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Abstract. In this paper, an age-structured epidemic model is formulated to

describe the transmission dynamics of cholera. The PDE model incorporates

direct and indirect transmission pathways, infection-age-dependent infectivity
and variable periods of infectiousness. Under some suitable assumptions, the

PDE model can be reduced to the multi-stage models investigated in the litera-

ture. By using the method of Lyapunov function, we established the dynamical
properties of the PDE model, and the results show that the global dynamics

of the model is completely determined by the basic reproduction number R0:

if R0 < 1 the cholera dies out, and if R0 > 1 the disease will persist at the
endemic equilibrium. Then the global results obtained for multi-stage models

are extended to the general continuous age model.

1. Introduction. Several recent studies have focused on modeling the cholera dy-
namics ([1, 22, 23, 26, 27, 28]). In 2010, Tien et al [28] formulated a SIRW model
to describe the cholera dynamics. In the SIRW model, all contaminated water or
infectious individuals are assumed to be equally infectious during their periodic in-
fectivity. Actually, laboratory studies suggest that the infectivity of Vibrio cholera
existing outside the host decays in time [22], and the infectivity of infectious individ-
uals is also different at the differential age of infection. The age of infection models
are often formulated to describe the heterogeneity in infectious individuals. Recent
studies on age of infection models show that the age of infection may play an impor-
tant influence on transmission dynamics of infectious disease [13, 14, 21, 25], and
consequently we should incorporate age of infection into the modeling transmission
dynamics of cholera.

Variability of infectiousness in time had been described in the literature by multi-
stage models if age of infection is considered as multiple discrete infection stages.
Based on the existing multi-stage cholera models formulated in [22] and [28] , in
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Table 1. Definitions of frequently used symbols

Parameter Description
a age of infection, i.e., the time that has lapsed since the individual

became infected
θ age of infection, i.e., the time that has lapsed since the cholera

pathogen has penetrated into water
S(t) the numbers of individuals in the susceptible class at time t
i(a, t) the infection-age density of the infected individuals with age of

infection a at time t
w(θ, t) the concentration of the cholera pathogen with age of infection θ

at time t
Λ Recruitment rate
µ Per capita natural death rate

β(a) transmission coefficient of the infected individuals at age of infection a
α(θ) transmission coefficient for per concentration of the cholera pathogen

with age of infection θ
ξ(a) the pathogen production rate of an infected individual with age of

infection a
δ(θ) the rate that the cholera pathogen with age of infection θ loses the

infectivity
γ(a) the rate that an infected individual with age of infection a recovers or

dies from the disease

this paper we develop more general model to study the cholera dynamics, where the
age of infection is considered as a continuous variable. The model presented here
takes the following form:

dS

dt
= Λ− (

∫ ∞
0

β(a)i(a, t)da+

∫ ∞
0

α(θ)w(θ, t)dθ)S − µS,

∂i(a, t)

∂t
+
∂i(a, t)

∂a
= −(µ+ γ(a))i(a, t),

∂w(θ, t)

∂θ
+
∂w(θ, t)

∂t
= −δ(θ)w(θ, t)

(1)

with the following boundary and initial conditions

i(0, t) = (

∫ ∞
0

β(a)i(a, t)da+

∫ ∞
0

α(θ)w(θ, t)dθ)S,

w(0, t) =

∫ ∞
0

ξ(a)i(a, t)da,

S(0) = S0, i(a, 0) = i0(a), w(θ, 0) = w0(θ),

(2)

where i0(a), w0(θ) are given non-negative functions. All the parameters in the sys-
tem (1) are positive. The functions β(a), α(θ) and ξ(a) belong to L∞+ ((0,+∞),R) \
{0L∞}, and δ(θ), γ(a) belong to L1

loc((0,+∞),R), δ(θ), γ(a) ≥ 0 in (0,+∞). We
further assume that there exists δw > 0 such that

δ(θ) ≥ δw
for almost every θ ≥ 0. The definition of the different parameters in the system (1)
are listed in Table 1.

Assume that the infected individuals are partitioned into n infection stages de-
fined by the infection age intervals [ai−1, ai], where 0 = a0 < a1 < · · · < an−1 <
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an =∞, and the contaminated water is categorized into m levels defined by the age
intervals [θi−1, θi], where 0 = θ0 < θ1 < · · · < θm−1 < θm = ∞. For a ∈ [ai−1, ai)
or θ ∈ [θi−1, θi], we also assume that the parameters β(a), γ(a), ξ(a), δ(θ), α(θ) are
constant with

β(a) = µi, ξ(a) = ξi, γ(a) = γi, α(θ) = αi, δ(θ) = δi. (3)

Let Ii(t) =
∫ ai
ai−1

i(a, t)da,Wi(t) =
∫ θi
θi−1

w(θ, t)dθ. Integrating the second and

third equations of system (1) on the age interval [ai−1, ai) and [θi−1, θi), respectively,
yields

i(ai, t)− i(ai−1, t) +
dIi(t)

dt
= −(µ+ γi)Ii(t),

w(θi, t)− w(θi−1, t) +
dWi(t)

dt
= −δiWi(t).

We use ci to denote the transfer rate constants of the infected individuals between
the age groups [ai−1, ai) and [ai, ai+1), and di to denote the transfer rate constants
of the pathogen between age groups [θi−1, θi) and [θi, θi+1), then it follows that
i(ai, t) = ciIi(t), w(θi, t) = diWi(t), where cn = 0 and dm = 0. By using the
boundary conditions in system (1), we can obtain the equations for S(t), Ii(t),Wi(t):

dS

dt
= Λ− (

n∑
k=1

βkIk +

m∑
k=1

αkWk)S − µS,

dI1
dt

= (

n∑
k=1

βkIk +

m∑
k=1

αkWk)S − (µ+ γ1 + c1)I1,

dIi
dt

= ci−1Ii−1 − (µ+ γi + ci)Ii, i = 2, 3, · · · , n,

dW1(t)

dt
=

n∑
k=1

ξkIk − (δ1 + d1)W1,

dWj

dt
= dj−1Wj−1 − (δj + dj)Wj , j = 2, 3, · · · ,m.

(4)

Based on the above assumptions that parameters are constant within age groups,
the PDE model (1) can be reduced to the ODE model investigated in paper [22] and
[28]. The global properties of the ODE model (4) have been investigated in paper
[22], and the results show that the global dynamics of the ODE model is completely
determined by the basic reproduction number. The main objective of the paper is
to prove that the global results are also true for the continuous age case. Because
the continuous age model is described by first order PDEs, it is difficult to analyze
the dynamics of the PDE models, particularly the global stability. In this paper,
by using a class of global Lyapunov functions we prove that the dynamics of the
age of infection cholera model are completely determined by the basic reproduction
number R0: if R0 < 1 the disease-free equilibrium is globally asymptotically stable;
if R0 > 1, a unique endemic equilibrium is globally asymptotically stable. Thus the
global results obtained for ODE system are extended to the general continuous age
model.

The paper is organized as follows. In the next section we mainly present the
basic reproduction number, investigate the existence of the equilibrium, and then
state the main results of the paper. In the section 3 we mainly show that the
disease free equilibrium is globally asymptotically stable if the basic reproduction
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number is less than one. In order to prove the results on the global stability of the
endemic equilibrium of the system (1), in Section 4 we present some preliminary
results about uniform persistence and about the existence of global attractors. In
the section 5 the proof of the results on the global stability of endemic equilibrium
is strictly proved when the basic reproduction number is greater than one. We
summarizes our results and outline some future work in the final Section 6.

2. Reproduction number and main results. Using standard methods we can
verify the existence and uniqueness of solutions to the system (1) (see [11] and [30]).
Moreover, we can show that all solutions with nonnegative initial conditions will
remain nonnegative and bounded for all t > 0. In this section, we mainly present
the reproduction number for system (1), investigate the existence of equilibria, and
then state the main results of the paper.

In epidemiology, the reproduction number is one of the most useful threshold
parameters. It is generally defined as the average number of secondary infections
produced by a typical infected individual during the entire period of infection when
introduced into a completely susceptible population [2, 3, 29]. As will be shown in
the next section that the qualitative and quantitative behaviors of the model (1) is
completely determined by the reproduction number.

First let us derive the reproduction number from the biological meanings of the
model parameters. To simplify expressions, we introduce the following notations:

KI(a) = e−µa−
∫ a
0
γ(s)ds,

KW (θ) = e−
∫ θ
0
δ(s)da.

Notice that µ + γ(s) is the rate at which an infected individual of infection age s
leaves the infectious class, it then follows that KI(a) represents the probability of
remaining in the infected class for an infected case at the age of infection a. Then
the average number of secondary cases directly produced by an infected individual
can be expressed as

RI =
Λ

µ

∫ ∞
0

β(a)KI(a)da,

and the average concentration of the cholera pathogen produced by an infected
individual can be defined as

Pc =

∫ ∞
0

ξ(a)KI(a)da.

Similarly, KW (θ) represents the probability of remaining the infectivity for the unit
concentration of cholera pathogen with infection age θ since δ(s) is the rate at which
the cholera pathogen with age of infection s loses the infectivity. Thus, the integral
of the production of α(θ) and KW (θ) over all ages,

Rc =
Λ

µ

∫ ∞
0

α(θ)KW (θ)dθ,

gives the average number of secondary cases directly produced by the unit concen-
tration of cholera pathogen. Therefore, the average number of the secondary cases
indirectly produced by an infected individual can be expressed as

RW = Rc × Pc.
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In summary, if a typical infected individual is introduced into a purely suscep-
tible population, then the average number of secondary cases directly or indirectly
produced during the entire period of infection can be expressed as

R0 : = RI +RW

=
Λ

µ

[ ∫ ∞
0

β(a)e−µa−
∫ a
0
γ(s)dsda+∫ ∞

0

α(θ)e−
∫ θ
0
δ(s)dsdθ

∫ ∞
0

ξ(a)e−µa−
∫ a
0
γ(s)dsda

]
.

We can easily see that R0 is the basic reproduction number for system (1). Now
we are able to state the result on the existence of equilibria for system (1).

Theorem 2.1. The system (1) can have up to two equilibria. More precisely, we
have

(1) The disease free equilibrium E0(Λ
µ , 0, 0) always exists.

(2) If R0 > 1, there exists a unique endemic equilibrium E∗(S∗, i∗(a), w∗(θ)),
where

S∗ =
Λ

µ

1

R0
,

i∗(a) = Λ
R0 − 1

R0
e−µa−

∫ a
0
γ(s)ds,

w∗(θ) = Λ
R0 − 1

R0

∫ ∞
0

ξ(a)e−µa−
∫ a
0
γ(s)dsda× e−

∫ θ
0
δ(s)ds.

Proof. It is obvious that the disease free equilibrium E0(
Λ

µ
, 0, 0) always exists

and is unique. Now we prove the second case. The endemic equilibrium E∗ =
(S∗, i∗(a), w∗(θ)) can be found by solving the following system:

Λ− S(

∫ ∞
0

β(a)i(a)da+

∫ ∞
0

α(θ)w(θ)dθ)− µS = 0,

di(a)

da
= −(µ+ γ(a))i(a),

dw(θ)

da
= −δ(θ)w(θ),

i(0) = S(

∫ ∞
0

β(a)i(a)da+

∫ ∞
0

α(θ)w(θ)dθ),

w(0) =

∫ ∞
0

ξ(a)i(a)da.

(5)

Integrating from 0 to a or θ the second and third equations in (5) yields

i(a) = i(0)e−µa−
∫ a
0
γ(s)ds,

w(θ) = w(0)e−
∫ θ
0
δ(s)ds.

(6)

Substituting (6) into the fourth and fifth equation in (5) gives

i(0) = S
(
i(0)

∫ ∞
0

β(a)e−µa−
∫ a
0
γ(s)dsda+ w(0)

∫ ∞
0

α(θ)e−
∫ θ
0
δ(s)dsdθ

)
,

w(0) = i(0)

∫ ∞
0

ξ(a)e−µa−
∫ a
0
γ(s)dsda.

(7)
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It follows from (7) and the first equation in (5) that

S =
Λ

µ

1

R0
:= S∗,

i(0) =
R0 − 1

R0
Λ := i∗(0),

w(0) =
R0 − 1

R0
Λ

∫ ∞
0

ξ(a)e−µa−
∫ a
0
γ(s)dsda := w∗(0).

Thus,

S∗ =
Λ

µ

1

R0
,

i∗(a) = Λ
R0 − 1

R0
e−µa−

∫ a
0
γ(s)ds,

w∗(θ) = Λ
R0 − 1

R0

∫ ∞
0

ξ(a)e−µa−
∫ a
0
γ(s)dsda× e−

∫ θ
0
δ(s)ds.

It can be easily see from the expressions of S∗, i∗(a) and w∗(θ) that the endemic
equilibrium E∗ exists if and only if R0 > 1. This completes the proof of Theorem
2.1.

In order to state the main results of the paper, we set

ã = inf{a :

∫ ∞
a

β(σ)dσ = 0 and

∫ ∞
a

ξ(σ)dσ = 0},

θ̃ = inf{θ :

∫ ∞
θ

α(σ)dσ = 0}.
(8)

Since the functions β(a), α(θ) and ξ(a) belong to L∞+ ((0,+∞),R) \ {0L∞}, we have

ã > 0 and θ̃ > 0. Let

M̂0 :=

{(
i
w

)
∈ L+((0,+∞),R2) :

∫ ã

0

i(a)da > 0 or

∫ θ̃

0

w(θ)dθ > 0

}
,

and define

M0 := R+ × M̂0,

∂M0 := R+ × L+((0,∞),R2) \M0.

Now we are able to state the main results of the paper.

Theorem 2.2. If R0 < 1, then the DFE E0(Λ
µ , 0, 0) is the unique equilibrium of

system (1), and it is globally stable.

Theorem 2.3. Assume that R0 > 1, then the DFE E0(
Λ

µ
, 0, 0) is globally asymp-

totically stable in ∂M0, and the unique endemic equilibrium E∗(S∗, i∗(a), w∗(θ)) of
system (1) is globally asymptotically stable in M0.

3. The proof of Theorem 2.2. In this section, we mainly prove Theorem 2.2.
First, let us consider the local stability of the DFE E0, and we have the following
Theorem 3.1.

Theorem 3.1. The DFE E0(Λ
µ , 0, 0) is locally asymptotically stable if R0 < 1, and

unstable if R0 > 1 .
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Proof. Introducing the perturbation variables

x1(t) = S(t)− Λ

µ
, x2(a, t) = i(a, t), x3(θ, t) = w(θ, t),

and linearizing the system (1) about E0 we obtain the following system

dx1(t)

dt
= −µx1(t)− Λ

µ

∫ ∞
0

β(a)x2(a, t)da− Λ

µ

∫ ∞
0

α(θ)x3(θ, t)dθ,

∂x2(a, t)

∂t
+
∂x2(a, t)

∂a
= −(µ+ γ(a))x2(a, t),

∂x3(θ, t)

∂t
+
∂x3(θ, t)

∂θ
= −δ(θ)x3(θ, t),

x2(0, t) =
Λ

µ

∫ ∞
0

β(a)x2(a, t)da+
Λ

µ

∫ ∞
0

α(θ)x3(θ, t)dθ,

x3(0, t) =

∫ ∞
0

ξ(a)x2(a, t)da.

(9)

Let

x1(t) = x0
1e
λt, x2(a, t) = x0

2(a)eλt, x3(θ, t) = x0
3(θ)eλt, (10)

where x0
1, x

0
2(a), x0

3(θ) are to be determined. Substituting (10) into (9), we obtain

λx0
1 = −µx0

1 −
Λ

µ

∫ ∞
0

β(a)x0
2(a)da− Λ

µ

∫ ∞
0

α(θ)x0
3(a)da, (11a)

λx0
2(a) +

dx0
2(a)

da
= −(µ+ γ(a))x0

2(a),

x0
2(0) =

Λ

µ

∫ ∞
0

β(a)x0
2(a)da+

Λ

µ

∫ ∞
0

α(θ)x0
3(θ)dθ,

(11b)


λx0

3(θ) +
dx0

3(θ)

dθ
= −δ(θ)x0

3(θ),

x0
3(0) =

∫ ∞
0

ξ(a)x0
2(a)da.

(11c)

Integrating the first equation of (11b) from 0 to a yields

x0
2(a) = x0

2(0)e−(λ+µ)a−
∫ a
0
γ(s)ds. (12)

Substituting (12) into (11c) and solving (11c), we obtain

x0
3(θ) = x0

2(0)

∫ ∞
0

ξ(a)e−(λ+µ)a−
∫ a
0
γ(s)dsda× e−λθ−

∫ θ
0
δ(s)ds. (13)

Substituting (12) and (13) into the second equation of (11b) gives the characteristic
equation

1 =
Λ

µ

∫ ∞
0

β(a)e−(µ+λ)a−
∫ a
0
γ(s)dsda+

Λ

µ

∫ ∞
0

α(θ)e−λθ−
∫ θ
0
δ(s)dsdθ

∫ ∞
0

ξ(a)e−(µ+λ)a−
∫ a
0
γ(s)dsda.

(14)

Let H (λ) denote the right hand side of (14) . Then H (λ) is a continuously
differential function with lim

λ→+∞
H (λ) = 0, lim

λ→−∞
H (λ) = +∞. Furthermore, it
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can be checked that H ′(λ) < 0, which implies that H (λ) is a decreasing function.
Thus the equation (14) has a unique real root λ∗. Noting that

R0 = H (0)

we have λ∗ < 0 if R0 < 1, and λ∗ > 0 if R0 > 1. Let λ = ξ + ηi be an arbitrary
complex root to equation (14). Then

1 = H (λ) = |H (ξ + ηi)| ≤H (ξ),

which implies that λ∗ > ξ. Thus, all the roots of the equation (14) have negative
real part if and only if R0 < 1. Therefore we have shown that the DFE is local
asymptotically stable if R0 < 1 and unstable if R0 > 1. This completes the proof
of Theorem 3.1.

The result in Theorem 3.1 states only the local stability of the DFE E0. Now we
are able to give the proof of Theorem 2.2.

Proof. of Theorem 2.2. We know from Theorem 3.1 that the DFE E0 is locally
asymptotically stable when R0 < 1. It suffices to show that E0 is a global attractor.

For convenience, let

λ(t) =

∫ ∞
0

β(a)i(a, t)da+

∫ ∞
0

α(θ)w(θ, t)dθ,

χ(t) =

∫ ∞
0

ξ(a)i(a, t)da.

(15)

Integrating the second equation in system (1) along characteristic lines we get

i(a, t) =

 λ(t− a)S(t− a)e−µa−
∫ a
0
γ(s)ds, t > a,

i0(a− t)e−
∫ a
a−t(µ+γ(s))ds, t < a.

(16)

Similarity, integrating the third equation in system (1) along the characteristic lines
yields

w(θ, t) =

 χ(t− θ)e−
∫ θ
0
δ(s)ds, t > θ,

w0(θ − t)e−
∫ θ
θ−t(δ(s))ds, t < θ.

(17)

From (16) and (17) we obtain the inequality

λ(t)S(t)

≤ Λ

µ

[ ∫ t

0

β(a)λ(t− a)S(t− a)e−µa−
∫ a
0
γ(s)dsda+

∫ ∞
t

β(a)i(a, t)da
]

+
Λ

µ

[ ∫ t

0

α(θ)χ(t− θ)e−
∫ θ
0
δ(s)dsdθ +

∫ ∞
t

α(θ)w(θ, t)dθ
]

=
Λ

µ

[ ∫ t

0

β(a)λ(t− a)S(t− a)e−µa−
∫ a
0
γ(s)dsda+

∫ ∞
t

β(a)i(a, t)da
]

+
Λ

µ

[ ∫ t

0

α(θ)e−
∫ θ
0
δ(s)ds

( ∫ t−θ

0

ξ(a)λ(t− θ − a)S(t− θ − a)×

e−µa−
∫ a
0
γ(s)dsda+

∫ ∞
t−θ

ξ(a)i(a, t− θ)da
)
dθ +

∫ ∞
t

α(θ)w(θ, t)dθ
]
.

(18)
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Taking the lim sup when t → +∞ of both sides of inequality (18) and using the
Fatou’s Lemma yield

τ : = lim sup
t→∞

λ(t)S(t)

≤ Λ

µ

[ ∫ ∞
0

β(a)τe−µa−
∫ a
0
γ(s)dsda+∫ ∞

0

α(θ)e−
∫ θ
0
δ(s)dsdθ

∫ ∞
0

ξ(a)τe−µa−
∫ a
0
γ(s)dsda

]
= τR0.

(19)

From (19) that τ = 0 if R0 < 1. This implies that

lim
t→+∞

i(a, t) = 0, lim
t→+∞

w(θ, t) = 0. (20)

Then from the first equation in (1) we have S(t) → Λ
µ as t → +∞. This implies

that the DFE E0 is global attractor. The proof of Theorem 2.2 is completed.

4. Preliminary results and uniform persistence. In this section, we first re-
formulate the system (1) as a Volterra equation and as a non-densely defined semi-
linear Cauchy problem in order to apply integrated semigroup theory, and then
by using the persistence theory for continuous dynamics system we present some
results about uniform persistence and about the existence of global attractors.

The Volterra integral formulation of age-structured models has been used suc-
cessfully in various contexts and provides explicit (or implicit) formulas for the
solutions of age-structure models [19]. The system (1) with the boundary and ini-
tial conditions (2) can be rewritten as the following Volterra type equations

dS

dt
= Λ− (

∫ ∞
0

β(a)i(a, t)da+

∫ ∞
0

α(θ)w(θ, t)dθ)S − µS,

i(a, t) =

 λ(t− a)S(t− a)e−µa−
∫ a
0
γ(s)ds, t > a,

i0(a− t)e−
∫ a
a−t(µ+γ(s))ds, t ≤ a.

w(θ, t) =

 χ(t− θ)e−
∫ θ
0
δ(s)ds, t > θ,

w0(θ − t)e−
∫ θ
θ−t δ(s)ds, t ≤ θ,

(21)

where λ(t) and χ(t) are the unique solution of the following system of Volterra
equations:

λ(t) =

∫ t

0

β(a)λ(t− a)S(t− a)e−µa−
∫ a
0
γ(s)dsda+

∫ ∞
t

β(a)i0(a− t)×

e−
∫ a
a−t(µ+γ(s))dsda+

∫ t

0

α(θ)χ(t− θ)e−
∫ θ
0
δ(s)dsdθ

+

∫ ∞
t

α(θ)w0(θ − t)e−
∫ θ
θ−t(δ(s))dsdθ;

χ(t) =

∫ t

0

ξ(a)λ(t− a)S(t− a)e−µa−
∫ a
0
γ(s)dsda+∫ ∞

t

ξ(a)i0(a− t)e−
∫ a
a−t(µ+γ(s))dsda.

We now use the approach introduced by Thieme [24] to reformulate the system
(1) with the boundary and initial conditions (2) as a semilinear Cauchy problem.
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In order to remove the nonlinearity from the boundary conditions, we enlarge the
state space and we consider

X = R× R2 × L1((0,+∞),R2),

endowed with the usual product norm, and set

X0 = R× {0} × {0} × L1((0,+∞),R2),

X+ = R+ × R2
+ × L1

+((0,+∞),R2),

and

X0+ = X0 ∩ X+.

We consider the linear operator A : Dom(A) ⊂ X → X defined by

A


S
0
0
i
w



 =


−µS
−i(0)
−w(0)

−i′ − (µ+ γ(a))i
−w′ − δ(θ)w




with

Dom(A) = R× {0} × {0} ×W 1,1((0,+∞),R2),

where W 1,1 is a Sobolev space, and we define F : X0 → X by

F


S
0
0
i
w



 =



Λ− (

∫ ∞
0

β(a)i(a)da+

∫ ∞
0

α(θ)w(θ)dθ)S
S(

∫ ∞
0

β(a)i(a)da+

∫ ∞
0

α(θ)w(θ)dθ)∫ ∞
0

ξ(a)i(a)da

0L1

0L1




.

Then by defining

v(t) =


S(t)

0
0

i(·, t)
w(·, t)



 ,

we can reformulate the system (1) with the boundary and initial conditions (2) as
the following abstract Cauchy problem

dv(t)

dt
= Av(t) + F (v(t)) (22)

for t ≥ 0 and v(0) = v0 ∈ X0+.
By using the result in Thieme [24] and Magal [15], we derive that the existence

and the uniqueness of the semiflow {U(t)}t≥0 on X0+. By identity (S(t), 0R2 , i(·, t),
w(·, t)) with (S(t), i(·, t), w(·, t)), it can be shown that the semiflow coincides with
the one generated by using the Volterra integral formulation. By setting

I(t) =

∫ ∞
0

i(a, t)da,W (t) =

∫ ∞
0

w(θ, t)dθ,
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and

N(t) = S(t) + I(t),

we deduce that N(t) and W (t) satisfy the following ordinary differential inequalities

dN(t)

dt
≤ Λ− µN(t),

and
dW (t)

dt
=

∫ ∞
0

ξ(a)i(a, t)da−
∫ ∞

0

δ(θ)w(θ, t)dθ

≤ ξmaxI(t)− δwW (t),

where ξmax = ess sup
θ∈(0,∞)

ξ(θ). By using the comparison theorem, it follows that

N(t) ≤ Λ

µ
,W (t) ≤ ξmaxΛ

µδw

as t→ +∞. Furthermore, if

N(t) ≤ Λ

µ
,W (t) ≤ ξmaxΛ

µδw

are satisfied for some t = t0 then they are satisfied for all t ≥ t0. Thus, the system
(1) leaves the set{

(S, i, w) ∈ R+ × L1
+((0,∞),R)× L1

+((0,∞),R) :

S +

∫ ∞
0

i(a)da ≤ Λ

µ
,

∫ ∞
0

w(θ)dθ ≤ ξmaxΛ

µδw

}
positively invariant. Consequently, it then follows that the set

B =




S
0
0
i
w


 ∈ X0+ : S +

∫ ∞
0

i(a)da ≤ Λ

µ
,

∫ ∞
0

w(θ)dθ ≤ ξmaxΛ

µδw


is positively invariant absorbing set under the semiflow {U(t)}t≥0 on X0+, i.e.,
U(t)B ⊆ B and for each x ∈ (S0, 0, 0, i, w) ∈ X0+,

d(U(t)x,B) := inf
y∈B
‖U(t)x− y‖ → 0

as t → +∞. This means that the semiflow {U(t)}t≥0 is bound dissipative on X0+

(see Hale [7]). Furthermore, it follows from [16, 30] that the semiflow {U(t)}t≥0 is
asymptotically smooth. As a consequence of the results on the existence of global
attractors in Hale [7], we have the following theorem.

Theorem 4.1. The system (22) generates a unique continuous semiflow {U(t)}t≥0

on X0+ that is asymptotically smooth and bounded dissipative. Furthermore, the
semiflow {U(t)}t≥0 has a global attractor A in X0+ which attracts the bound sets of
X0+.

In order to define the invariant sets for the uniform persistence analysis, we define

M̃0 := R+ × {0} × {0} × M̂0,

∂M̃0 := X0+ \ M̃0.
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Theorem 4.2. ∂M̃0 is positively invariant under the semiflow {U(t)}t≥0 gener-

ated by (22). Moreover, the DFE E0(
Λ

µ
, 0, 0, 0L1((0,∞),R1), 0L1((0,∞),R1)) is globally

asymptotically stable for the semiflow {U(t)}t≥0 restricted to ∂M̃0.

Proof. Let (S0, 0, 0, i0, w0) ∈ ∂M̃0. Then (i0, w0) ∈ L+((0,+∞),R2) \ M̂0 and we
have 

∂i(a, t)

∂t
+
∂i(a, t)

∂a
= −(µ+ γ(a))i(a, t),

∂w(θ, t)

∂θ
+
∂w(θ, t)

∂t
= −δ(θ)w(θ, t),

i(0, t) = (

∫ ∞
0

β(a)i(a, t)da+

∫ ∞
0

α(θ)w(θ, t)dθ)S(t),

w(0, t) =

∫ ∞
0

ξ(a)i(a, t)da,

i(a, 0) = i0(a), w(θ, 0) = w0(θ).

Since S(t) ≤ Λ

µ
, it follows that

i(a, t) ≤ î(a, t), w(θ, t) ≤ ŵ(θ, t), (23)

where 

∂î(a, t)

∂t
+
∂î(a, t)

∂a
= −(µ+ γ(a))̂i(a, t),

∂ŵ(θ, t)

∂θ
+
∂ŵ(θ, t)

∂t
= −δ(θ)ŵ(θ, t),

î(0, t) =
Λ

µ
(

∫ ∞
0

β(a)̂i(a, t)da+

∫ ∞
0

α(θ)ŵ(θ, t)dθ),

ŵ(0, t) =

∫ ∞
0

ξ(a)̂i(a, t)da,

î(a, 0) = i0(a), ŵ(θ, 0) = w0(θ).

(24)

The equation (24) can be rewritten as the following Volterra type equation
î(a, t) =


Λ

µ
λ̂(t− a)e−µa−

∫ a
0
γ(s)ds, t > a,

i0(a− t)e−
∫ a
a−t(µ+γ(s))ds, t ≤ a.

ŵ(θ, t) =

 χ̂(t− θ)e−
∫ θ
0
δ(s)ds, t > θ,

w0(θ − t)e−
∫ θ
θ−t δ(s)ds, t ≤ θ,

(25)

where λ̂(t) and χ̂(t) are the unique solution of the following system of Volterra
equations:

λ̂(t) =
Λ

µ

∫ t

0

β(a)λ̂(t− a)e−µa−
∫ a
0
γ(s)dsda+

∫ ∞
t

β(a)i0(a− t)e−
∫ a
a−t(µ+γ(s))dsda+∫ t

0

α(θ)χ̂(t− θ)e−
∫ θ
0
δ(s)dsdθ +

∫ ∞
t

α(θ)w0(θ − t)e−
∫ θ
θ−t(δ(s))dsdθ;

χ̂(t) =
Λ

µ

∫ t

0

ξ(a)λ̂(t− a)e−µa−
∫ a
0
γ(s)dsda+

∫ ∞
t

ξ(a)i0(a− t)e−
∫ a
a−t(µ+γ(s))dsda.

(26)
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Since (i0, w0) ∈ L+((0,+∞),R2) \ M̂0, we can easily deduce that∫ ∞
t

β(a)i0(a− t)e−
∫ a
a−t(µ+γ(s))dsda+

∫ ∞
t

α(θ)w0(θ − t)e−
∫ θ
θ−t(δ(s))dsdθ = 0;∫ ∞

t

ξ(a)i0(a− t)e−
∫ a
a−t(µ+γ(s))dsda = 0.

Then the Volterra equation (26) becomes

λ̂(t) =
Λ

µ

∫ t

0

β(a)λ̂(t− a)e−µa−
∫ a
0
γ(s)dsda+

∫ t

0

α(θ)χ̂(t− θ)e−
∫ θ
0
δ(s)dsdθ;

χ̂(t) =
Λ

µ

∫ t

0

ξ(a)λ̂(t− a)e−µa−
∫ a
0
γ(s)dsda.

(27)
which has a unique solution

λ̂(t) = 0, χ̂(t) = 0, ∀ t ≥ 0.

It now follows that i(a, t) = 0, w(θ, t) = 0 for 0 ≤ a, θ ≤ t. For t > a or t > θ, we
have

‖̂i(a, t)‖L1 = ‖i0(a− t)e−
∫ a
a−t(µ+γ(s))ds‖L1 ≤ e−µt‖i0‖L1 ,

‖ŵ(θ, t)‖L1 = ‖w0(θ − t)e−
∫ θ
θ−t δ(s)ds‖L1 ≤ e−δwt‖w0‖L1

for all t ≥ 0. We can easily see that î(a, t) → 0, ŵ(θ, t) → 0 as t → +∞. By using
(23) the results follows. This completes the proof of Theorem 4.2.

By combining Theorem 4.2 in Hale and Waltman [8], and Theorem 3.7 in Magal
and Zhao [17], we are able to prove the following theorem

Theorem 4.3. If R0 > 1, the semiflow {U(t)}t≥0 generated by (22) is unifomly

persistent in M̃0 with respect to the decomposition (∂M̃0,M̃0), i.e., there exists a

ε > 0 such that for each (S, 0, 0, i0, w0) ∈ M̃0,

lim inf
t→+∞

S(t) ≥ ε, lim inf
t→+∞

‖i(·, t)‖ ≥ ε, lim inf
t→+∞

‖w(·, t)‖ ≥ ε.

Furthermore, the semiflow {U(t)}t≥0 has a compact global attractor A0 in M̃0, and
there exists a ε > 0 such that for each (S, 0, 0, i0, w0) ∈ A0,

S ≥ ε,
∫ ∞

0

β(a)i(a)da+

∫ ∞
0

α(θ)w(θ)dθ > ε,

∫ ∞
0

ξ(a)i(a)da > ε.

Proof. From Theorem 4.2 we know that the DFE E0(
Λ

µ
, 0, 0, 0L1((0,∞),R1),

0L1((0,∞),R1)) is globally asymptotically stable in ∂M̃0. First let us show that

W s(E0) ∩ M̃0 = ∅. Since R0 > 1, there exists ς > 0 such that

(
Λ

µ
− ς)

[ ∫ ∞
0

β(a)e−µa−
∫ a
0
γ(s)dsda+∫ ∞

0

α(θ)e−
∫ θ
0
δ(s)dsdθ

∫ ∞
0

ξ(a)e−µa−
∫ a
0
γ(s)dsda

]
> 1.

(28)

Assume that there exists (S0, 0, 0, i0, w0) ∈ M̃0 such that

‖(S(t), 0, 0, i(·, t), w(·, t))− (
Λ

µ
, 0, 0, 0L1((0,∞),R1), 0L1((0,∞),R1))‖ ≤ ς (29)
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for all t ≥ 0. Then we have

S(t) ≥ Λ

µ
− ς

for all t ≥ 0, and hence

∂i(a, t)

∂t
+
∂i(a, t)

∂a
= −(µ+ γ(a))i(a, t),

∂w(θ, t)

∂θ
+
∂w(θ, t)

∂t
= −δ(θ)w(θ, t),

i(0, t) ≥ (
Λ

µ
− ς)(

∫ ∞
0

β(a)i(a, t)da+

∫ ∞
0

α(θ)w(θ, t)dθ),

w(0, t) =

∫ ∞
0

ξ(a)i(a, t)da,

i(·, 0) = i0, w(·, 0) = w0, (i0, w0) ∈ M̂0.

By the comparison principle we have

i(a, t) ≥ ĩ(a, t), w(θ, t) ≥ w̃(θ, t),

where (̃i(a, t), w̃(θ, t)) satisfies the following auxiliary system

∂ĩ(a, t)

∂t
+
∂ĩ(a, t)

∂a
= −(µ+ γ(a))̃i(a, t),

∂w̃(θ, t)

∂θ
+
∂w̃(θ, t)

∂t
= −δ(θ)w̃(θ, t),

ĩ(0, t) = (
Λ

µ
− ς)(

∫ ∞
0

β(a)̃i(a, t)da+

∫ ∞
0

α(θ)w̃(θ, t)dθ),

w̃(0, t) =

∫ ∞
0

ξ(a)̃i(a, t)da,

ĩ(·, 0) = i0, w̃(·, 0) = w0, (i0, w0) ∈ M̂0.

(30)

Similarly to the proof of Theorem 3.1 we can derive the characteristic equation
for system (30)

1 = H̃(λ), (31)

where

H̃(λ) := (
Λ

µ
− ς)

∫ ∞
0

β(a)e−(µ+λ)a−
∫ a
0
γ(s)dsda+

(
Λ

µ
− ς)

∫ ∞
0

α(θ)e−λθ−
∫ θ
0
δ(s)dsdθ

∫ ∞
0

ξ(a)e−(µ+λ)a−
∫ a
0
γ(s)dsda,

and the equation (31) has a unique real root λ̃∗ > 0 since the inequality (28) holds.

Moreover, if λ̃ = ξ+ ηi is an arbitrary complex root to equation (31), then we have

ξ < λ̃∗.
For ease of notation, let us rewrite the linear system (30) as the following form

du(t)

dt
= Au(t) (32)
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where u(t) = (̃i(·, t), w̃(·, t))T and

Au =

 −
dĩ

da
− (µ+ γ(a))̃i

−dw̃
dθ
− δ(θ)w̃

 ,

D(A) =

{(
ĩ
w̃

)
∈W 1,1((0,+∞),R2) : ĩ(0) = (

Λ

µ
− ς)×

(

∫ ∞
0

β(a)̃i(a)da+

∫ ∞
0

α(θ)w̃(θ)dθ), w̃(0) =

∫ ∞
0

ξ(a)̃i(a)da

}
.

By using the Hille-Yosida theorem, the operator (A,D(A)) generates a strongly

continuous semigroup, denoted by (T̃ (t))t≥0. Let Πλ̃∗ be the eigenprojection corre-

sponding to λ̃∗, then by using the Proposition 3.1 in paper [12] and after extensive
algebraic calculations, we can obtain

Πλ̃∗ T̃ (t)

(
i0
w0

)
= eλ̃

∗tΠλ̃∗

(
i0
w0

)
= eλ̃

∗t lim
λ→λ̃∗

(λ− λ̃∗)(λI −A)−1

(
i0
w0

)
= eλ̃

∗t

(
ψ
φ

)
,

where ψ(a), φ(θ) can be expressed as

ψ(a) =
[
− (

Λ

µ
− ς) 1

dH̃(λ)
dλ |λ=λ̃∗

(∫ ∞
0

β(a)

∫ a

0

e−
∫ a
τ

(λ̃∗+µ+γ(s))dsi0(τ)dτda+∫ +∞

0

α(θ)

∫ θ

0

e−
∫ θ
τ

(λ̃∗+δ(s))dsw0(τ)dτdθ +

∫ +∞

0

α(θ)e−λ̃
∗θ−

∫ θ
0
δ(s)dsdθ

×
∫ +∞

0

ξ(a)

∫ a

0

e−
∫ a
τ

(λ̃∗+µ+γ(s))dsi0(τ)dτda
)]
e−(λ̃∗+µ)a−

∫ a
0
γ(s)ds;

φ(θ) = − 1

dH̃(λ)

dλ
|λ=λ̃∗

[(
1− (

λ

µ
− ς)

( ∫ ∞
0

β(a)

∫ a

0

e−
∫ a
τ

(λ̃∗+µ+γ(s))dsi0(τ)dτda+

∫ ∞
0

α(θ)

∫ θ

0

e−
∫ θ
τ

(λ̃∗+δ(s))dsw0(τ)dτdθ
)) ∫ ∞

0

ξ(a)

∫ a

0

e−
∫ a
τ

(λ̃∗+µ+γ(s))dsi0(τ)

dτda+ (
λ

µ
− ς)

∫ ∞
0

ξ(a)e−
∫ a
0

(λ̃∗+µ+γ(s))dsda
(∫ ∞

0

β(a)

∫ a

0

e−
∫ a
τ

(λ̃∗+µ+γ(s))ds×

i0(τ)dτda+

∫ ∞
0

α(θ)

∫ θ

0

e−
∫ θ
τ

(λ̃∗+δ(s))dsw0(τ)dτdθ
)]
e−λ̃

∗θ−
∫ θ
0
δ(s)ds.

Since (i0, w0) ∈ M̂0, after extensive calculations we can obtain that ψ(a) >

0, φ(θ) > 0 for all a > 0, θ > 0. Note that λ̃∗ > 0, it then follows that

lim
t→+∞

‖Πλ̃∗ T̃ (t)

(
i0
w0

)
‖L1 = +∞.

Therefore, ‖(̃i(·, t), w̃(·, t))T ‖L1 → +∞ as t → +∞. This contradicits (29) since

i(a, t) ≥ ĩ(a, t), w(θ, t) ≥ w̃(θ, t). Thus, W s(E0) ∩ M̂0 = ∅.
From Theorem 4.1, it then follows that the semiflow {U(t)}t≥0 is asymptotically

smooth, point dissipative and that the forward trajectory of a bound set is bounded.
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Furthermore, the DFE E0 is globally asymptotically stable in ∂M̃0. Thus, Theorem
4.2 of Hale and Waltman [8] implies the semiflow {U(t)}t≥0 is uniformly persistent

with respect to (∂M̃0,M̃0). This completes the proof of the first result.
Next, let us prove the second result. Since∫ ∞

0

i(a, t)da ≤ Λ

µ
,

∫ ∞
0

w(θ)dθ ≤ ξmaxΛ

µδw
,

it then follows that∫ ∞
0

β(a)i(a, t)da ≤‖ β(a) ‖L∞
Λ

µ
,

∫ ∞
0

α(θ)w(θ)dθ ≤‖ α(θ) ‖L∞
ξmaxΛ

µδw
.

Therefore,

dS(t)

dt
≥ Λ− µ̄S(t),

where

µ̄ := µ+ ‖ β(a) ‖L∞
Λ

µ
+ ‖ α(θ) ‖L∞

ξmaxΛ

µδw
.

Then for sufficiently large t we have

S(t) ≥ Λ

µ̄
.

Let (S(t), 0, 0, i(·, t), w(·, t)) be the solution to the system (22) with initial con-
dition (S0, 0, 0, i0, w0) ∈ A0. Then for sufficiently small ε > 0, we have S(t) > δ for
all t ≥ 0. Furthermore, since the solution (S(t), 0, 0, i(·, t), w(·, t)) is in the attractor
A0, we have

i(·, t) ≥ î(·, t), w(·, t) ≥ ŵ(·, t)

for all t ≥ 0, where (̂i(a, t), ŵ(θ, t)) satisfies the following auxiliary system

∂î(a, t)

∂t
+
∂î(a, t)

∂a
= −(µ+ γ(a))̂i(a, t),

∂ŵ(θ, t)

∂θ
+
∂ŵ(θ, t)

∂t
= −δ(θ)ŵ(θ, t),

î(0, t) =
Λ

µ̄
(

∫ ∞
0

β(a)̂i(a, t)da+

∫ ∞
0

α(θ)ŵ(θ, t)dθ),

ŵ(0, t) =

∫ ∞
0

ξ(a)̂i(a, t)da,

î(·, 0) = i0, ŵ(·, 0) = w0.

(33)

Similarly to the discussion of system (30), we obtain

lim
t→+∞

e−λ̂
∗tT̂ (t)

(
i0
w0

)
= Πλ̂∗

(
i0
w0

)
:=

(
ψ̂

φ̂

)
,

where T̂ (t) is the semigroup generated by the linear system (33) and λ̂∗ is the

unique real eigenvalue of the system (33), and ψ̂(a) > 0, φ̂(θ) > 0 for all a, θ > 0
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since (i0, w0) ∈ M̂0. Thus there exists T̂ > 0 such that i(a, t) > 0, w(θ, t) > 0 for

all a, θ > 0 and t > T̂ . It then follows that∫ ∞
0

β(a)i(a, t)da+

∫ ∞
0

α(θ)w(θ, t)dθ

≥
∫∞

0
β(a)̂i(a, t)da+

∫∞
0
α(θ)ŵ(θ, t)dθ > 0,∫ ∞

0

ξ(a)i(a, t)da ≥
∫ ∞

0

ξ(a)̂i(a, t)da > 0

for all t > T̂ , a, θ > 0.
Recall that the mapping (t, (S0, 0, 0, i0, w0)) 7→ U(t)(S0, 0, 0, i0, w0) is continuous.

Also, the mapping

(
i0
w0

)
7−→


∫ ∞

0

β(a)i0(a)da+

∫ ∞
0

α(θ)w0(θ)dθ∫ ∞
0

ξ(a)i0(a)da

 (34)

is continuous in the L1 norm. Using the compactness of A0 and A0 is invariant
under the semiflow {u(t)}t≥0, it follows that for each (S0, 0, 0, i0, w0) ∈ A0 we have∫ ∞

0

β(a)i0(a)da+

∫ ∞
0

α(θ)w0(θ)dθ > 0,

∫ ∞
0

ξ(a)i0(a)da > 0.

Using the continuity of the map (34) again and the compactness of A0, the second
result follows. This complete the proof of Theorem 4.3.

5. Proof of Theorem 2.3.

Theorem 5.1. Assume that R0 > 1, then the unique endemic equilibrium E∗(S∗,
i∗(a), w∗(θ)) of system (1) is locally asymptotically stable.

Proof. Introducing the perturbation variables

y1(t) = S(t)− S∗, y2(a, t) = i(a, t)− i∗(a), y3(θ, t) = w(θ, t)− w∗(θ),

and linearizing the system (1) about E∗ we obtain the following system

dy1(t)

dt
= −µR0y1(t)− (

∫ ∞
0

β(a)y2(a, t) +

∫ ∞
0

α(θ)y3(θ, t)dθ)S∗,

∂y2(a, t)

∂t
+
∂y2(a, t)

∂a
= −(µ+ γ(a))y2(a, t),

∂y3(θ, t)

∂t
+
∂y3(θ, t)

∂θ
= −δ(θ)y3(θ, t),

y2(0, t) = µ(R0 − 1)y1(t) + (

∫ ∞
0

β(a)y2(a, t)da+

∫ ∞
0

α(θ)y3(θ, t)dθ)S∗,

y3(0, t) =

∫ ∞
0

ξ(a)y2(a, t)da.

(35)
Let

y1(t) = y0
1e
λt, y2(a, t) = y0

2(a)eλt, y3(θ, t) = y0
3(θ)eλt, (36)
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where y0
1 , y

0
2(a), y0

3(θ) are to be determined. Substituting (36) into (35), we obtain

λy0
1 = −µR0y

0
1 − (

∫ ∞
0

β(a)y0
2(a)da+

∫ ∞
0

α(θ)y0
3(θ)dθ)S∗, (37a)

λy0
2(a) +

dy0
2(a)

da
= −(µ+ γ(a))y0

2(a),

y0
2(0) = µ(R0 − 1)y0

1 + (

∫ ∞
0

β(a)y0
2(a)da+

∫ ∞
0

α(θ)y0
3(θ)dθ)S∗,

(37b)


λy0

3(θ) +
dy0

3(θ)

dθ
= −δ(θ)y0

3(θ),

y0
3(0) =

∫ ∞
0

ξ(a)y0
2(a)da.

(37c)

Integrating the first equation of (37b) from 0 to a yields that

y0
2(a) = y0

2(0)e−(λ+µ)a−
∫ a
0
γ(s)ds. (38)

Substituting (38) into (37c) and solving (37c), we obtain

y0
3(θ) = y0

2(0)

∫ ∞
0

ξ(a)e−(λ+µ)a−
∫ a
0
γ(s)dsda× e−λθ−

∫ θ
0
δ(s)ds. (39)

Substituting (38) and (39) into the (37a) and the second equation of (37b) gives
the following characteristic equation

det

(
µ(R0 − 1) H1(λ)− 1

λ+ µR0 H1(λ)

)
= 0,

i.e.,

H(λ) := (λ+ µ)H1(λ)− λ− µR0 = 0, (40)

where

H1(λ) = S∗(

∫ ∞
0

β(a)e−(λ+µ)a−
∫ a
0
γ(s)dsda+∫ ∞

0

ξ(a)e−(λ+µ)a−
∫ a
0
γ(s)dsda

∫ ∞
0

α(θ)e−λθ−
∫ θ
0
δ(s)dsdθ).

It can be easily check that H1(λ) is continuously differential function and H ′1(λ) < 0,
which implies that H1(λ) is a decreasing function.

We claim that the equation (40) has no root with non-negative real part. Suppose
not. Then the equation (40) has a root λ = x+ iy with x ≥ 0. It then follows that

(x+ µ+ iy)H1(x+ iy)− x− iy − µR0 = 0. (41)

Separating the real part of the expression in (41) we get

<H1(x+ iy) =
(x+ µR0)(x+ µ) + y2

(x+ µ)2 + y2
> 1. (42)
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Notice that

H1(0) = S∗(

∫ ∞
0

β(a)e−µa−
∫ a
0
γ(s)dsda+∫ ∞

0

ξ(a)e−µa−
∫ a
0
γ(s)dsda×

∫ ∞
0

α(θ)e−
∫ θ
0
δ(s)dadθ)

= S∗
µR0

λ

= 1

and

<H1(x+ iy) ≤ |H1(x)| = H1(x) ≤ H1(0) = 1.

This contradicts the equation in (42), implying that (40) cannot have a root with
nonnegative real part. There we have shown that the unique endemic equilibrium
E∗ is locally asymptotically stable. This completes the proof of Theorem 5.1.

Proof of Theorem 2.3. We only need to prove the second results because the first
result can be easily seen from Theorem 4.2. If R0 > 1, it then follows from Theorem
2.1 that the system (1) has a unique positive equilibrium E∗(S∗, i∗(a), w∗(θ)), and
S∗, i∗(a), w∗(θ) satisfy the following equations:

Λ = µS∗ + i∗(0),

di∗(a)

da
= −(µ+ γ(a))i∗(a),

dw∗(θ)

dθ
= −δ(θ)w∗(θ),

(43)

and

i∗(0) = S∗
∫ ∞

0

β(a)i∗(a)da+ S∗
∫ ∞

0

α(θ)w∗(θ)dθ,

w∗(0) =

∫ ∞
0

ξ(a)i∗(a)da.

(44)

From Theorem 5.1 we know that the unique endemic equilibrium E∗(S∗, i∗(a),
w∗(θ)) is locally asymptotically stable. In the following, we only need to show that
the unique endemic equilibrium E∗(S∗, i∗(a), w∗(θ)) is global attractor in R+ ×
L1

+((0,∞),R2) \ ∂M0, i.e.,

A0 = {E∗}.
For ease of presentation, let us define

G(x) := x− 1− lnx;

ρ(θ) := e
∫ θ
0
δ(s)ds

∫ ∞
θ

α(s)e−
∫ s
0
δ(ς)dςds;

η(a) := eµa+
∫ a
0
γ(s)ds

(∫ ∞
a

β(s)e−µs−
∫ s
0
γ(ς)dςds

+ρ(0)
∫∞
a
ξ(s)e−µs−

∫ s
0
γ(ς)dςds

)
.

We can easily check that

η(0) =
1

S∗
, ρ(0) =

∫ ∞
0

α(θ)e−
∫ θ
0
δ(s)dsdθ, (45)

and the function G(x) has the global minimum at x = 1 and G(1) = 0.
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Let u(t) = (S(t), i(·, t), w(·, t)) ba a complete solution to system (1) that lies in
the attractor A0. From Theorem 4.3, we know there exist δ1, δ2 > 0 such that

δ1 ≤
S(t)

S∗
≤ δ2, δ1 ≤

i(a, t)

i∗(a)
≤ δ2, δ1 ≤

w(θ, t)

w∗(θ)
≤ δ2 (46)

for all t ∈ R and a, θ ≥ 0. Now let us define the following Lyapunov function

V (t) = S∗G
(S(t)

S∗

)
+ S∗

∫ ∞
0

η(a)i∗(a)G
( i(a, t)
i∗(a)

)
da

+S∗
∫ ∞

0

ρ(θ)w∗(θ)G
(w(θ, t)

w∗(θ)

)
dθ.

(47)

From (46) we can easily see that the function V is bounded when restricted to A0.
Since the function G(x) is nonnegative for all x > 0, and has the global minimum at
x = 1, it then follows that the function V (t) is nonnegative and the point E∗ is the
global minimum point. We can also easily see that the function V (t) is continuously
differentiable. Differentiating V (t) along solutions to (1) in A0, using (43),(44) and
collecting terms, we obtain

dV (t)

dt
|(1) = − µ

S(t)
(S(t)− S∗)2 + (1− S∗

S(t)
)(i∗(0)− i(0, t))−

S∗
∫ ∞

0

η(a)
(
1− i∗(a)

i(a, t)

)(∂i(a, t)
∂a

+ (µ+ γ(a))i(a, t)
)
da−

S∗
∫ ∞

0

ρ(θ)
(
1− w∗(θ)

w(θ, t)

)(∂w(θ, t)

∂θ
+ δw(θ, t)

)
dθ.

(48)
Noting that

∂

∂a
G
( i(a, t)
i∗(a)

)
=
(

1− i∗(a)

i(a, t)

)( ia(a, t)

i∗(a)
− i(a, t)i∗a(a)

[i∗(a)]2

)
,

where ia(a, t) =
∂i(a, t)

∂a
, i∗a(a) =

di∗(a)

da
, by using (43) it then follows that

(
1− i∗(a)

i(a, t)

)∂i(a, t)
∂a

= i∗(a)
∂

∂a
G
( i(a, t)
i∗(a)

)
+ (µ+ γ(a))(i∗(a)− i(a, t)).

Thus, by using integration by parts we have∫ ∞
0

η(a)
(

1− i∗(a)

i(a, t)

)∂i(a, t)
∂a

da

=

∫ ∞
0

η(a)i∗(a)
∂

∂a
G
( i(a, t)
i∗(a)

)
da+

∫ ∞
0

η(a)(µ+ γ(a))(i∗(a)− i(a, t))da

= η(a)i∗(a)G
( i(a, t)
i∗(a)

)∣∣∣a=∞

a=0
−
∫ ∞

0

G
( i(a, t)
i∗(a)

)(dη(a)

da
i∗(a)

+η(a)
di∗(a)

da

)
da+

∫ ∞
0

η(a)(µ+ γ(a))(i∗(a)− i(a, t))da

= η(a)i∗(a)G
( i(a, t)
i∗(a)

)∣∣∣a=∞

a=0
+

∫ ∞
0

G
( i(a, t)
i∗(a)

)(
β(a) + ρ(0)ξ(a)

)
i∗(a)da

+

∫ ∞
0

η(a)(µ+ γ(a))(i∗(a)− i(a, t))da.

(49)
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Here, we have used the second equation in (43) and the equation that

dη(a)

da
= (µ+ γ(a))η(a)− (β(a) + ρ(0)ξ(a)).

Substituting the equation (49) into the second term in equation (48) gives

S∗
∫ ∞

0

η(a)
(
1− i∗(a)

i(a, t)

)(∂i(a, t)
∂a

+ (µ+ γ(a))i(a, t)
)
da = S∗η(a)×

i∗(a)G
( i(a, t)
i∗(a)

)∣∣∣a=∞

a=0
+ S∗

∫ ∞
0

G
( i(a, t)
i∗(a)

)(
β(a) + ρ(0)ξ(a)

)
i∗(a)da.

(50)

Similarly, by using the third equation in (43), the second equation in (44) and
the equation that

dρ(θ)

dθ
= δ(θ)ρ(θ)− α(θ),

the third term in equation (48) can be expressed as

S∗
∫ ∞

0

ρ(θ)
(
1− w∗(θ)

w(θ, t)

)(∂w(θ, t)

∂θ
+ δ(θ)w(θ, t)

)
dθ

= S∗ρ(θ)w∗(θ)G
(w(θ, t)

w∗(θ)

)∣∣∣θ=∞
θ=0

+ S∗
∫ ∞

0

G
(w(θ, t)

w∗(θ)

)
w∗(θ)α(θ)dθ.

(51)

Substituting (50) and (51) into (48) yields that

dV (t)

dt
|(1)

= − µ

S(t)
(S(t)− S∗)2 + (1− S∗

S(t)
)(i∗(0)− i(0, t))− S∗η(a)i∗(a)G×( i(a, t)

i∗(a)

)∣∣∣a=∞

a=0
+ S∗

∫ ∞
0

G
( i(a, t)
i∗(a)

)(
β(a) + ρ(0)ξ(a)

)
i∗(a)da−

S∗ρ(θ)w∗(θ)G
(w(θ, t)

w∗(θ)

)∣∣∣θ=∞
θ=0

+ S∗
∫ ∞

0

G
(w(θ, t)

w∗(θ)

)
w∗(θ)α(θ)dθ.

(52)

Putting the equations (45) into (52), using (2) and (44), and rearranging the terms,
we have

dV (t)

dt
|(1) = − µ

S(t)
(S(t)− S∗)2 − S∗ρ(θ)w∗(θ)G

(w(θ, t)

w∗(θ)

)∣∣∣
θ=∞

−S∗η(a)i∗(a)G
( i(a, t)
i∗(a)

)∣∣∣
a=∞

+ S∗
∫ ∞

0

(
1− S∗

S(t)
− ln

i(0, t)

i∗(0)

+ ln
i(a, t)

i∗(a)

)
β(a)i∗(a)da+ S∗

∫ ∞
0

(
1− S∗

S(t)
− ln

i(0, t)

i∗(0)
+ ln

w(θ, t)

w∗(θ)

)
×

w∗(θ)α(θ)dθ − S∗ρ(0)w∗(0) ln
w(0, t)

w∗(0)
+ S∗ρ(0)

∫ ∞
0

ln
i(a, t)

i∗(a)
ξ(a)i∗(a)da.

(53)

Notice that

ρ(0)w∗(0) ln
w(0, t)

w∗(0)
= ρ(0)

∫ ∞
0

ξ(a)i∗(a) ln
w(0, t)

w∗(0)
da.

Straight forward computation yields that

−S∗ρ(0)w∗(0) ln
w(0, t)

w∗(0)
+ S∗ρ(0)

∫ ∞
0

ln
i(a, t)

i∗(a)
ξ(a)i∗(a)da

= −S∗ρ(0)

∫ ∞
0

ξ(a)i∗(a)G
( i(a, t)w∗(0)

i∗(a)w(0, t)

)
da.

(54)
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Observe also that

i∗(0)

S∗
=

i∗(0)S(t)

S∗i(0, t)

(∫ ∞
0

β(a)i(a, t)da+

∫ ∞
0

α(θ)w(θ, t)dθ
)

=

∫ ∞
0

β(a)i∗(a)
i∗(0)S(t)i(a, t)

S∗i(0, t)i∗(a)
da+

∫ ∞
0

α(θ)w∗(θ)
i∗(0)S(t)w(θ, t)

S∗i(0, t)w∗(θ)
dθ.

By using the first equation in (44), we have

i∗(0)

S∗
=

∫ ∞
0

β(a)i∗(a)da+

∫ ∞
0

α(θ)w∗(θ)dθ.

It then follows that∫ ∞
0

β(a)i∗(a)
(

1− i∗(0)S(t)i(a, t)

S∗i(0, t)i∗(a)

)
da+∫ ∞

0

α(θ)w∗(θ)
(

1− i∗(0)S(t)w(θ, t)

S∗i(0, t)w∗(θ)

)
dθ = 0.

(55)

Adding equation (55) to the right side of equation (53), the sum of the fourth term
and the fifth term in equation (53) can be expressed as

S∗
∫ ∞

0

(
1− S∗

S(t)
− ln

i(0, t)

i∗(0)
+ ln

i(a, t)

i∗(a)

)
β(a)i∗(a)da+

S∗
∫ ∞

0

(
1− S∗

S(t)
− ln

i(0, t)

i∗(0)
+ ln

w(θ, t)

w∗(θ)

)
w∗(θ)α(θ)dθ

= S∗
∫ ∞

0

(
2− S∗

S(t)
− ln

i(0, t)

i∗(0)
+ ln

i(a, t)

i∗(a)
− i∗(0)S(t)i(a, t)

S∗i(0, t)i∗(a)

)
β(a)i∗(a)da

+S∗
∫ ∞

0

(
2− S∗

S(t)
− ln

i(0, t)

i∗(0)
+ ln

w(θ, t)

w∗(θ)
− i∗(0)S(t)w(θ, t)

S∗i(0, t)w∗(θ)

)
w∗(θ)α(θ)dθ

= −S∗
∫ ∞

0

β(a)i∗(a)
[
G
( S∗

S(t)

)
+ G

( i∗(0)S(t)i(a, t)

S∗i(0, t)i∗(a)

)]
da−

S∗
∫ ∞

0

w∗(θ)α(θ)
[
G
( S∗

S(t)

)
+ G

( i∗(0)S(t)w(θ, t)

S∗i(0, t)w∗(θ)

)]
dθ.

(56)
Substituting equations (54) and (56) into (53) gives

dV (t)

dt
|(1) = − µ

S(t)
(S(t)− S∗)2 − S∗ρ(θ)w∗(θ)G

(w(θ, t)

w∗(θ)

)∣∣∣
θ=∞

−S∗η(a)i∗(a)G
( i(a, t)
i∗(a)

)∣∣∣
a=∞

− S∗
∫ ∞

0

β(a)i∗(a)
[
G
( S∗

S(t)

)
+

G
( i∗(0)S(t)i(a, t)

S∗i(0, t)i∗(a)

)]
da− S∗

∫ ∞
0

w∗(θ)α(θ)
[
G
( S∗

S(t)

)
+

G
( i∗(0)S(t)w(θ, t)

S∗i(0, t)w∗(θ)

)]
dθ − S∗ρ(0)

∫ ∞
0

G
( i(a, t)w∗(0)

i∗(a)w(0, t)

)
ξ(a)i∗(a)da

≤ 0

(57)

since the function G(x) is nonnegative for all x > 0. Furthermore, we can easily see

that
dV

dt
|(1) = 0 if and only if

S(t) = S∗, i(a, t) = i∗(a), w(θ, t) = w∗(θ). (58)

We have shown that the function V is non-increasing along any complete solu-
tion u(t) in the attractor A0. Consider a point P (SP , iP , wp) in the alpha limit
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set of u(t). We deduce that V is constant along any complete orbit uP (t) =
(SP (t), iP (·, t), w(·, t)) passing through P ∈ A0. By (58), applied to vP (t), we
have

SP = S∗, iP (a, t) = i∗(a), wP (θ, t) = w∗(θ).

Therefore the alpha limit set of u(t) is simply {E∗}. Similarly, the omega limit set
of u(t) is also {E∗}. Since t → V (u(t)) is non-increasing function , it then follows
that

V (u(t)) = V (E∗)

for all t ∈ R.. By (58), we can obtain that u(t) = E∗ for all t ∈ R. We have shown
that the arbitrary complete solution u(t) in the attractor A0 must be the endemic
equilibrium solution. Thus we have shown that

A0 = {E∗}.

This completes the proof of Theorem 2.3.

6. Discussion. In this section, we mainly summarize our results and make further
remarks.

Based on the existing multi-stage cholera models formulated in [28] and [22],
we first formulated more general model to describe the transmission dynamics of
cholera. In this model we include two pathways of infection, namely direct and
indirect via contaminated water, infection-age-dependent infectivity and variable
periods of infectiousness. The model can be not only used for modeling waterborne
disease transmission, such as Giardia, Cryptosporidium, and Campylobacter, but
also regarded as a general virus dynamics model to describe the in vivo infection
process of many viruses [22], such as HIV, HBV. Since in the paper age is considered
as a continuous variable, the more general model is described by first order partial
differential equations with nonlocal boundary conditions. We further discussed
the explicit relevance of model formulations between age-structured model and the
multi-stage ODE models, i.e., under some suitable conditions the age-structured
model can be reduced into the multi-stage ODE models. This means that the age-
structured model is a generalization of the multi-stage ODE models, and has greater
flexibility that may better represent the underlying biology of the infection process
[10].

We then derived the basic reproduction number R0 from the biological meanings
of the model parameters. We showed that the qualitative behaviors of the system
(1) are completely determined by the magnitudes of the basic reproduction R0: if
R0 < 1 the disease-free equilibrium is globally asymptotically stable in the feasible
region and the disease always dies out; if R0 > 1, a unique endemic equilibrium is
globally asymptotically stable in the interior of the feasible region and the disease
will persist at the endemic equilibrium if it is initially present. The same results are
also obtained from analyzing the multi-stage models in many papers, such as [22]
[27] and references therein. Thus the results obtained from the multi-stage ODE
models are extended to the general age-structured model.

Because the age-structured model in this paper is described by partial differential
equations and the tools used for the ODE models can not be used for analyzing
the dynamics of PDE models, it is difficult to analyze the dynamics, particularly
the global stability, of the PDE models due to the lack of practical tools. As
far as we know, global studies of age-structured models are very limited due to
the lack of applicable theories [4]. The method of Lyapunov functions is most
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commonly used to prove the global stability of nonlinear dynamical systems. In
this paper, by constructed a class of global Lyapunov functions, and proved that
the dynamics of the age of infection cholera model are completely determined by the
basic reproduction number R0. Lyapunov functions of this type has been widely
used for analyzing the ODE models in the literature (e.g., [5],[6],[9]) and was recently
rediscovered ([10],[19]) to study the global stability of endemic equilibrium for the
epidemic models with age of infection. We should point out that the techniques
used for the PDE models are quite different from the techniques used for the ODE
models, thus the process that we prove the global stability of the age-structured
model is not the trivial extension used for analyzing the multi-stage ODE models
in [22, 27] despite the conclusions are the same.

Finally, in this paper the modeling of cholera transmission dynamics is relatively
simple compared with the modeling of many other infectious diseases. Thus it is
necessary to improve the mathematical modeling for describing the transmission
dynamics of waterborne diseases, and analyze the qualitative behavior of the im-
proved models so that we can have a better understanding of the waterborne disease
dynamics. In addition, as we all know that the top priority of global public safety
is to prevent and contain the spread of infectious diseases, therefore we are also
interested in exploring the effectiveness and implication of various preventive and
control strategies on the transmission dynamics of waterborne diseases. We leave
these for future investigations.
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gestions that helped to improve this paper greatly.
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