Research article

A note on advection-diffusion cholera model with bacterial hyperinfectivity

  • Received: 15 August 2020 Accepted: 18 October 2020 Published: 28 October 2020
  • This note gives a supplement to the recent work of Wang and Wang (2019) in the sense that: (ⅰ) for the critical case where 0=1, cholera-free steady state is globally asymptotically stable; (ⅱ) in a homogeneous case, the positive constant steady-state is globally asymptotically stable with additional condition when 0>1. Our first result is achieved by proving the local asymptotic stability and global attractivity. Our second result is obtained by Lyapunov function.

    Citation: Xiaoqing Wu, Yinghui Shan, Jianguo Gao. A note on advection-diffusion cholera model with bacterial hyperinfectivity[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7398-7410. doi: 10.3934/mbe.2020378

    Related Papers:

    [1] Kazuo Yamazaki, Xueying Wang . Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences and Engineering, 2017, 14(2): 559-579. doi: 10.3934/mbe.2017033
    [2] Xiaowei An, Xianfa Song . A spatial SIS model in heterogeneous environments with vary advective rate. Mathematical Biosciences and Engineering, 2021, 18(5): 5449-5477. doi: 10.3934/mbe.2021276
    [3] Jinliang Wang, Ran Zhang, Toshikazu Kuniya . A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences and Engineering, 2016, 13(1): 227-247. doi: 10.3934/mbe.2016.13.227
    [4] Chenwei Song, Rui Xu, Ning Bai, Xiaohong Tian, Jiazhe Lin . Global dynamics and optimal control of a cholera transmission model with vaccination strategy and multiple pathways. Mathematical Biosciences and Engineering, 2020, 17(4): 4210-4224. doi: 10.3934/mbe.2020233
    [5] Jiazhe Lin, Rui Xu, Xiaohong Tian . Transmission dynamics of cholera with hyperinfectious and hypoinfectious vibrios: mathematical modelling and control strategies. Mathematical Biosciences and Engineering, 2019, 16(5): 4339-4358. doi: 10.3934/mbe.2019216
    [6] Fred Brauer, Zhisheng Shuai, P. van den Driessche . Dynamics of an age-of-infection cholera model. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1335-1349. doi: 10.3934/mbe.2013.10.1335
    [7] Conrad Ratchford, Jin Wang . Multi-scale modeling of cholera dynamics in a spatially heterogeneous environment. Mathematical Biosciences and Engineering, 2020, 17(2): 948-974. doi: 10.3934/mbe.2020051
    [8] Azmy S. Ackleh, Keng Deng, Yixiang Wu . Competitive exclusion and coexistence in a two-strain pathogen model with diffusion. Mathematical Biosciences and Engineering, 2016, 13(1): 1-18. doi: 10.3934/mbe.2016.13.1
    [9] Wenzhang Huang, Maoan Han, Kaiyu Liu . Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences and Engineering, 2010, 7(1): 51-66. doi: 10.3934/mbe.2010.7.51
    [10] Pengfei Liu, Yantao Luo, Zhidong Teng . Role of media coverage in a SVEIR-I epidemic model with nonlinear incidence and spatial heterogeneous environment. Mathematical Biosciences and Engineering, 2023, 20(9): 15641-15671. doi: 10.3934/mbe.2023698
  • This note gives a supplement to the recent work of Wang and Wang (2019) in the sense that: (ⅰ) for the critical case where 0=1, cholera-free steady state is globally asymptotically stable; (ⅱ) in a homogeneous case, the positive constant steady-state is globally asymptotically stable with additional condition when 0>1. Our first result is achieved by proving the local asymptotic stability and global attractivity. Our second result is obtained by Lyapunov function.




    [1] X. Wang, F. B. Wang, Impact of bacterial hyperinfectivity on cholera epidemics in a spatially heterogeneous environment, J. Math. Anal. Appl., 480 (2019), 123407. doi: 10.1016/j.jmaa.2019.123407
    [2] L. Cai, C. Modnak, J. Wang, An age-structured model for cholera control with vaccination, Appl. Math. Comput., 299 (2017), 127-140.
    [3] F. Brauer, Z. Shuai, P. van den Driessche, Dynamics of an age-of-infection cholera model, Math. Biosci. Eng., 10 (2013), 1335-1349. doi: 10.3934/mbe.2013.10.1335
    [4] K. Yamazaki, X. Wang, Global stability and uniform persistence of the reaction-convectiondiffusion cholera epidemic model, Math. Biosci. Eng., 14 (2017), 559-579.
    [5] J. Wang, J. Wang, Analysis of a reaction-diffusion cholera model with distinct dispersal rates in the human population, J. Dyn. Differ. Equations, 2020 (2020), 1-27.
    [6] J. Wang, F. Xie, T. Kuniya, Analysis of a reaction-diffusion cholera epidemic model in a spatially heterogeneous environment, Commun. Nonlinear Sci. Numer. Simul., 80 (2020), 104951. doi: 10.1016/j.cnsns.2019.104951
    [7] X. Zhang, H. Peng, Stationary distribution of a stochastic cholera epidemic model with vaccination under regime switching, Appl. Math. Lett., 102 (2020), 106095. doi: 10.1016/j.aml.2019.106095
    [8] W. Wang, X. Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673. doi: 10.1137/120872942
    [9] H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211. doi: 10.1137/080732870
    [10] R. Cui, K. Y. Lam, Y. Lou, Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments, J. Differ. Equations, 263 (2017), 2343-2373. doi: 10.1016/j.jde.2017.03.045
    [11] P. Magal, G. Webb, Y. Wu, On a vector-host epidemic model with spatial structure, Nonlinearity, 31 (2018), 5589-5614. doi: 10.1088/1361-6544/aae1e0
    [12] Y. Wu, X. Zou, Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates, J. Differ. Equations, 264 (2018), 4989-5024. doi: 10.1016/j.jde.2017.12.027
    [13] Y. Yang, J. Zhou, C. Hsu, Threshold dynamics of a diffusive SIRI model with nonlinear incidence rate, J. Math. Anal. Appl., 478 (2019), 874-896. doi: 10.1016/j.jmaa.2019.05.059
    [14] X. Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2003.
    [15] Z. Shuai, P. van den Driessche, Global dynamics of cholera models with differential infectivity, Math. Biosci., 234 (2011), 118-126. doi: 10.1016/j.mbs.2011.09.003
    [16] H. Zhang, J. Xia, P. Georgescu, Stability analyses of deterministic and stochastic SEIRI epidemic models with nonlinear incidence rates and distributed delay, Nonlinear Anal. Modell. Control, 22 (2017), 64-83.
    [17] Y. Yang, L. Zou, J. Zhou, C. H. Hsu, Dynamics of a waterborne pathogen model with spatial heterogeneity and general incidence rate, Nonlinear Anal. Real World Appl., 53 (2020), 103065. doi: 10.1016/j.nonrwa.2019.103065
    [18] H. L. Smith, H. R. Thieme, Dynamical Systems and Population Persistence, American Mathematical Society, Providence, 2011.
  • This article has been cited by:

    1. Yaping Wang, Fuqin Sun, Global Stability of a HIV-1 Model with General Nonlinear Incidence and Delays, 2013, 2013, 1110-757X, 1, 10.1155/2013/324546
    2. Horst R. Thieme, Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators, 2011, 250, 00220396, 3772, 10.1016/j.jde.2011.01.007
    3. Hongying Shu, Lin Wang, James Watmough, Sustained and transient oscillations and chaos induced by delayed antiviral immune response in an immunosuppressive infection model, 2014, 68, 0303-6812, 477, 10.1007/s00285-012-0639-1
    4. Yiliang Liu, Peifen Lu, Ivan Szanto, Numerical Analysis for a Fractional Differential Time-Delay Model of HIV Infection of CD4+T-Cell Proliferation under Antiretroviral Therapy, 2014, 2014, 1085-3375, 1, 10.1155/2014/291614
    5. Taofeek O. Alade, On the generalized Chikungunya virus dynamics model with distributed time delays, 2020, 2195-268X, 10.1007/s40435-020-00723-x
    6. A. M. Elaiw, Global Dynamics of an HIV Infection Model with Two Classes of Target Cells and Distributed Delays, 2012, 2012, 1026-0226, 1, 10.1155/2012/253703
    7. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays, 2013, 10, 1551-0018, 483, 10.3934/mbe.2013.10.483
    8. Horst R. Thieme, Hal L. Smith, Chemostats and epidemics: Competition for nutrients/hosts, 2013, 10, 1551-0018, 1635, 10.3934/mbe.2013.10.1635
    9. Ahmed M. Elaiw, Taofeek O. Alade, Saud M. Alsulami, Global dynamics of delayed CHIKV infection model with multitarget cells, 2019, 60, 1598-5865, 303, 10.1007/s12190-018-1215-7
    10. Sveir epidemiological model with varying infectivity and distributed delays, 2011, 8, 1551-0018, 875, 10.3934/mbe.2011.8.875
    11. A. M. Elaiw, A. A. Raezah, Stability of general virus dynamics models with both cellular and viral infections and delays, 2017, 40, 01704214, 5863, 10.1002/mma.4436
    12. Zohreh Dadi, 2017, chapter 7, 9781522525158, 148, 10.4018/978-1-5225-2515-8.ch007
    13. Gang Huang, Xianning Liu, Yasuhiro Takeuchi, Lyapunov Functions and Global Stability for Age-Structured HIV Infection Model, 2012, 72, 0036-1399, 25, 10.1137/110826588
    14. Zhimin Chen, Xiuxiang Liu, Liling Zeng, Threshold dynamics and threshold analysis of HIV infection model with treatment, 2020, 2020, 1687-1847, 10.1186/s13662-020-03057-2
    15. Tsuyoshi Kajiwara, Toru Sasaki, Yasuhiro Takeuchi, Construction of Lyapunov functionals for delay differential equations in virology and epidemiology, 2012, 13, 14681218, 1802, 10.1016/j.nonrwa.2011.12.011
    16. Ahmed M. Elaiw, Taofeek O. Alade, Saud M. Alsulami, Analysis of within-host CHIKV dynamics models with general incidence rate, 2018, 11, 1793-5245, 1850062, 10.1142/S1793524518500626
    17. Xia Wang, Shengqiang Liu, A class of delayed viral models with saturation infection rate and immune response, 2013, 36, 01704214, 125, 10.1002/mma.2576
    18. A. M. Elaiw, A. S. Alsheri, Global Dynamics of HIV Infection of CD4+T Cells and Macrophages, 2013, 2013, 1026-0226, 1, 10.1155/2013/264759
    19. A. M. Shehata, A. M. Elaiw, E. Kh. Elnahary, M. Abul-Ez, Stability analysis of humoral immunity HIV infection models with RTI and discrete delays, 2017, 5, 2195-268X, 811, 10.1007/s40435-016-0235-0
    20. Areej Alshorman, Xia Wang, M. Joseph Meyer, Libin Rong, Analysis of HIV models with two time delays, 2017, 11, 1751-3758, 40, 10.1080/17513758.2016.1148202
    21. Haitao Song, Qiaochu Wang, Weihua Jiang, Stability and Hopf Bifurcation of a Computer Virus Model with Infection Delay and Recovery Delay, 2014, 2014, 1110-757X, 1, 10.1155/2014/929580
    22. Yongqi Liu, Yanghui Hu, 2018, Global Stability Analysis for a Virus Dynamics Model with Distributed Intracellular Delays and Eclipse Stages, 978-988-15639-5-8, 429, 10.23919/ChiCC.2018.8483516
    23. Saroj Kumar Sahani, 2017, Chapter 38, 978-981-10-3324-7, 376, 10.1007/978-981-10-3325-4_38
    24. M. Pitchaimani, C. Monica, Global stability analysis of HIV-1 infection model with three time delays, 2015, 48, 1598-5865, 293, 10.1007/s12190-014-0803-4
    25. Yongqi Liu, Qigui Yang, GLOBAL STABILITY ANALYSIS AND PERMANENCE FOR AN HIV-1 DYNAMICS MODEL WITH DISTRIBUTED DELAYS, 2020, 10, 2156-907X, 192, 10.11948/20190106
    26. Xiaomei Feng, Zhidong Teng, Fengqin Zhang, Global dynamics of a general class of multi-group epidemic models with latency and relapse, 2015, 12, 1551-0018, 99, 10.3934/mbe.2015.12.99
    27. Ahmed Elaiw, Taofeek Alade, Saud Alsulami, Global Stability of Within-Host Virus Dynamics Models with Multitarget Cells, 2018, 6, 2227-7390, 118, 10.3390/math6070118
    28. A. M. Elaiw, N. H. AlShamrani, Stability of a general delay‐distributed virus dynamics model with multi‐staged infected progression and immune response, 2017, 40, 0170-4214, 699, 10.1002/mma.4002
    29. SHIFEI WANG, DINGYU ZOU, VIRAL DYNAMICS IN A DISTRIBUTED TIME DELAYED HCV PATHOGENESIS MODEL, 2012, 05, 1793-5245, 1250056, 10.1142/S1793524512500568
    30. Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility, 2013, 10, 1551-0018, 369, 10.3934/mbe.2013.10.369
    31. A. M. Elaiw, E. K. Elnahary, A. A. Raezah, Effect of cellular reservoirs and delays on the global dynamics of HIV, 2018, 2018, 1687-1847, 10.1186/s13662-018-1523-0
    32. Ahmed M. Elaiw, Taofeek O. Alade, Saud M. Alsulami, Analysis of latent CHIKV dynamics models with general incidence rate and time delays, 2018, 12, 1751-3758, 700, 10.1080/17513758.2018.1503349
    33. Maoxin Liao, Yanjin Liu, Shinan Liu, Ali M. Meyad, Stability and Hopf bifurcation of HIV-1 model with Holling II infection rate and immune delay, 2021, 1751-3758, 1, 10.1080/17513758.2021.1895334
    34. Hongying Shu, Lin Wang, James Watmough, Global Stability of a Nonlinear Viral Infection Model with Infinitely Distributed Intracellular Delays and CTL Immune Responses, 2013, 73, 0036-1399, 1280, 10.1137/120896463
    35. Xueyong Zhou, Xiangyun Shi, Modelling the Drugs Therapy for HIV Infection with Discrete-Time Delay, 2014, 2014, 1085-3375, 1, 10.1155/2014/294052
    36. A. M. Elaiw, A. A. Raezah, A. S. Alofi, Stability of a general delayed virus dynamics model with humoral immunity and cellular infection, 2017, 7, 2158-3226, 065210, 10.1063/1.4989569
    37. Bing Li, Yuming Chen, Xuejuan Lu, Shengqiang Liu, A delayed HIV-1 model with virus waning term, 2016, 13, 1551-0018, 135, 10.3934/mbe.2016.13.135
    38. Ahmed M. Elaiw, Sami E. Almalki, A.D. Hobiny, Ahmed Farouk, Stability of delayed CHIKV dynamics model with cell-to-cell transmission, 2020, 38, 10641246, 2425, 10.3233/JIFS-179531
    39. Shengqiang Liu, Shaokai Wang, Lin Wang, Global dynamics of delay epidemic models with nonlinear incidence rate and relapse, 2011, 12, 14681218, 119, 10.1016/j.nonrwa.2010.06.001
    40. Hongying Shu, Lin Wang, Role of CD4 + T-cell proliferation in HIV infection under antiretroviral therapy, 2012, 394, 0022247X, 529, 10.1016/j.jmaa.2012.05.027
    41. Xia Wang, Shengqiang Liu, Libin Rong, Permanence and extinction of a non-autonomous HIV-1 model with time delays, 2014, 19, 1553-524X, 1783, 10.3934/dcdsb.2014.19.1783
    42. Nicoleta Tarfulea, Drug therapy model with time delays for HIV infection with virus-to-cell and cell-to-cell transmissions, 2019, 59, 1598-5865, 677, 10.1007/s12190-018-1196-6
    43. Fengqin Zhang, Jianquan Li, Chongwu Zheng, Lin Wang, Dynamics of an HBV/HCV infection model with intracellular delay and cell proliferation, 2017, 42, 10075704, 464, 10.1016/j.cnsns.2016.06.009
    44. Jinliang Wang, Ran Zhang, Toshikazu Kuniya, The dynamics of an SVIR epidemiological model with infection age: Table 1., 2016, 81, 0272-4960, 321, 10.1093/imamat/hxv039
    45. A. M. Elaiw, N. H. AlShamrani, Global properties of nonlinear humoral immunity viral infection models, 2015, 08, 1793-5245, 1550058, 10.1142/S1793524515500588
    46. A.M. Elaiw, N.H. AlShamrani, Global stability of humoral immunity virus dynamics models with nonlinear infection rate and removal, 2015, 26, 14681218, 161, 10.1016/j.nonrwa.2015.05.007
    47. Yongqi Liu, Chunsong Wu, Global Dynamics for an HIV Infection Model with Crowley-Martin Functional Response and Two Distributed Delays, 2018, 31, 1009-6124, 385, 10.1007/s11424-017-6038-3
    48. BING LI, SHENGQIANG LIU, A DELAYED HIV-1 MODEL WITH MULTIPLE TARGET CELLS AND GENERAL NONLINEAR INCIDENCE RATE, 2013, 21, 0218-3390, 1340012, 10.1142/S0218339013400123
    49. Zenab Alrikaby, Xia Liu, Tonghua Zhang, Federico Frascoli, Stability and Hopf bifurcation analysis for a Lac operon model with nonlinear degradation rate and time delay, 2019, 16, 1551-0018, 1729, 10.3934/mbe.2019083
    50. Wenjuan Guo, Qimin Zhang, Ming Ye, Global threshold dynamics and finite-time contraction stability for age-structured HIV models with delay, 2022, 35, 0951-7715, 4437, 10.1088/1361-6544/ac7503
    51. Wenjuan Guo, Qimin Zhang, Xining Li, Ming Ye, Finite-time stability and optimal impulsive control for age-structured HIV model with time-varying delay and Lévy noise, 2021, 106, 0924-090X, 3669, 10.1007/s11071-021-06974-3
    52. Hasifa Nampala, Matylda Jablonska-Sabuka, Martin Singull, Mustafa Inc, Mathematical Analysis of the Role of HIV/HBV Latency in Hepatocytes, 2021, 2021, 1687-0042, 1, 10.1155/2021/5525857
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3480) PDF downloads(95) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog