. After specifying the incidence function G,
we will elaborate (in)stability conditions in terms of parameters in Section 4.

4. Application. We specify the incidence function G as

G(x) =
x

1 + αxp
, (4.1)

where α ∈ R+ and p ∈ R+ \ {0}. In the context of epidemic models this incidence
function was considered in the paper [31], while special cases were proposed in
[3, 29]. It is easy to see that G satisfies Assumption 2.1. Let us choose α as a free
parameter while we fix other parameters such that R0 > 1 holds.
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As in (3.4) the function characterizing the endemic equilibrium is

H(α, x) = B − µ1

β
(1 + αxp)−

(
1− γδ

µ3

)
x for α ∈ R+, x ∈ R+.

By Proposition 3.1 infective population at the endemic equilibrium is uniquely de-
termined for each α as a positive root of H(α, x) = 0. We denote it by I∗(α). It
holds that

H(α, I∗(α)) = 0. (4.2)

First, applying Theorem 3.6, we aim to obtain a sufficient stability condition for
the endemic equilibrium. One can compute that

I∗(α)G′(I∗(α))

G(I∗(α))
= 1− p α (I∗(α))

p

1 + α (I∗(α))
p .

In order to assert that (3.14) in Theorem 3.6 holds we introduce the following
elementary result.

Proposition 4.1. For any p ∈ R+ \ {0} it holds
d

dα
I∗(α) < 0,

d

dα
{α (I∗(α))

p} > 0, α ∈ R+.

It follows that
lim
α→∞

I∗(α) = 0, lim
α→∞

α (I∗(α))
p

= R0 − 1.

Proof. One can compute that

∂αH (α, x) = −µ1

β
xp < 0,

∂xH (α, x) = −µ1

β
αpxp−1 −

(
1− γδ

µ3

)
< 0

for α ∈ R+ and x ∈ R+ \ {0}. By differentiating (4.2) with respect to α one can
obtain that

d

dα
I∗(α) = −∂αH (α, I∗(α))

∂xH (α, I∗(α))
< 0 for α ∈ R+, (4.3)

hence I∗ is a monotone decreasing function with respect to α. Since I∗(α) > 0 for
α ∈ R+, there exists I ≥ 0 such that limα→∞ I∗(α) = I. To prove that I = 0
suppose to the contrary that I > 0 holds. Since it follows limα→∞ αI∗(α)p = ∞,
one obtains

lim
α→∞

H(α, I∗(α)) = −∞,

which leads to a contradiction to (4.2). Therefore we get I = 0, i.e.

lim
α→∞

I∗(α) = 0. (4.4)

Next we compute that

d

dα
{α (I∗(α))

p} = (I∗(α))
p−1

(
I∗(α) + αp

d

dα
I∗(α)

)
.

It holds

I∗(α) + αp
d

dα
I∗(α) =

I∗(α)∂xH(α, I∗(α))− αp∂αH(α, I∗(α))

∂xH(α, I∗(α))

=
−1

∂xH(α, I∗(α))

(
1− γδ

µ3

)
I∗(α)

> 0.
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Thus we get
d

dα
{α (I∗(α))

p} > 0.

Since

1 + α (I∗(α))
p

=
β

µ1

{
B −

(
1− γδ

µ3

)
I∗(α)

}
<∞, α ∈ R+

holds, α (I∗(α))
p

is a bounded monotonically increasing function. Using (4.4) finally
we obtain that limα→∞ α (I∗(α))

p
= R0 − 1 holds.

Then we get the following result.

Theorem 4.2. Let us assume that R0 > 1 holds. If

p ≤ 2

1− 1
R0

(4.5)

holds, then the endemic equilibrium is locally asymptotically stable.

Proof. We confirm that (3.14) in Theorem 3.6 holds. By Proposition 4.1 it is easy
to see that

1− p α (I∗(α))
p

1 + α (I∗(α))
p > 1− p limα→∞ α (I∗(α))

p

1 + limα→∞ α (I∗(α))
p = 1− p

(
1− 1

R0

)
.

Since we have (4.5), we get

1− p α (I∗(α))
p

1 + α (I∗(α))
p ≥ −1, (4.6)

thus we obtain the conclusion.

It is easy to see that

2

1− 1
R0

> lim
R0→∞

2

1− 1
R0

= 2

holds for R0 > 1. Thus the condition p ≤ 2 obtained in Theorem 3.2 in [31] is
indeed a sufficient condition for the stability, see also a remark following Corollary
3.8 in Section 3.1. In Figure 4.1 we visualize the condition (4.5) in (R0, p) parameter
plane.

Next we aim to obtain instability results as introduced in Section 3.2. We assume
that (3.22) holds.

Lemma 4.3. It holds that

1 + βG(I∗(α)) =
R0

1 + α (I∗(α))
p .

Proof. One can compute

1 + βG(I∗(α)) =
1 + α (I∗(α))

p
+ βI∗(α)

1 + α (I∗(α))
p .

From (3.22) we have

H(α, x) = B − 1

β
(1 + αxp)− x,

thus it holds

1 + α (I∗(α))
p

+ βI∗(α) = Bβ = R0.

Hence we obtain the conclusion.
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Figure 4.1. Stability region of the endemic equilibrium in (R0, p)
parameter plane. The endemic equilibrium does not exist in the
region R0 ≤ 1 and is asymptotically stable in the colored region.

In the ν1-ν2 parameter plane we track the parametrized path defined as

Γ := {P (α), α ∈ R+} ,

where now P (α) can be expressed as

P (α) =

(
R0

1 + α (I∗(α))
p , 1− p

α (I∗(α))
p

1 + α (I∗(α))
p

)
.

One can easily derive that

lim
α→0+

P (α) = P (0) = (R0, 1) . (4.7)

Thus the endemic equilibrium is asymptotically stable for sufficiently small α, since
P (α) is in the stability region for small α, see Figure 4.2. We now introduce the
following result regarding the shape of Γ. The proof is straightforward from the
expression of P (α), thus we omit here.

Lemma 4.4. The parametrized path Γ is a straight line given as

ν2 =
p

R0
ν1 + (1− p) , ν1 ∈ (1, R0] .

Using the results in Proposition 4.1 we can compute that

lim
α→∞

P (α) =

(
1, 1− p

(
1− 1

R0

))
. (4.8)

Thus the limit point lies in the straight line ν1 = 1. From Lemma 4.4 both the
limit points given in (4.7) and (4.8) are connected by a straight line, see Figure
4.2. Now one can immediately see that if the point limα→∞ P (α) locates above the
intersection of the curve C0 and the straight line ν1 = 1, then the equilibrium is
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Figure 4.2. Parametrized paths Γ for p = 2 and p = 5 are il-
lustrated in the ν1-ν2 parameter plane where parameters are fixed
as (R0, τ) = (7, 4). The arrows in paths Γ indicate the direction
of increasing α. Both paths start from the point P (0) which is
located in the stability region. If p = 2 whole path locates at the
stability region, thus the equilibrium is asymptotically stable for
any α. If p = 5, the path intersects with the curve C0, where the
characteristic equation has purely imaginary roots, at α = α∗ and
enters the instability region. The equilibrium becomes unstable for
α > α∗ via Hopf bifurcation.

asymptotically stable for all α. To obtain the representation of the intersection we
define ω∗(τ) as a unique solution of

−ω cosω

τ sinω
= 1 for ω ∈ I0.

One can prove that ω∗(τ) ∈
(
π
2 , π

)
⊂ I0. The intersection of the curve C0 and the

line ν1 = 1 is given as

(ν1, ν2) =

(
1,

1

cos (ω∗ (τ))

)
, (4.9)

where cos (ω∗ (τ)) ∈ (−1, 0). Those observations can be summarized as

Theorem 4.5. The endemic equilibrium is asymptotically stable for any α ∈ R+ if
and only if

p ≤ 1

1− 1
R0

(
1− 1

cos (ω∗ (τ))

)
holds.



800 YOICHI ENATSU AND YUKIHIKO NAKATA

Remark 4.6. We note that

2 < 1− 1

cos (ω∗ (τ))

holds. The stability condition given in (4.5) is sharpened due to the assumption
(3.22) which simplifies the characteristic equation. One can also notice that the
condition (4.5) is a delay-independent stability condition.

Finally we are interested in the case in which the limit point limα→∞ P (α) locates
below the point given in (4.9), i.e.,

1− p
(

1− 1

R0

)
<

1

cos (ω∗ (τ))
.

We define α∗ as a root of

P (α) =
(
−ω cosω

τ sinω
,− ω

τ sinω

)
for ω ∈ (ω∗(τ), π) ⊂ I0,

characterizing the intersection of the line Γ and the curve C0. We obtain the
following result for instability of the endemic equilibrium via Hopf bifurcation as
increasing the parameter α.

Theorem 4.7. Let us assume that

p >
1

1− 1
R0

(
1− 1

cos (ω∗(τ))

)
(4.10)

holds. Then there exists α∗ such that the endemic equilibrium is asymptotically
stable for α ∈ (0, α∗) and unstable for (α∗,∞).

We close this section with illustrating a typical solution behavior for the infective
compartment. In Figure 4.3 it is shown that the level of the endemic equilibrium
(dotted line) decreases as increasing the parameter α, which is analytically proven
in Proposition 4.1. One can also see that the endemic equilibrium is asymptotically
stable for small α, while, for large α, the endemic equilibrium is unstable, as shown
in Theorem 4.7. Our results suggest that, if the nonmonotone incidence rate can
be interpreted as an inhibition effect due to an intervention policy [28, 29], one can
successfully decrease the level of the endemic equilibrium by reducing the number
of contact rate (as increasing the parameter α). The lower endemic equilibrium,
however, may become unstable, which induces a periodic oscillation, thus the disease
may not be eradicated completely from the host population.

5. Discussion. In this paper we analyze local asymptotic stability of an SIRS
epidemic model with a general incidence rate. The class of incidence functions
satisfying Assumption 2.1 includes many saturated-type functions, which have ap-
peared in the literature, e.g. [3, 29, 31, 30, 8]. Following mathematical models
proposed in [27, 1, 4] for vector-borne diseases, we consider the infectious incidence
rate (2.1), which is given as a form of distributed delay. In Proposition 3.1 we
prove that the model has a unique endemic equilibrium if and only if the basic re-
production number is greater than one. We then derive the characteristic equation
(3.7) in Proposition 3.3 to investigate asymptotic stability of the endemic equilib-
rium. When the infectious incidence is given as an instantaneous term, we prove
that the endemic equilibrium is asymptotically stable, see Theorem 3.4. Thus it
is clearly shown that any saturated incidence rate does not trigger instability of
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Figure 4.3. Time development of the number of infective individ-
uals. The dotted line denotes the level of the endemic equilibrium
for the infective population. The endemic equilibrium is asymptot-
ically stable for small α. As increasing α, the level of the endemic
equilibrium decreases and, then, periodic oscillation can appear.
Parameter values are fixed as B = 5, 000, 000, β = 10−5/3, p = 10
and τ = 0.3.

the equilibrium of the model (2.3) when there is no time delay. If the time de-
lay, caused by a latent period of the infection in the vector [27, 4], is incorporated
into the incidence rate, we obtain a sufficient stability condition in Theorem 3.6.
The condition (3.14) in Theorem 3.6 is applicable for nonmonotone type incidence
functions, see Theorem 4.2 in Section 4 for an example. An important corollary
from Theorem 3.6 is that the endemic equilibrium of (2.3) with any monotone sat-
urated incidence rate is asymptotically stable, see also Remark 3.7 in Section 3.1.
In Section 4 we consider a specific example (4.1), which is considered in [31], for the
nonlinear incidence rate. Since, in general, the equilibrium is not given explicitly,
an application of the implicit function theorem in Proposition 4.1 plays a role to
proceed the analysis in this section. Applying Theorem 3.6 in Section 3.1, we first
offer a sufficient stability condition in terms of biological parameters in Theorem
4.2. We then elaborate the parameter plane analysis introduced in Section 3.2 to
obtain instability results. Choosing the patameter α, which characterizes the level
of the saturation in the incidence function, as a bifurcation parameter, we tracked
the parametrized curve, given by (3.25), in the parameter plane. It is shown that
increasing the parameter α can destabilize the equilibrium if p is large enough so
that (4.10) holds. One can easily see that the incidence function (4.1) has a non-
monotone shape when (4.10) holds. Therefore, for the SIRS model (2.3) we have
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Incidence function Delay Stability of the equilibrium

any type no delay Asymptotically stable
monotone type with delay Asymptotically stable

nonmonotone type with delay Possibly unstable

Table 1. For SIRS epidemic model (2.3) with the incidence func-
tion satisfying Assumption 2.1, a delayed nonmonotone incidence
rate is a necessary modelling ingredient for destabilization of the
endemic equilibrium.

proved that nonmonotonicity with time delay in the incidence rate is a necessary
modeling ingredient to destabilize the endemic equilibrium, see also Table 1.

Stability properties of equilibria have been widely investigated for epidemic mod-
els with a nonlinear incidence rate that are formulated as a system of ordinary dif-
ferential equations, see [15, 14, 19, 20, 29, 13, 10, 28] and references therein. In the
paper [29] the authors propose a nonmonotone incidence function, namely

G(x) =
x

1 + αx2
, (5.1)

which is a special form of (4.1) with p = 2. Nonmonotonicity is used to model
inhibition effect during an outbreak of infectious diseases. In Theorem 3.4 in [29] it
is proven that the endemic equilibrium is asymptotically stable, see also Theorem
3.2 in [31] for a similar result. Those stability results are generalized in Theorem
3.4 in the present manuscript as the endemic equilibrium is asymptotically stable
as long as the incidence function satisfies Assumption 2.1. We here note that the
same natural death rate for susceptible, infective and recovered populations is not
necessary to be assumed as in those papers cited above to derive the conclusion
regarding the stability.

There is a number of papers where a latent period of infection is captured by
using delay differential equations [27, 1, 4, 31, 30, 12, 8]. When we take into account
of waning immunity, there are some results regarding stability of the endemic equi-
librium, see [30, 22, 7, 23]. In Theorem 3.6 it is clearly shown that any monotone
incidence rate does not cause destabilization of the endemic equilibrium in SIRS
epidemic model (2.3). Corollary 3.8, which is deduced from Theorem 3.6, gives a
simple characterization for nonmonotone incidence functions that ensure the stabil-
ity of the equilibrium. From Corollary 3.8 one can easily obtain the stability result
in Theorem 3.2 (ii) in [31]. Figure 4.1 shows stability region of the endemic equilib-
rium in (R0, p) parameter plane. One can see that the stability region is wider than
the region p ≤ 2, obtained in [31]. In the same paper [31] the authors give sufficient
conditions for destabilization of the endemic equilibrium via Hopf bifurcation. It
may be difficult to find a parameter set that satisfies conditions in Theorem 3.2 in
[31], thus the role of the saturation effect regarding the destabilization is not clearly
exposed there. Here we use a two-parameter plane analysis to clearly show that
parameters α and p both have a destabilization role, which may be interpreted as
that strong saturation effect cause the destabilization of the equilibrium. We also
note that, since the condition (3.22) is assumed in the instability analysis, the cyclic
structure of the SIRS model is not necessary for the destabilization of the endemic
equilibrium.
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Figure 5.1. The graph of a function y = G(x) that satisfies the
condition (3.14) and its tangent line at x = I∗ are illustrated. The
slope of the tangent line is large compared to the slope of the dotted
straight line, where the slope is given as −G(I∗)/I∗.

The destabilization of the endemic equilibrium seen in Section 4 can be explained
by delayed negative feedback, see e.g. [17]. Suppose that there is a large number of
infective population. Recall that, if the condition (4.10) holds, the incidence func-
tion has a nonmonotone shape with respect to the number of infective individuals
in the past time. Thus the infectious incidence rate decreases with a time lag. It
turns out that the number of infective population decreases and, then, the incidence
rate increases. This cycle possibly leads to the destabilization of the equilibrium.
Now the condition (3.14) in Theorem 3.6 says that the endemic equilibrium is sta-
ble if the slope of the incidence function is “mild” enough, see Figure 5.1. If the
nonmonotonicity is interpreted as an intervention policy during an endemic period
as in [28], our results suggest that periodic oscillation may arise by reducing the
contact rate.

Though in the present paper we have focused on linearized stability analysis of
SIRS epidemic model (2.3), obtaining global stability conditions may be an interest-
ing problem. For SIRS epidemic model (2.3) with the incidence function (4.1) one
may conjecture that the delay independent stability condition (4.5) in Theorem 4.2
becomes a global stability condition for the endemic equilibrium. However, even
for SIRS epidemic model (2.3) with bilinear incidence rate, a “complete” global
stability result is not known, see [23] and [22] where the authors attack the problem
by Lyapunov functional approach and by monotone iterative method, respectively.
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