In this paper, we consider an age-structured cholera model with saturation incidence, vaccination age of vaccinated individuals, infection age of infected individuals, and biological age of pathogens. First, the basic reproduction number is calculated. When the basic reproduction number is less than one, the disease-free equilibrium is locally stable. Further, the existence of backward bifurcation of the model is obtained. Numerically, we also compared the effects of various control measures, including basic control measures and vaccination, on the number of infected individuals.
Citation: Zhiping Liu, Zhen Jin, Junyuan Yang, Juan Zhang. The backward bifurcation of an age-structured cholera transmission model with saturation incidence[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 12427-12447. doi: 10.3934/mbe.2022580
In this paper, we consider an age-structured cholera model with saturation incidence, vaccination age of vaccinated individuals, infection age of infected individuals, and biological age of pathogens. First, the basic reproduction number is calculated. When the basic reproduction number is less than one, the disease-free equilibrium is locally stable. Further, the existence of backward bifurcation of the model is obtained. Numerically, we also compared the effects of various control measures, including basic control measures and vaccination, on the number of infected individuals.
[1] | R. Pollitzer, Cholera, World Health Organization, Geneva, 1959. |
[2] | R. R. Colwell, A. Huq, Environmental reservoir of Vibrio cholerae, the causative agent ofcholera, Ann. N. Y. Acad. Sci., 740 (1994), 44–53. https://doi.org/10.1111/j.1749-6632.1994.tb19852.x doi: 10.1111/j.1749-6632.1994.tb19852.x |
[3] | D. M. Hartley, J. G. Jr. Morris, D. L. Smith, Hyperinfectivity: a critical element in the ability of V. cholerae to cause epidemics, PLoS Med., 3 (2006), 63–69. https://doi.org/10.1371/journal.pmed.0030007 doi: 10.1371/journal.pmed.0030007 |
[4] | I. M. Jr. Longini, A. Nizam, M. Ali, M. Yunus, N. Shenvi, J. D. Clemens, Controlling endemic cholera with oral vaccines, PLoS Med., 4 (2007), 1776–1783. https://doi.org/10.1371/journal.pmed.0040336 doi: 10.1371/journal.pmed.0040336 |
[5] | D. Mahalanabis, A. L. Lopez, D. Sur, J. Deen, B. Manna, S. Kanungo, et al., A randomized, placebocontrolled trial of the bivalent killed, whole-cell, oral cholera vaccine in adults and children in a cholera endemic area in Kolkata, India, PLoS ONE, 3 (2008), 1–7. https://doi.org/10.1371/journal.pone.0002323 doi: 10.1371/journal.pone.0002323 |
[6] | L.V. Seidlein, Vaccines for cholera control: does herd immunity play a role, PLoS Med., 4 (2007), 1719–1721. https://doi.org/10.1371/journal.pmed.0040331 doi: 10.1371/journal.pmed.0040331 |
[7] | D. Sur, A. L. Lopez, S. Kanungo, A. Paisley, J. D. Clemens, Efficacy and safety of a modified killed-whole-cell oral cholera vaccine in India: an interim analysis of a cluster-randomised, double-blind, placebo-controlled trial, Lancet, 349 (2009), 1694–1702. https://doi.org/10.1016/S0140-6736(09)61297-6 doi: 10.1016/S0140-6736(09)61297-6 |
[8] | N. H. Gaffga, R. V. Tauxe, E. D. Mintz, Cholera: a new home land in Africa, Am. J. Trop. Med. Hyg., 77 (2007), 705–713. |
[9] | J. H. Tien, D. J. D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bull. Math. Biol., 72 (2010), 1506–1533. https://doi.org/10.1007/s11538-010-9507-6 doi: 10.1007/s11538-010-9507-6 |
[10] | F. Brauer, Z. Shuai, P. van den Driessche, Dynamics of an age-of-infection cholera model, Math. Biosci. Eng., 10 (2013), 1335–1349. https://doi.org/10.3934/mbe.2013.10.1335 doi: 10.3934/mbe.2013.10.1335 |
[11] | Z. Shuai, J. H. Tien, P. van den Driessche, Cholera models with hyper-infectivity and temporary immunity, Bull. Mathe. Bio., 74 (2012), 2423–2445. https://doi.org/10.1007/s11538-012-9759-4 doi: 10.1007/s11538-012-9759-4 |
[12] | D. Posny, J. Wang, Z. Mukandavire, C. Modnak, Analyzing transmission dynamics of cholera with public health interventions, Math. Biosci., 264 (2015), 38–53. https://doi.org/10.1016/j.mbs.2015.03.006 doi: 10.1016/j.mbs.2015.03.006 |
[13] | L. Cai, Z. Li, C. Yang, J. Wang, Global analysis of an environmental disease transmission model linking within-host and between-host dynamics, Appl. Math. Model., 86 (2020), 404–424. https://doi.org/10.1016/j.apm.2020.05.022 doi: 10.1016/j.apm.2020.05.022 |
[14] | J. Yang, G. Wang, M. Zhou, X. Wang, Interplays of a waterborne disease model linking within-and between-host dynamics with waning vaccine-induced immunity, Int. J. Biomath., 15 (2022), 2250003. https://doi.org/10.1142/S1793524522500036 doi: 10.1142/S1793524522500036 |
[15] | X. Wang, Y. Chen, X. Song, Global dynamics of a cholera model with age structures and multiple transmission modes, Int. J. Biomath., 12 (2019), 1950051. https://doi.org/10.1142/S1793524519500517 doi: 10.1142/S1793524519500517 |
[16] | V. Capasso, G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43–61. https://doi.org/10.1016/0025-5564(78)90006-8 doi: 10.1016/0025-5564(78)90006-8 |
[17] | C. T. Codeco, Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir, BMC Infect. Dis., 1 (2001), 1–14. https://doi.org/10.1186/1471-2334-1-1 doi: 10.1186/1471-2334-1-1 |
[18] | X. Li, J. Yang, M. Martcheva, Age Structured Epidemic Modelling, Springer, Switzerland, 2020. |
[19] | J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, 1988. |
[20] | I. Ghenciu, P. Lewis, Completely continuous operators, Colloq. Math., 126 (2012), 231–256. https://doi.org/10.4064/cm126-2-7 doi: 10.4064/cm126-2-7 |
[21] | J. Yang, Y. Chen, F. Xu, Effect of infection age on an SIS epidemic model on complex networks, J. Math. Bio., 73 (2016), 1227–1249. https://doi.org/10.1007/s00285-016-0991-7 doi: 10.1007/s00285-016-0991-7 |
[22] | Y. Wang, Z. Wei, J. Cao, Epidemic dynamics of influenza-like diseases spreading in complex networks, Nonlinear Dyn., 101 (2020), 1801–1820. https://doi.org/10.1007/s11071-020-05867-1 doi: 10.1007/s11071-020-05867-1 |