Global stability of an age-structured cholera model

  • Received: 01 November 2012 Accepted: 29 June 2018 Published: 01 January 2013
  • MSC : Primary: 92B05, 92D30.

  • In this paper, an age-structured epidemicmodel is formulated to describe the transmission dynamics ofcholera. The PDE model incorporates direct and indirect transmissionpathways, infection-age-dependent infectivity and variable periodsof infectiousness. Under some suitable assumptions, the PDE modelcan be reduced to the multi-stage models investigated in theliterature. By using the method of Lyapunov function, we establishedthe dynamical properties of the PDE model, and the results show thatthe global dynamics of the model is completely determined by thebasic reproduction number $\mathcal R_0$: if $\mathcal R_0 < 1$the cholera dies out, and if $\mathcal R_0>1$ the disease will persist at the endemicequilibrium. Then the global results obtained for multi-stage modelsare extended to the general continuous age model.

    Citation: Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li. Global stability of an age-structured cholera model[J]. Mathematical Biosciences and Engineering, 2014, 11(3): 641-665. doi: 10.3934/mbe.2014.11.641

    Related Papers:

    [1] Jinliang Wang, Ran Zhang, Toshikazu Kuniya . A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences and Engineering, 2016, 13(1): 227-247. doi: 10.3934/mbe.2016.13.227
    [2] Jiazhe Lin, Rui Xu, Xiaohong Tian . Transmission dynamics of cholera with hyperinfectious and hypoinfectious vibrios: mathematical modelling and control strategies. Mathematical Biosciences and Engineering, 2019, 16(5): 4339-4358. doi: 10.3934/mbe.2019216
    [3] Fred Brauer, Zhisheng Shuai, P. van den Driessche . Dynamics of an age-of-infection cholera model. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1335-1349. doi: 10.3934/mbe.2013.10.1335
    [4] Lu Gao, Yuanshun Tan, Jin Yang, Changcheng Xiang . Dynamic analysis of an age structure model for oncolytic virus therapy. Mathematical Biosciences and Engineering, 2023, 20(2): 3301-3323. doi: 10.3934/mbe.2023155
    [5] Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073
    [6] Zhiping Liu, Zhen Jin, Junyuan Yang, Juan Zhang . The backward bifurcation of an age-structured cholera transmission model with saturation incidence. Mathematical Biosciences and Engineering, 2022, 19(12): 12427-12447. doi: 10.3934/mbe.2022580
    [7] Xiaoqing Wu, Yinghui Shan, Jianguo Gao . A note on advection-diffusion cholera model with bacterial hyperinfectivity. Mathematical Biosciences and Engineering, 2020, 17(6): 7398-7410. doi: 10.3934/mbe.2020378
    [8] Andrey V. Melnik, Andrei Korobeinikov . Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility. Mathematical Biosciences and Engineering, 2013, 10(2): 369-378. doi: 10.3934/mbe.2013.10.369
    [9] Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067
    [10] Maria Guadalupe Vazquez-Peña, Cruz Vargas-De-León, Jorge Velázquez-Castro . Global stability for a mosquito-borne disease model with continuous-time age structure in the susceptible and relapsed host classes. Mathematical Biosciences and Engineering, 2024, 21(11): 7582-7600. doi: 10.3934/mbe.2024333
  • In this paper, an age-structured epidemicmodel is formulated to describe the transmission dynamics ofcholera. The PDE model incorporates direct and indirect transmissionpathways, infection-age-dependent infectivity and variable periodsof infectiousness. Under some suitable assumptions, the PDE modelcan be reduced to the multi-stage models investigated in theliterature. By using the method of Lyapunov function, we establishedthe dynamical properties of the PDE model, and the results show thatthe global dynamics of the model is completely determined by thebasic reproduction number $\mathcal R_0$: if $\mathcal R_0 < 1$the cholera dies out, and if $\mathcal R_0>1$ the disease will persist at the endemicequilibrium. Then the global results obtained for multi-stage modelsare extended to the general continuous age model.


    [1] Lancet, 377 (2011), 1248-1255.
    [2] J. Math. Biol., 28 (1998), 365-382.
    [3] Wiley, New York, 2000.
    [4] J. Diff. Equs., 218 (2005), 292-324.
    [5] Math. Biosci., 76 (1985), 69-86.
    [6] Amer. Natur., 111 (1977), 135-143.
    [7] Mathematical Surveys and Monographs 25, American Mathematical Society, Providence, RI, 1988.
    [8] SIAM J. Math. Anal., 20 (1989), 388-395.
    [9] Cambridge University Press, Cambridge, 1988.
    [10] SIAM J. Appl. Math., 72 (2012), 25-38.
    [11] Applied Mathematics Monographs 7, comitato nazionale per le scienze matematiche, Consiglio Nazionale delle Ricerche (C. N. R), Giardini, Pisa, 1995.
    [12] Math. Popul. Studi., 17 (1988), 47-77.
    [13] Proc. Roy. Soc. Lond. B, 268 (2001), 985-993.
    [14] Theor. Popul. Biol., 60 (2001), 59-71.
    [15] Electron. J. Diff. Equs., 65 (2001), 1-35.
    [16] Communications on Pure and Applied Analysis, 3 (2004), 695-727.
    [17] SIAM J. Math. Anal., 37 (2005), 251-275.
    [18] Diff. Integr. Equs., 19 (2006), 573-600.
    [19] Appl. Anal., 89 (2010), 1109-1140.
    [20] SIAM J. Appl. Math., 73 (2013), 1058-1095.
    [21] J. Math. Biol., 39 (1999), 471-492.
    [22] Math. Biosci., 234 (2011), 118-126.
    [23] Bull. Math. Biol., 74 (2010), 2423-2445.
    [24] Diff. Integr. Equs., 3 (1990), 1035-1066.
    [25] SIAM J. Appl. Math., 53 (1993), 1447-1479.
    [26] 2010. Available from: http://www.math.wm.edu/~jptian/preprints/pr-7-ode-cholera.pdf.
    [27] Math. Biosci., 232 (2011), 31-41.
    [28] Bull. Math. Biol., 72 (2010), 1506-1533.
    [29] Math. Biosci., 180 (2002), 29-48.
    [30] Marcel Dekker, New York, 1985.
  • This article has been cited by:

    1. Jinliang Wang, Ran Zhang, Toshikazu Kuniya, A note on dynamics of an age-of-infection cholera model, 2016, 13, 1551-0018, 227, 10.3934/mbe.2016.13.227
    2. Lili Liu, Xianning Liu, Global stability of an age-structured SVEIR epidemic model with waning immunity, latency and relapse, 2017, 10, 1793-5245, 1750038, 10.1142/S1793524517500383
    3. ABHISHEK SENAPATI, TRIDIP SARDAR, JOYDEV CHATTOPADHYAY, A CHOLERA METAPOPULATION MODEL INTERLINKING MIGRATION WITH INTERVENTION STRATEGIES — A CASE STUDY OF ZIMBABWE (2008–2009), 2019, 27, 0218-3390, 185, 10.1142/S0218339019500098
    4. J. Wang, M. Guo, T. Kuniya, Mathematical analysis for a multi-group SEIR epidemic model with age-dependent relapse, 2018, 97, 0003-6811, 1751, 10.1080/00036811.2017.1336545
    5. Suxia Zhang, Hongbin Guo, Global analysis of age-structured multi-stage epidemic models for infectious diseases, 2018, 337, 00963003, 214, 10.1016/j.amc.2018.05.020
    6. Andrew F. Brouwer, Nina B. Masters, Joseph N. S. Eisenberg, Quantitative Microbial Risk Assessment and Infectious Disease Transmission Modeling of Waterborne Enteric Pathogens, 2018, 5, 2196-5412, 293, 10.1007/s40572-018-0196-x
    7. Rui Xu, Global dynamics of an epidemiological model with age of infection and disease relapse, 2018, 12, 1751-3758, 118, 10.1080/17513758.2017.1408860
    8. Jiazhe Lin, Rui Xu, Xiaohong Tian, Global dynamics of an age-structured cholera model with multiple transmissions, saturation incidence and imperfect vaccination, 2019, 13, 1751-3758, 69, 10.1080/17513758.2019.1570362
    9. Yanxia Dang, Zhipeng Qiu, Xuezhi Li, Competitive exclusion in an infection-age structured vector-host epidemic model, 2017, 14, 1551-0018, 901, 10.3934/mbe.2017048
    10. Jinliang Wang, Jiying Lang, Yuming Chen, Global threshold dynamics of an SVIR model with age-dependent infection and relapse, 2017, 11, 1751-3758, 427, 10.1080/17513758.2016.1226436
    11. Rui Xu, Xiaohong Tian, Fengqin Zhang, Global dynamics of a tuberculosis transmission model with age of infection and incomplete treatment, 2017, 2017, 1687-1847, 10.1186/s13662-017-1294-z
    12. Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva, Global dynamics of a vector-host epidemic model with age of infection, 2017, 14, 1551-0018, 1159, 10.3934/mbe.2017060
    13. RUI XU, NING BAI, XIAOHONG TIAN, GLOBAL DYNAMICS OF A MATHEMATICAL MODEL OF TUBERCULOSIS WITH AGE-DEPENDENT LATENCY AND ACTIVE INFECTION, 2019, 27, 0218-3390, 503, 10.1142/S0218339019500207
    14. Abba Mahamane Oumarou, Yannick Tchaptchie Kouakep, Vertical transmission and reproduction rate: modeling a common strategy for two related diseases, 2016, 5, 2193-1801, 10.1186/s40064-016-2096-6
    15. Shanshan Chen, Michael Small, Yizhou Tao, Xinchu Fu, Transmission Dynamics of an SIS Model with Age Structure on Heterogeneous Networks, 2018, 80, 0092-8240, 2049, 10.1007/s11538-018-0445-z
    16. Rui Xu, Junyuan Yang, Xiaohong Tian, Jiazhe Lin, Global dynamics of a tuberculosis model with fast and slow progression and age-dependent latency and infection, 2019, 13, 1751-3758, 675, 10.1080/17513758.2019.1683628
    17. Jiazhe Lin, Rui Xu, Xiaohong Tian, Global dynamics of an age-structured cholera model with both human-to-human and environment-to-human transmissions and saturation incidence, 2018, 63, 0307904X, 688, 10.1016/j.apm.2018.07.013
    18. Liming Cai, Gaoxu Fan, Chayu Yang, Jin Wang, Modeling and analyzing cholera transmission dynamics with vaccination age, 2020, 357, 00160032, 8008, 10.1016/j.jfranklin.2020.05.030
    19. Xia Wang, Yuming Chen, Xinyu Song, Global dynamics of a cholera model with age structures and multiple transmission modes, 2019, 12, 1793-5245, 1950051, 10.1142/S1793524519500517
    20. Shaoli Wang, Xinyu Song, Global properties for an age-structured within-host model with Crowley–Martin functional response, 2017, 10, 1793-5245, 1750030, 10.1142/S1793524517500309
    21. Junyuan Yang, Chairat Modnak, Jin Wang, Dynamical analysis and optimal control simulation for an age-structured cholera transmission model, 2019, 356, 00160032, 8438, 10.1016/j.jfranklin.2019.08.016
    22. WEIWEI LIU, JINLIANG WANG, RAN ZHANG, Dynamics of an infection age-space structured cholera model with Neumann boundary condition, 2021, 0956-7925, 1, 10.1017/S095679252100005X
    23. Cyrille Kenne, René Dorville, Gisèle Mophou, Pascal Zongo, An Age-Structured Model for Tilapia Lake Virus Transmission in Freshwater with Vertical and Horizontal Transmission, 2021, 83, 0092-8240, 10.1007/s11538-021-00923-2
    24. Yu Zhu, Liang Wang, Zhipeng Qiu, Dynamics of a stochastic cholera epidemic model with Lévy process, 2022, 595, 03784371, 127069, 10.1016/j.physa.2022.127069
    25. Dandan Sun, Yingke Li, Zhidong Teng, Tailei Zhang, Jingjing Lu, Dynamical properties in an SVEIR epidemic model with age‐dependent vaccination, latency, infection, and relapse, 2021, 44, 0170-4214, 12810, 10.1002/mma.7583
    26. Eminugroho Ratna Sari, Fajar Adi-Kusumo, Lina Aryati, Mathematical analysis of a SIPC age-structured model of cervical cancer, 2022, 19, 1551-0018, 6013, 10.3934/mbe.2022281
    27. Guoqiang Wang, Junyuan Yang, Xuezhi Li, An age-space structured cholera model linking within- and between-host dynamics with Neumann boundary condition, 2023, 74, 0044-2275, 10.1007/s00033-022-01910-w
    28. Cyrille Kenne, Pascal Zongo, René Dorville, A mathematical model for tilapia lake virus transmission with waning immunity, 2022, 16, 1751-3758, 98, 10.1080/17513758.2022.2033860
    29. Wei Yang, Jinliang Wang, Analysis of a diffusive cholera model incorporating latency and bacterial hyperinfectivity, 2021, 20, 1534-0392, 3921, 10.3934/cpaa.2021138
    30. Nicolò Cangiotti, Marco Capolli, Mattia Sensi, Sara Sottile, A survey on Lyapunov functions for epidemic compartmental models, 2023, 1972-6724, 10.1007/s40574-023-00368-6
    31. Hongyan Zhao, Shaofen Zou, Xia Wang, Yuming Chen, Dynamic behaviors of a cholera model with nonlinear incidences, multiple transmission pathways, and imperfect vaccine, 2024, 1598-5865, 10.1007/s12190-024-01994-9
    32. Wei Wang, Teng Liu, Xiaoting Fan, Mathematical modelling of cholera disease with seasonality and human behavior change, 2024, 0, 1531-3492, 0, 10.3934/dcdsb.2024013
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3382) PDF downloads(665) Cited by(32)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog