Competitive exclusion and coexistence in a two-strain pathogen model with diffusion

  • Received: 01 December 2014 Accepted: 29 June 2018 Published: 01 October 2015
  • MSC : Primary: 92D30, 91D25; Secondary: 35K57, 37N25, 35B40.

  • We consider a two-strain pathogen model described by a system of reaction-diffusion equations. We define a basic reproduction number R0 and show that when the model parameters are constant (spatially homogeneous), if R0>1 then one strain will outcompete the other strain and drive it to extinction, but if R01 then the disease-free equilibrium is globally attractive. When we assume that the diffusion rates are equal while the transmission and recovery rates are heterogeneous, then there are two possible outcomes under the condition R0>1: 1) Competitive exclusion where one strain dies out. 2) Coexistence between the two strains. Thus, spatial heterogeneity promotes coexistence.

    Citation: Azmy S. Ackleh, Keng Deng, Yixiang Wu. Competitive exclusion and coexistence in a two-strain pathogen model with diffusion[J]. Mathematical Biosciences and Engineering, 2016, 13(1): 1-18. doi: 10.3934/mbe.2016.13.1

    Related Papers:

    [1] Chentong Li, Jinyan Wang, Jinhu Xu, Yao Rong . The Global dynamics of a SIR model considering competitions among multiple strains in patchy environments. Mathematical Biosciences and Engineering, 2022, 19(5): 4690-4702. doi: 10.3934/mbe.2022218
    [2] Xue-Zhi Li, Ji-Xuan Liu, Maia Martcheva . An age-structured two-strain epidemic model with super-infection. Mathematical Biosciences and Engineering, 2010, 7(1): 123-147. doi: 10.3934/mbe.2010.7.123
    [3] Matthew D. Johnston, Bruce Pell, David A. Rubel . A two-strain model of infectious disease spread with asymmetric temporary immunity periods and partial cross-immunity. Mathematical Biosciences and Engineering, 2023, 20(9): 16083-16113. doi: 10.3934/mbe.2023718
    [4] Ali Mai, Guowei Sun, Lin Wang . The impacts of dispersal on the competition outcome of multi-patch competition models. Mathematical Biosciences and Engineering, 2019, 16(4): 2697-2716. doi: 10.3934/mbe.2019134
    [5] Abdelrazig K. Tarboush, Jing Ge, Zhigui Lin . Coexistence of a cross-diffusive West Nile virus model in a heterogenous environment. Mathematical Biosciences and Engineering, 2018, 15(6): 1479-1494. doi: 10.3934/mbe.2018068
    [6] Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, Don G. Ennis . A structured model for the spread of Mycobacterium marinum: Foundations for a numerical approximation scheme. Mathematical Biosciences and Engineering, 2014, 11(4): 679-721. doi: 10.3934/mbe.2014.11.679
    [7] Nancy Azer, P. van den Driessche . Competition and Dispersal Delays in Patchy Environments. Mathematical Biosciences and Engineering, 2006, 3(2): 283-296. doi: 10.3934/mbe.2006.3.283
    [8] Junjing Xiong, Xiong Li, Hao Wang . The survival analysis of a stochastic Lotka-Volterra competition model with a coexistence equilibrium. Mathematical Biosciences and Engineering, 2019, 16(4): 2717-2737. doi: 10.3934/mbe.2019135
    [9] Yanxia Dang, Zhipeng Qiu, Xuezhi Li . Competitive exclusion in an infection-age structured vector-host epidemic model. Mathematical Biosciences and Engineering, 2017, 14(4): 901-931. doi: 10.3934/mbe.2017048
    [10] Azmy S. Ackleh, Shuhua Hu . Comparison between stochastic and deterministic selection-mutation models. Mathematical Biosciences and Engineering, 2007, 4(2): 133-157. doi: 10.3934/mbe.2007.4.133
  • We consider a two-strain pathogen model described by a system of reaction-diffusion equations. We define a basic reproduction number R0 and show that when the model parameters are constant (spatially homogeneous), if R0>1 then one strain will outcompete the other strain and drive it to extinction, but if R01 then the disease-free equilibrium is globally attractive. When we assume that the diffusion rates are equal while the transmission and recovery rates are heterogeneous, then there are two possible outcomes under the condition R0>1: 1) Competitive exclusion where one strain dies out. 2) Coexistence between the two strains. Thus, spatial heterogeneity promotes coexistence.


    [1]  Journal of Mathematical Biology, 47 (2003), 153-168.
    [2]  Discrete and Continuous Dynamical Systems Series B, 5 (2005), 175-188.
    [3]  Journal of Mathematical Biology, 68 (2014), 453-475.
    [4]  Journal of Differential Equations, 33 (1979), 201-225.
    [5]  Mathematical Biosciences, 186 (2003), 191-217.
    [6]  SIAM Journal on Applied Mathematics, 67 (2007), 1283-1309.
    [7]  Discrete and Continuous Dynamical Systems, 21 (2008), 1-20.
    [8]  Journal Mathematical Biology, 35 (1997), 825-842.
    [9]  Journal of Theoretical Biology, 177 (1995), 159-165.
    [10]  Science, 287 (2000), 650-654.
    [11]  Journal of Mathematical Biology, 27 (1989), 179-190.
    [12]  Rocky Mountain Journal of Mathematics, 26 (1996), 1-35.
    [13]  Wiley, Chichester, West Sussex, UK, 2003.
    [14]  SIAM Journal on Applied Mathematics, 56 (1996), 494-508.
    [15]  Journal of Mathematical Biology, 35 (1997), 503-522.
    [16]  submitted.
    [17]  Bulletin of the Australian Mathematical Society, 44 (1991), 79-94.
    [18]  American Mathematical Society, Providence, 1988.
    [19]  Springer-Verlag, New York, 1981.
    [20]  Transactions of the American Mathematical Society, 348 (1996), 4083-4094.
    [21]  Mathematical Biosciences and Engineering, 7 (2010), 51-66.
    [22]  SIAM Journal on Mathematical Analysis, 35 (2003), 453-491.
    [23]  Journal of Differential Equations, 211 (2005), 135-161.
    [24]  Funkcialaj Ekvacioj, 32 (1989), 191-213.
    [25]  Journal of Differential Equations, 223 (2006), 400-426.
    [26]  Journal of Differential Equations, 230 (2006), 720-742.
    [27]  Journal of Biological Dynamics, 3 (2009), 235-251.
    [28]  Plenum Press, New York, 1992.
    [29]  Nonlinear Analysis, 71 (2009), 239-247.
    [30]  Journal of Differential Equations, 247 (2009), 1096-1119.
    [31]  Nonlinearity, 25 (2012), 1451-1471.
    [32]  Physica D, 259 (2013), 8-25.
    [33]  Journal of Biological Dynamics, 6 (2012), 406-439.
  • This article has been cited by:

    1. Yixiang Wu, Necibe Tuncer, Maia Martcheva, Coexistence and competitive exclusion in an SIS model with standard incidence and diffusion, 2017, 22, 1553-524X, 1167, 10.3934/dcdsb.2017057
    2. Junping Shi, Yixiang Wu, Xingfu Zou, Coexistence of Competing Species for Intermediate Dispersal Rates in a Reaction–Diffusion Chemostat Model, 2020, 32, 1040-7294, 1085, 10.1007/s10884-019-09763-0
    3. Yixiang Wu, Xingfu Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, 2016, 261, 00220396, 4424, 10.1016/j.jde.2016.06.028
    4. Lin Zhao, Zhi-Cheng Wang, Shigui Ruan, Dynamics of a time-periodic two-strain SIS epidemic model with diffusion and latent period, 2020, 51, 14681218, 102966, 10.1016/j.nonrwa.2019.102966
    5. Jing Ge, Ling Lin, Lai Zhang, A diffusive SIS epidemic model incorporating the media coverage impact in the heterogeneous environment, 2017, 22, 1553-524X, 2763, 10.3934/dcdsb.2017134
    6. Yuan Lou, Rachidi B. Salako, Control Strategies for a Multi-strain Epidemic Model, 2022, 84, 0092-8240, 10.1007/s11538-021-00957-6
    7. Jinsheng Guo, Shuang-Ming Wang, Threshold dynamics of a time-periodic two-strain SIRS epidemic model with distributed delay, 2022, 7, 2473-6988, 6331, 10.3934/math.2022352
    8. Rachidi B. Salako, Impact of population size and movement on the persistence of a two-strain infectious disease, 2023, 86, 0303-6812, 10.1007/s00285-022-01842-z
    9. Yuan Lou, Rachidi B. Salako, Mathematical analysis of the dynamics of some reaction-diffusion models for infectious diseases, 2023, 370, 00220396, 424, 10.1016/j.jde.2023.06.018
    10. Jonas T. Doumatè, Tahir B. Issa, Rachidi B. Salako, Competition-exclusion and coexistence in a two-strain SIS epidemic model in patchy environments, 2023, 0, 1531-3492, 0, 10.3934/dcdsb.2023213
    11. Azmy S. Ackleh, Nicolas Saintier, Aijun Zhang, A multiple-strain pathogen model with diffusion on the space of Radon measures, 2025, 140, 10075704, 108402, 10.1016/j.cnsns.2024.108402
    12. Jamal Adetola, Keoni G. Castellano, Rachidi B. Salako, Dynamics of classical solutions of a multi-strain diffusive epidemic model with mass-action transmission mechanism, 2025, 90, 0303-6812, 10.1007/s00285-024-02167-9
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3233) PDF downloads(629) Cited by(12)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog