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Abstract. We consider a two-strain pathogen model described by a system

of reaction-diffusion equations. We define a basic reproduction number R0 and
show that when the model parameters are constant (spatially homogeneous),

if R0 > 1 then one strain will outcompete the other strain and drive it to

extinction, but if R0 ≤ 1 then the disease-free equilibrium is globally attractive.
When we assume that the diffusion rates are equal while the transmission and

recovery rates are heterogeneous, then there are two possible outcomes under

the condition R0 > 1: 1) Competitive exclusion where one strain dies out.
2) Coexistence between the two strains. Thus, spatial heterogeneity promotes

coexistence.

1. Introduction. Numerous studies have been conducted to understand the dy-
namics of epidemic differential equation models with multiple-pathogen strains (e.g.,
[1, 2, 3, 9, 11, 27]). Such models are important as they provide insights into the
evolutions, persistence and treatment of diseases such as infuenza, hantavirus, HIV-
AIDS, and other sexually transmitted diseases (e.g., [5, 8, 10, 14, 15]). The focus of
many such studies is on understanding when coexistence between strains is possible
and when competitive exclusion is the outcome. In [11] by assuming that the birth
rate is a function of the total population, it was shown that coexistence is not possi-
ble, and competitive exclusion is the only outcome with the winner being the strain
that has the largest basic reproduction number. In [1, 2, 9] the authors showed that
by allowing the mortality to be a function of the total population, then coexistence
between strains is possible as well as competitive exclusion. The authors of the
papers [27] and [3] extended such results to periodic and general nonautonomous
environments, respectively.

Recently, researchers focused their attention on understanding the effect of diffu-
sion on the dynamics of disease transmission models (e.g., [7, 16, 21, 29, 30, 31, 32]).
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In these papers, the models focused on one pathogen strain and considered stan-
dard incidence to model transmission of the disease. For example, the authors in [7]
presented the following reaction-diffusion model to describe disease transmission:

∂S
∂t = dS∆S − β(x) SI

S+I + γ(x)I, x ∈ Ω, t > 0,

∂I
∂t = dI∆I + β(x) SI

S+I − γ(x)I, x ∈ Ω, t > 0
(1.1)

with no-flux boundary condition
∂S
∂n = ∂I

∂n = 0, x ∈ ∂Ω, t > 0. (1.2)

Here, S(x, t) and I(x, t) represent the densities of susceptible and infected individ-
uals at location x and time t, respectively. The parameters dS and dI are positive
diffusion coefficients for the susceptible and infected populations, respectively. The
functions β(x) and γ(x) denote the disease transmission rate and the recovery rate
from the infected class, respectively. In this paper a basic reproduction number
R0 was defined and it was shown that if R0 < 1 then the disease-free equilibrium
is globally attractive. Furthermore, when R0 > 1 then there exists a unique en-
demic equilibrium and this endemic equilibrium tends to a spatially inhomogeneous
disease-free equilibrium as the mobility of susceptible individuals tends to zero, i.e.,
as dS → 0.

In [29] the stability of the endemic equilibrium for the model (1.1)-(1.2) was
studied. Therein, the global stability of this equilibrium was shown under the case
R0 > 1 and some additional restrictions, namely when the diffusion coefficients
are equal or β/γ = a = constant. In [21] the authors extended such investigation
to the model in [7] with Dirichlet boundary condition which described a hostile
environment at the boundary. They defined a basic reproduction number R0 and
showed that the disease-free equilibrium is globally attractive when R0 < 1, that
is, the disease dies out. When R0 > 1, they showed the existence of an endemic
equilibrium and established partial results on the global stability of the endemic
equilibrium. In [31] the authors extended their investigation to the model in [7]
with time-periodic parameters β and γ. They defined a basic reproduction number
R0 of this periodic model and showed that a combination of spatial heterogeneity
and temporal periodicity tends to enhance the persistence of the disease.

It is worth mentioning that more recently in [33], a two-strain SIS epidemic
reaction-diffusion model with homogeneous Neumann boundary conditions has been
considered:

∂S
∂t = dS∆S − (β1(x)I1 + β2(x)I2) S

S+I1+I2
+γ1(x)I1 + γ2(x)I2, x ∈ Ω, t > 0,

∂I1
∂t = d1∆I1 + β1(x) SI1

S+I1+I2
− γ1(x)I1, x ∈ Ω, t > 0,

∂I2
∂t = d2∆I2 + β2(x) SI2

S+I1+I2
− γ2(x)I2, x ∈ Ω, t > 0,

(1.3)

under the condition∫
Ω

(I1(x, 0) + I2(x, 0)) dx > 0 with S(x, 0) > 0, I1(x, 0) > 0, I2(x, 0) > 0 for x ∈ Ω.

In this paper a basic reproduction number R0 was defined and it was shown that
if R0 < 1 then the disease-free equilibrium is globally attractive. The local sta-
bility of the semi-trivial equilibria was also studied. More importantly, using the
monotonicity of the equilibrial system, the existence of coexistence equilibrium was
established. Numerical investigations were conducted as well.
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The purpose of our paper is two fold: 1) to investigate a multiple-strain pathogen
model with diffusion and 2) to use a mass action incidence term (e.g., see [1] for
models without diffusion) to model the transmission of the disease. Even though
our model bears a resemblance to model (1.3), there is a main difference between
our model and model (1.3): Our model assumes a bilinear disease transmission
term, whereas model (1.3) assumes that infection is frequency dependent. Thus,
the two models are fundamentally different and require different methods to ana-
lyze. Furthermore, we study the global attractivity of the endemic equilibrium and
present conditions for competitive exclusion or coexistence between the strains to
occur.

The paper is organized as follows: In section 2 we present a two-strain reaction-
diffusion model. In section 3 we study the model under the assumptions that all
the parameters are constant. We define a basic reproduction number R0 and study
the long-time behavior of the solution. In particular, we show that if R0 ≤ 1 the
disease-free equilibrium is globally attractive and if R0 > 1 competitive exclusion is
the only outcome between the strains. In section 4 we consider the case where the
diffusion rates of susceptible and infected individuals are equal while the transmis-
sion and recovery parameters are heterogeneous. We study the long-time behavior
of the solution as it relates to the basic reproduction number R0. In particular, we
provide conditions under which competitive exclusion between the strains occurs
and conditions under which coexistence between the strains is the outcome. In
section 5 we verify the validity of such conditions. In section 6 we make concluding
remarks.

2. The model. In this section we present a two-strain epidemic model with diffu-
sion. In particular, let Ω be a bounded domain in Rm with smooth boundary ∂Ω.
Let S(x, t) be the density of susceptible individuals at location x and time t, and
let Ii(x, t) be the density of individuals infected with strain i (i = 1, 2) at location
x and time t. We assume that the individuals randomly move in the domain Ω
with diffusion rates dS and di (i = 1, 2) for susceptible and infected individuals,
respectively. If any individual cannot be infected with two diseases at the same
time, and recovered individuals become susceptible immediately, an SIS epidemic
reaction-diffusion model can be formulated as follows:
∂S
∂t = dS∆S − (β1(x)I1 + β2(x)I2)S + γ1(x)I1 + γ2(x)I2, x ∈ Ω, t > 0,

∂I1
∂t = d1∆I1 + β1(x)SI1 − γ1(x)I1, x ∈ Ω, t > 0,

∂I2
∂t = d2∆I2 + β2(x)SI2 − γ2(x)I2, x ∈ Ω, t > 0,

(2.1)

where the disease transmission rate function βi(x) describes the effective interaction
between the susceptible individuals and the individuals infected with disease i at
location x, and the function γi(x) represents the recovery rate of the individuals
infected with disease i at location x. All βi and γi are positive Hölder continuous
functions in Ω. Furthermore, we assume that there is no flux on the boundary ∂Ω,
that is,

∂S

∂n
=
∂Ii
∂n

= 0, x ∈ ∂Ω, t > 0, (2.2)

where ∂/∂n is the outward normal derivative to ∂Ω. We also assume that the initial
data satisfy

(H1) S(x, 0) and Ii(x, 0) are nonnegative continuous functions in Ω, and initially the
number of individuals infected with disease i is positive, i.e.,

∫
Ω
Ii(x, 0)dx > 0.
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Let ∫
Ω

(S(x, 0) + I1(x, 0) + I2(x, 0))dx ≡ N

be the total number of individuals at t = 0. Adding up the three equations in (2.1)
and then integrating over the domain Ω, we find

∂

∂t

∫
Ω

(S + I1 + I2)dx = 0, t > 0,

which implies that the total population size is a constant given by∫
Ω

(S(x, t) + I1(x, t) + I2(x, t))dx = N. (2.3)

We then establish the global existence and boundedness results for the model.

Theorem 2.1. Suppose that hypothesis (H1) holds. Then the solution (S(x, t),
I1(x, t), I2(x, t)) of problem (2.1)-(2.2) exists uniquely and globally. Moreover, there
exists a positive constant M depending on the initial data and maxx∈Ω{γi(x)/βi(x)}
(i = 1, 2) such that

0 < S(x, t), I1(x, t), I2(x, t) ≤M for x ∈ Ω, t ∈ (0,∞). (2.4)

Proof. Let ((Ŝ(x, t), Î1(x, t), Î2(x, t)) be the local solution of the following problem:

∂Ŝ
∂t = dS∆Ŝ + γ1(x)Î1 + γ2(x)Î2, x ∈ Ω, t > 0,

∂Î1
∂t = d1∆Î1 + β1(x)ŜÎ1 − γ1(x)Î1, x ∈ Ω, t > 0,

∂Î2
∂t = d2∆Î2 + β2(x)ŜÎ2 − γ2(x)Î2, x ∈ Ω, t > 0,

∂Ŝ
∂n = ∂Î1

∂n = ∂Î2
∂n = 0, x ∈ ∂Ω, t > 0,

Ŝ(x, 0) = S(x, 0), Î1(x, 0) = I1(x, 0), Î2(x, 0) = I2(x, 0) x ∈ Ω.

(2.5)

Then ((Ŝ(x, t), Î1(x, t), Î2(x, t)) and (0, 0, 0) are a pair of coupled upper and lower
solutions of problem (2.1)-(2.2), and it follows that there exists a unique solution
((S(x, t), I1(x, t), I2(x, t)) of (2.1)-(2.2) for x ∈ Ω and t ∈ [0, Tmax), where Tmax is
the maximal existence time. Moreover, by the maximum principle, the solution is
positive in Ω × (0, Tmax) (cf. [28]). We now consider the problem for S(x, t) in
Ω× (0, Tmax):

St = dS∆S + (γ1(x)− β1(x)S)I1
+(γ2(x)− β2(x)S)I2, x ∈ Ω, t ∈ (0, Tmax),

∂S
∂n = 0, x ∈ ∂Ω, t ∈ (0, Tmax).

(2.6)

Choose M0 = max{maxx∈Ω S(x, 0),maxx∈Ω{γ1(x)/β1(x)},maxx∈Ω{γ2(x)/β2(x)}}.
Then for any nonnegative functions I1(x, t) and I2(x, t), M0 and 0 are a pair of upper
and lower solutions of problem (2.6). By the comparison principle, one can see that
S(x, t) ≤ M0 in Ω × [0, Tmax). Since

∫
Ω
Ii(x, t)dx ≤ N , in view of Theorem 3.1 in

[4], there exists a positive constant Mi depending on Ii(x, 0) such that Ii(x, t) ≤Mi

(i = 1, 2) in Ω× [0, Tmax). Hence, it follows from the standard theory for semilinear
parabolic systems that Tmax =∞.
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3. The case of constant coefficients. In this section, we consider the case that
all coefficients are spatially homogeneous, i.e., βi and γi (i = 1, 2) are positive
constants. We first consider the case γ1/β1 6= γ2/β2. To this end, we study the
existence of the equilibria and define a basic reproduction number for problem (2.1)-
(2.3). We then briefly discuss the case γ1/β1 = γ2/β2.

3.1. Equilibria. The global attractivity result to be established in Section 3.2 will
show that every solution of problem (2.1)-(2.3) converges to a nonnegative constant
equilibrium, which implies the nonexistence of non-constant equilibria. Thus we
only need to consider the following equilibrium system:

(β1S̄ − γ1)Ī1 = 0,

(β2S̄ − γ2)Ī2 = 0,
S̄ + Ī1 + Ī2 = N

|Ω| .

(3.1)

As considered in other epidemic models, we will focus on the disease-free equilibrium
(DFE) and the endemic equilibrium (EE). A DFE is a solution of (3.1) with Ī1 =
Ī2 = 0 and S̄ a positive constant, while an EE is a nonnegative solution of (3.1)
with Ī1 > 0 or Ī2 > 0. Since (3.1) is an algebraic system, one can easily find the
following.

Proposition 1. There are three cases:

(a) If γ1/β1, γ2/β2 ≥ N/|Ω|, there exists a unique DFE (N/|Ω|, 0, 0) and no EEs;
(b) If γ2/β2 ≥ N/|Ω| > γ1/β1 or γ1/β1 ≥ N/|Ω| > γ2/β2, there exists a unique

DFE (N/|Ω|, 0, 0) and an EE (γ1/β1, N/|Ω| − γ1/β1, 0) or (γ2/β2, 0, N/|Ω| −
γ2/β2);

(c) If N/|Ω| > γ1/β1, γ2/β2, there exists a unique DFE (N/|Ω|, 0, 0) and two EEs
(γ1/β1, N/|Ω| − γ1/β1, 0) and (γ2/β2, 0, N/|Ω| − γ2/β2).

We then introduce a basic reproduction number R0 in order to analyze the
model’s dynamics. By virtue of Proposition 1, we define a basic reproduction num-
ber as follows:

R0 = max

{
Nβ1

|Ω|γ1
,
Nβ2

|Ω|γ2

}
.

For convenience, we also define a related number R1 by

R1 = min

{
Nβ1

|Ω|γ1
,
Nβ2

|Ω|γ2

}
.

Note that the assumption γ1/β1 6= γ2/β2 implies R0 > R1. In this section, from
now on, we always denote the unique DFE by E0 and let E1 = (γ1/β1, N/|Ω| −
γ1/β1, 0) and E2 = (γ2/β2, 0, N/|Ω| − γ2/β2). Then Proposition 1 is equivalent to
the following.

Proposition 2. There are three cases:

(a) If R0 ≤ 1, there exists a unique DFE E0 and no EEs;
(b) If R0 > 1 ≥ R1, there exists a unique DFE E0 and an EE E1 or E2;
(c) If R1 > 1, there exists a unique DFE E0 and two EEs E1 and E2.



6 AZMY S. ACKLEH, KENG DENG AND YIXIANG WU

3.2. Global attractivity. To conduct our discussion on global attractivity, we
mainly rely on the LaSalle Invariance principle for nonlinear dynamical systems
(see [19]). Let X = Lp(Ω) with p > m. We define a closed linear operator A with
dense domain D(A) given by

Au = −∆u, D(A) =

{
u ∈W 2,p(Ω) and

∂u

∂n
= 0 on ∂Ω

}
.

Then −A generates an analytic semigroup e−tA on X. Let Xα (0 ≤ α ≤ 1) be the
fractional power space of X with respect to A. Since the embedding Xα ⊂ C1,µ(Ω)
is compact if 1 + µ < 2α −m/p, we choose α close to 1 and p large such that Xα

is compactly embedded into C1,µ(Ω). Let P ⊂ Xα be the cone of all nonnegative
functions of Xα with nonempty interior. We introduce

D =

{
(u, v, w) ∈ Xα ×Xα ×Xα :

∫
Ω

(u+ v + w)dx = N and u, v, w ∈ P
}
.

Then D is a closed subset of Xα×Xα×Xα, and the solution (S, I1, I2) of problem
(2.1)-(2.3) induces a nonlinear dynamical system {Φ(t), t ∈ R+} on D given by

Φ(t)(S(0), I1(0), I2(0)) := (S(t), I1(t), I2(t)), t ∈ R+,

where (S, I1, I2) is the solution with the initial condition (S(0), I1(0), I2(0)) ∈ D.
We then recall a well-known result [24].

Lemma 3.1. Let u(x, t) be the solution of the problem:

ut = d∆u x ∈ Ω, t > 0,

∂u
∂n = 0 x ∈ ∂Ω, t > 0

with u(x, 0) ≥ 0. Then u(x, t) converges to
∫

Ω
u(x, 0)dx/|Ω| uniformly in x ∈ Ω as

t→∞.

We are now in a position to establish the main result.

Theorem 3.2. The following statements hold.

(a) If R0 ≤ 1, then E0 is globally attractive;
(b) If R0 > 1 and if γ2/β2 > γ1/β1 or γ1/β1 > γ2/β2, then E1 or E2 is globally

attractive.

Proof. We first consider the case that R0 ≤ 1. Define a continuously differentiable
real valued function V : D → R by

V (S, I1, I2) =
1

2

∫
Ω

(
S − N

|Ω|

)2

dx+B1

∫
Ω

I1dx+B2

∫
Ω

I2dx

for all (S, I1, I2) ∈ D with B1, B2 constants to be determined. We can check that
for all (S, I1, I2) ∈ D ∩ (D(A)×D(A)×D(A)),

V̇ (S, I1, I2) = lim sup
t→0+

V (Φ(t)(S, I1, I2))− V (S, I1, I2)

t

=

∫
Ω

(
S − N

|Ω|

)
(dS∆S − (β1I1 + β2I2)S + γ1I1 + γ2I2)dx
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+B1

∫
Ω

(d1∆I1 + I1(β1S − γ1))dx

+B2

∫
Ω

(d2∆I2 + I2(β2S − γ2))dx

= −dS
∫

Ω

|∇S|2dx−
∫

Ω

I1(β1S − γ1)

(
S − N

|Ω|
−B1

)
dx

−
∫

Ω

I2(β2S − γ2)

(
S − N

|Ω|
−B2

)
dx

= −dS
∫

Ω

|∇S|2dx− β1

∫
Ω

I1

(
S − γ1

β1

)2

dx− β2

∫
Ω

I2

(
S − γ2

β2

)2

dx

≤ 0,

where

B1 =
γ1

β1
− N

|Ω|
and B2 =

γ2

β2
− N

|Ω|
.

Since V is continuously differentiable and D∩ (D(A)×D(A)×D(A)) is dense in D,

we find that V̇ (S, I1, I2) ≤ 0 for all (S, I1, I2) ∈ D. Thus V is a Lyapunov functional
on D.

Let E := {(S, I1, I2) ∈ D : V̇ (S, I1, I2) = 0} and M be the largest positively in-
variant subset of E. It follows from Theorem 2.1 and some standard arguments (see
[18, 19] ) that the orbit {(S(t), I1(t), I2(t)), t > 0} is pre-compact in D. So by the
LaSalle Invariance principle, we have that limt→∞ dist(Φ(t)(S(0), I1(0), I2(0)),M)

= 0. In view of V̇ ,
∫

Ω
|∇S|2dx = 0 implies that S is a constant, and

∫
Ω
Ii(S −

γi/βi)
2dx = 0 implies that either Ii = 0 or S = γi/βi, i = 1, 2. If S = γi/βi, then∫

Ω
Iidx = N − |Ω|γi/βi ≤ 0 which yields Ii = 0. Thus, we must have Ii = 0, and so

E = {E0}. Hence, M = {E0}, and it follows that E0 is globally attractive.
We then consider the case that R0 > 1 ≥ R1 with γ2/β2 > γ1/β1, that is,

γ2/β2 ≥ N/|Ω| > γ1/β1. In this case, there exist two equilibria E0 and E1. Using
the same Lyapunov functional V , we find

E =

{(
γ1

β1
, w, 0

)
:

∫
Ω

wdx = N − γ1

β1
|Ω|
}
∪ {E0}.

We claim that M consists of E0 and E1 at most. To see this, we make use of the
invariant property of M , i.e., Φ(t)M = M for all t > 0 (see [18, 19]). Let ε > 0
be given and Bε be the open ball in D centered at E1 with radius ε. Suppose that
(γ1/β1, w, 0) ∈M with

∫
Ω
wdx = N − γ1|Ω|/β1. By Lemma 3.1, we have that

Φ(t)

(
γ1

β1
, w, 0

)
→ E1 as t→∞.

So there exists T > 0 such that Φ(t)(γ1/β1, w, 0) ∈ Bε for t > T . It follows from
the invariance property that M ⊆ Bε ∪ {E0}. Since ε > 0 is arbitrary, the claim is
valid.

The LaSalle Invariance principle implies that (S(t), I1(t), I2(t)) → M . It then
follows that either the trajectory converges to E0 or it converges to E1. Assume
that limt→∞Φ(t)(S(0), I1(0), I2(0)) = E0. Since β1N/|Ω| > γ1, we can choose
ε > 0 so small that β1(N/|Ω| − ε) > γ1. For this ε, there exists a T > 0 such that
S(x, t) > N/|Ω| − ε for all (x, t) ∈ Ω × [T,∞). By (2.1)2, the following inequality
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holds

∂I1
∂t
− d1∆I1 ≥ β1

(
N

|Ω|
− ε
)
I1 − γ1I1 for (x, t) ∈ Ω× [T,∞). (3.2)

We then consider a related problem:

Jt = d1∆J + β1

(
N
|Ω| − ε

)
J − γ1J, x ∈ Ω, t ∈ (T,∞),

∂J
∂n = 0, x ∈ ∂Ω, t ∈ (T,∞),

J(x, T ) = minx∈Ω I1(x, T ) ≡ I1m(T ), x ∈ Ω.

(3.3)

The comparison principle yields that I1 ≥ J on Ω× [T,∞), and it is easy to check
that J = I1m(T )e(β1N/|Ω|−εβ1−γ1)t. Since I1 ≥ J and J → ∞ as t → ∞, this
contradicts the fact that I1 is uniformly bounded. Hence, M = {E1}, and E1

is globally attractive. The case that R0 > 1 ≥ R1 with γ1/β1 > γ2/β2 can be
discussed analogously.

We now consider the case thatR1 > 1 with γ2/β2 > γ1/β1, i.e., N/|Ω| > γ2/β2 >
γ1/β1. Using the same functional V , we obtain

E =

{(
γ1

β1
, w, 0

)
:

∫
Ω

wdx = N − γ1

β1
|Ω|
}

∪
{(

γ2

β2
, 0, w

)
:

∫
Ω

wdx = N − γ2

β2
|Ω|
}
∪ {E0}.

Proceeding as before, we can claim that M consists of E0, E1, and E2 at most.
Then the Lasalle invariance principle implies that the trajectory converges to E0,
E1 or E2. Assume that limt→∞Φ(t)(S(0), I1(0), I2(0)) = E2. Since γ2/β2 > γ1/β1,
we can choose ε > 0 so small that β1γ2/β2 − β1ε − γ1 > 0. For this ε, there exists
a T > 0 such that S(x, t) > γ2/β2 − ε for all (x, t) ∈ Ω × [T,∞). By (2.1)2, the
following inequality holds

∂I1
∂t
− d1∆I1 ≥ β1

(
γ2

β2
− ε
)
I1 − γ1I1 for (x, t) ∈ Ω× [T,∞). (3.4)

We then consider a related problem:

Jt = d1∆J + β1

(
γ2
β2
− ε
)
J − γ1J, x ∈ Ω, t ∈ (T,∞),

∂J
∂n = 0, x ∈ ∂Ω, t ∈ (T,∞),

J(x, T ) = minx∈Ω I1(x, T ) ≡ I1m(T ), x ∈ Ω.

(3.5)

The comparison principle yields that I1 ≥ J on Ω × [T,∞), and it is easy to
check that J = I1m(T )e(β1γ2/β2−β1ε−γ1)t. Since I1 ≥ J and J → ∞ as t → ∞,
this contradicts the fact that I1 is uniformly bounded. So the trajectory cannot
converge to {E2}. Similarly, one can see that it cannot converge to {E0}. Hence,
E1 is globally attractive. The case that R1 > 1 with γ1/β1 > γ2/β2 can be analyzed
similarly.

We then briefly discuss the case that γ1/β1 = γ2/β2. It is easy to see that if
R0 > 1 there are infinitely many endemic equilibria contained in the set:

L ≡
{

(γ1/β1, Ī1, Ī2) : Ī1 + Ī2 =
N

|Ω|
− γ1

β1
and Ī1, Ī2 ∈ R+

}
.

We have the following result.
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Theorem 3.3. If γ1/β1 = γ2/β2, then the following statements hold.

(a) If R0 ≤ 1, then E0 is globally attractive;
(b) If R0 > 1, then L is a global attractor, i.e.,

lim
t→∞

dist((S(x, t), I1(x, t), I2(x, t)), L) = 0

uniformly for x ∈ Ω.

Proof. We use the same Lyapunov functional V as introduced in the proof of The-
orem 3.2. The case that R0 ≤ 1 can be proved exactly the same. For the case that
R0 > 1, the total derivative V̇ = 0 leads to the set

E =

{(
γ1

β1
, w1, w2

)
:

∫
Ω

(w1 + w2)dx = N − γ1

β1
|Ω|
}
∪ {E0}.

Let M be the largest positively invariant subset of E, and we can show analogously
as for Theorem 3.2 that M only consists of spatially homogeneous equilibria. Then
by the Lasalle invariance principle, M attracts every solution of (2.1)-(2.3). And
it then suffices to show that the solution with initial data satisfying (H1) does
not converge to E0. The proof is similar to that for Theorem 3.2, and hence is
omitted.

4. The case of equal diffusion rates. If all the coefficients are homogeneous,
Theorem 3.2 indicates that one disease will drive the other one to extinction in
the long run if R0 > 1, and this suggests that there may exist some competition
between the two diseases. Moreover, if γ1/β1 6= γ2/β2, since the only endemic
equilibria are E1 and E2, there does not exist a coexistence equilibrium. Then one
can naturally ask that whether it is still the case when the coefficients are spatially
inhomogeneous. To answer such a question, in the sequel we let d ≡ dS = d1 = d2

and assume that the coefficients βi, γi (i = 1, 2) are spatially inhomogeneous. We
will show that it is possible for a coexistence equilibrium to exist, and thus the model
with spatially heterogeneous coefficients may induce more complicated dynamical
behavior.

4.1. Basic reproduction number. Adding up the three equations in (2.1), we
have that

∂(S + I1 + I2)

∂t
− d∆(S + I1 + I2) = 0 in Ω× (0,∞),

and the boundary condition (2.2) implies that

∂(S + I1 + I2)

∂n
= 0 on ∂Ω× (0,∞).

It then follows from Lemma 3.1 that S + I1 + I2 → N/|Ω| as t→∞. This suggests
that we may consider the Lotka-Volterra competition model:

∂I1
∂t = d∆I1 +

(
β1N
|Ω| − γ1 − β1I1 − β1I2

)
I1, x ∈ Ω, t > 0,

∂I2
∂t = d∆I2 +

(
β2N
|Ω| − γ2 − β2I1 − β2I2

)
I2, x ∈ Ω, t > 0.

(4.1)

However, the dynamics of the above model can be quite complicated. For certain
results about (4.1), the readers are referred to [13, 17, 20, 22, 23, 25, 26] and the
references therein.
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For a Hölder continuous function α(x) on Ω, let λ∗(α) be the principal eigenvalue
of the following problem

d∆ϕ+ α(x)ϕ+ λϕ = 0, x ∈ Ω,

∂ϕ
∂n = 0, x ∈ ∂Ω.

Then λ∗(α) is given by the variational formula:

λ∗(α) = inf

{∫
Ω

(
d|∇ϕ|2 − αϕ2

)
dx : ϕ ∈ H1(Ω) and

∫
Ω

ϕ2dx = 1

}
. (4.2)

In view of (4.1) and the variational formula, for i = 1, 2 we define

ri = sup

{
N
|Ω|
∫

Ω
βiϕ

2dx∫
Ω

(d|∇ϕ|2 + γiϕ2)dx
: ϕ ∈ H1(Ω) and ϕ 6= 0

}
.

Remark 1. There is a simple relation between ri and λ∗(Nβi/|Ω| − γi), i = 1, 2
(see [7]):

(i) ri < 1 if and only λ∗(Nβi/|Ω| − γi) > 0;
(ii) ri = 1 if and only λ∗(Nβi/|Ω| − γi) = 0;

(iii) ri > 1 if and only λ∗(Nβi/|Ω| − γi) < 0.

We then define a basic reproduction number R0 and a related number R1 as
follows:

R0 = max{r1, r2}, R1 = min{r1, r2}.

Clearly, this definition is consistent with the previous homogenous case.
The following result is well known (see [13]).

Lemma 4.1. Suppose that α and β are Hölder continuous function on Ω with
α(x0) > 0 for some x0 ∈ Ω and β(x) > 0 for x ∈ Ω, and u0 ∈ C(Ω) is nonnegative.
Consider the problem:

ut = d∆u+ (α(x)− β(x)u)u x ∈ Ω, t > 0

∂u
∂n = 0 x ∈ ∂Ω, t > 0

u(x, 0) = u0(x) x ∈ Ω.

(4.3)

Then the following statements hold.

(a) If λ∗(α) ≥ 0, then all solutions of (4.3) converge to zero uniformly;
(b) If λ∗(α) < 0, then for each nontrivial u0, the solution u(x, t) of (4.3) converges

to ū(x) uniformly, where ū(x) is the unique positive steady state of (4.3).

4.2. Disease-free equilibrium. We first show that the disease-free equilibrium
exists uniquely.

Proposition 3. Problem (2.1)-(2.3) has a unique DFE given by E0 ≡ (S̃, 0, 0) =
(N/|Ω|, 0, 0).

Proof. Clearly, (N/|Ω|, 0, 0) is a DFE. Now for any DFE (S̃, 0, 0), by (2.1), we

have that ∆S̃ = 0. Then by the maximum principle and the boundary condition
∂S̃/∂n = 0, S̃ must be a constant in Ω. It then follows from (2.3) that S̃ =
N/|Ω|.
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Similar to [7, 16], we now linearize (2.1) around the DFE. Let η(x, t) = S(x, t)−
N/|Ω|, ξ1(x, t) = I1(x, t), and ξ2(x, t) = I2(x, t). Using (2.1) and dropping high
order terms, we obtain the following system:

∂η
∂t = d∆η −

(
N
|Ω|β1 − γ1

)
ξ1 −

(
N
|Ω|β2 − γ2

)
ξ2, x ∈ Ω, t > 0,

∂ξ1
∂t = d∆ξ1 +

(
N
|Ω|β1 − γ1

)
ξ1, x ∈ Ω, t > 0,

∂ξ2
∂t = d∆ξ2 +

(
N
|Ω|β2 − γ2

)
ξ2, x ∈ Ω, t > 0.

Let (η(x, t), ξ1(x, t), ξ2(x, t)) = (e−λtφ(x), e−λtψ1(x), e−λtψ2(x)). We then derive
an eigenvalue problem:

d∆φ−
(
N
|Ω|β1 − γ1

)
ψ1 −

(
N
|Ω|β2 − γ2

)
ψ2 + λφ = 0, x ∈ Ω,

d∆ψ1 +
(
N
|Ω|β1 − γ1

)
ψ1 + λψ1 = 0, x ∈ Ω

d∆ψ2 +
(
N
|Ω|β2 − γ2

)
ψ2 + λψ2 = 0, x ∈ Ω

(4.4)

with boundary conditions

∂φ

∂n
=
∂ψ1

∂n
=
∂ψ2

∂n
= 0, x ∈ ∂Ω. (4.5)

In view of (2.3) and Proposition 3, we impose an additional condition∫
Ω

(φ+ ψ1 + ψ2)dx = 0. (4.6)

The following lemma shows that the stability of the DFE relies on the magnitude
of R0.

Proposition 4. The DFE is stable if R0 < 1, and it is unstable if R0 > 1.

Proof. Suppose that R0 < 1, i.e., r1, r2 < 1. By Remark 1, we have λ∗(Nβi/|Ω| −
γi) > 0, i = 1, 2. It suffices to show that if (λ, φ, ψ1, ψ2) solves the eigenvalue
problem (4.4)-(4.6) with at least one of φ, ψ1, or ψ2 nontrivial, then Re(λ) is
positive. Assume that ψ1 = ψ2 = 0, then d∆φ+λφ = 0 in Ω and ∂φ/∂n = 0 on ∂Ω,
which implies that λ is positive as long as φ is not a constant. If φ is a constant,
by (4.6), we have φ ≡ 0, which is a contradiction. We then assume that at least
one of ψ1 and ψ2 is nontrivial. Without loss of generality, we may assume that ψ1

is nontrivial. It then follows that λ is an eigenvalue of the problem

d∆ψ1 +

(
N

|Ω|
β1 − γ1

)
ψ1 + λψ1 = 0 in Ω and

∂ψ1

∂n
= 0 on ∂Ω, (4.7)

and so Re(λ) ≥ λ∗(Nβ1/|Ω| − γ1) > 0.
Now suppose that R0 > 1, i.e., r1 > 1 or r2 > 1. Without loss of generality, we

may assume that r1 > 1, and it follows from Remark 1 that λ∗(Nβ1/|Ω| − γ1) <
0. Let λ = λ∗(Nβ1/|Ω| − γ1) and ψ1 be a positive eigenvector of problem (4.7)
corresponding to the principal eigenvalue λ∗(Nβ1/|Ω| − γ1). Then let φ be the
solution of

d∆φ−
(
N

|Ω|
β1 − γ1

)
ψ1 + λφ = 0 in Ω and

∂φ

∂n
= 0 on ∂Ω.

One can see that such (λ, φ, ψ1, 0) is a solution of the eigenvalue problem (4.4)-(4.6)
with λ < 0 and ψ1 > 0. So the DFE is unstable.
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We then study the global attractivity of the DFE.

Theorem 4.2. If R0 ≤ 1, then the DFE is globally attractive.

Proof. We first consider the case R0 < 1. Let ε > 0 be given. Since S(x, t) +
I1(x, t) + I2(x, t) → N/|Ω| as t → ∞, there exists a T > 0 such that S(x, t) ≤
N/|Ω|+ ε− I1(x, t)− I2(x, t) for (x, t) ∈ Ω× [T,∞). Then by (2.1)-(2.2), we have
the following

∂I1
∂t − d∆I1 ≤ I1

((
N
|Ω| + ε

)
β1 − γ1 − β1I1

)
, x ∈ Ω, t ∈ (T,∞),

∂I2
∂t − d∆I2 ≤ I2

((
N
|Ω| + ε

)
β2 − γ2 − β2I2

)
, x ∈ Ω, t ∈ (T,∞),

∂I1
∂n = ∂I2

∂n = 0, x ∈ ∂Ω, t ∈ (T,∞).

(4.8)

Let Îi, i = 1, 2, be the solution of a related problem:

∂Îi
∂t = d∆Îi + Îi

((
N
|Ω| + ε

)
βi − γi − βiÎi

)
, x ∈ Ω, t ∈ (T,∞),

∂Îi
∂n = 0, x ∈ ∂Ω, t ∈ (T,∞),

Îi(x, T ) = Ii(x, T ), x ∈ Ω.

(4.9)

The comparison principle yields that Ii(x, t) ≤ Îi(x, t) on Ω× [T,∞). Furthermore,
it follows from R0 < 1 and Remark 1 that λ∗(Nβi/|Ω| − γi) > 0. We then choose

ε so small that λ∗((N/|Ω| + ε)βi − γi) > 0. Hence, by Lemma 4.1, Îi(x, t) → 0 as
t → ∞ uniformly for x ∈ Ω, and so does Ii(x, t), i = 1, 2. Then, it follows from
S(x, t) + I1(x, t) + I2(x, t) → N/|Ω| that S(x, t) → N/|Ω| as t → ∞ uniformly for
x ∈ Ω.

We then consider the case R0 = 1, i.e, at least one of λ∗(Nβi/|Ω| − γi), i = 1, 2,
is zero. Without loss of generality, we may assume that λ∗(Nβ1/|Ω| − γ1) = 0 and

λ∗(Nβ2/|Ω|−γ2) > 0. We then have that for small ε, Î1(x, t)→ Î∗1 (x), where Î∗1 (x)

is the corresponding positive equilibrium, and Î2(x, t) → 0. On the other hand,

if ε → 0, then Î∗1 (x) → 0. Hence, Ii(x, t) → 0, i = 1, 2, as t → ∞ uniformly for
x ∈ Ω.

4.3. Endemic equilibrium. Let (S̄, Ī1, Ī2) be an equilibrium of (2.1)-(2.3). It
then satisfies the following system:

d∆S̄ − (β1Ī1 + β2Ī2)S̄ + γ1Ī1 + γ2Ī2 = 0, x ∈ Ω,

d∆Ī1 + β1S̄Ī1 − γ1Ī1 = 0, x ∈ Ω,

d∆Ī2 + β2S̄Ī2 − γ2Ī2 = 0, x ∈ Ω.

(4.10)

Adding up the three equations in (4.10) yields d∆(S̄+ Ī1 + Ī2) = 0. In view of (2.2)-
(2.3) and the maximum principle, we have that S̄ = N/|Ω| − Ī1 − Ī2. Substituting
this into (4.10), we arrive at

d∆Ī1 +
(
Nβ1

|Ω| − γ1 − β1Ī1 − β1Ī2

)
Ī1 = 0, x ∈ Ω,

d∆Ī2 +
(
Nβ2

|Ω| − γ2 − β2Ī1 − β2Ī2

)
Ī2 = 0, x ∈ Ω.

(4.11)

Thus, to study the existence of the endemic equilibria, it suffices to consider the
nonnegative solutions of system (4.11) subject to the Neumann boundary condi-
tions:

∂Ī1
∂n

=
∂Ī2
∂n

= 0, x ∈ Ω. (4.12)
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By Lemma 4.1 and Remark 1, problem (4.11)-(4.12) has a nonnegative solution
(U, 0) or (0, V ) with U or V strictly positive on Ω if and only if r1 > 1 or r2 > 1.
We then have the following result.

Theorem 4.3. If R0 > 1 ≥ R1, then there exists an EE E1 = (N/|Ω| − U,U, 0)
or E2 = (N/|Ω| − V, 0, V ) of model (2.1)-(2.3), which is globally attractive.

Proof. Since R0 > 1 ≥ R1, one of ri, i = 1, 2, is greater than 1 and the other one
is less than or equal to 1. Without loss of generality, we may assume that r1 > 1
and r2 ≤ 1. Then problem (4.11)-(4.12) has a nonnegative solution (U, 0). And it
is easy to check that E1 = (N/|Ω| − U,U, 0) is an EE.

We then show the global attractivity of E1. Since r2 ≤ 1, using similar arguments
as in the proof of Theorem 4.2, one can see that I2(x, t) → 0 as t → ∞. Let ε > 0
be given. Since S + I1 + I2 → N/|Ω| and I2 → 0 as t → ∞, there exists a T > 0
such that N/|Ω|− I1(x, t)− ε ≤ S(x, t) ≤ N/|Ω|− I1(x, t)+ ε for (x, t) ∈ Ω× [T,∞).
So I1 satisfies the following inequality

I1

((
N

|Ω|
− ε
)
β1 − γ1 − β1I1

)
≤ ∂I1

∂t
− d∆I1 ≤ I1

((
N

|Ω|
+ ε

)
β1 − γ1 − β1I1

)
(4.13)

for (x, t) ∈ Ω× (T,∞). Let Ǐ and Î solve two related problems, respectively:

Ǐt = d∆Ǐ + Ǐ
((

N
|Ω| − ε

)
β1 − γ1 − β1Ǐ

)
, x ∈ Ω, t ∈ (T,∞),

∂Ǐ
∂n = 0, x ∈ ∂Ω, t ∈ (T,∞),

Ǐ(x, T ) = I1(x, T ), x ∈ Ω

(4.14)

and

Ît = d∆Î + Î
((

N
|Ω| + ε

)
β1 − γ1 − β1Î

)
, x ∈ Ω, t ∈ (T,∞),

∂Î
∂n = 0, x ∈ ∂Ω, t ∈ (T,∞),

Î(x, T ) = I1(x, T ), x ∈ Ω.

(4.15)

By the comparison principle, we find that Ǐ(x, t) ≤ I1(x, t) ≤ Î(x, t) for (x, t) ∈
Ω× [T,∞). If ε is small, we have that λ∗((N/|Ω|±ε)β1−γ1) < 0, and it then follows

that Ǐ(x, t) → Ǐ∗ε (x) and Î(x, t) → Î∗ε (x), where Ǐ∗ε and Î∗ε are the corresponding
positive equilibria, respectively. Taking ε→ 0, we further have that Ǐ∗ε → U(x) and

Î∗ε → U(x). Hence, I1(x, t) → U(x), and consequently, S → N/|Ω| − U , as t → ∞
uniformly for x ∈ Ω.

We now discuss the case R1 > 1. By Lemma 4.1, the endemic equilibria E1 and
E2 both exist. In the case of homogeneous coefficients, we observed the competitive
exclusion behavior: either E1 drives E2 to extinction or vice versa. We may ask
whether this is still the case when the coefficients are heterogeneous. To answer
such a question, we first introduce two auxiliary functions Ǔ and V̌ as follows. If
λ∗(Nβ1/|Ω|−γ1−β1V ) < 0, we let Ǔ be the unique positive solution of the problem:

d∆Ǔ + Ǔ
(
Nβ1

|Ω| − γ1 − β1Ǔ − β1V
)

= 0, x ∈ Ω,

∂Ǔ
∂n = 0, x ∈ ∂Ω,
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and if λ∗(Nβ2/|Ω| − γ2 − β2U) < 0, we let V̌ be the unique positive solution of the
problem:

d∆V̌ + V̌
(
Nβ2

|Ω| − γ2 − β2V̌ − β2U
)

= 0, x ∈ Ω,

∂V̌
∂n = 0, x ∈ ∂Ω.

Biologically, Ǔ is the lowest possible asymptotic density for the first disease and V̌
is the lowest possible asymptotic density for the second disease (see p. 289 of [13]).
We then have the following competitive exclusion result.

Theorem 4.4. Suppose that R1 > 1.

(a) If λ∗(Nβ1/|Ω| − γ1 − β1V ) < 0 and λ∗(Nβ2/|Ω| − γ2 − β2Ǔ) ≥ 0, then E1 is
globally attractive;

(b) If λ∗(Nβ2/|Ω| − γ2 − β2U) < 0 and λ∗(Nβ1/|Ω| − γ1 − β1V̌ ) ≥ 0, then E2 is
globally attractive.

Proof. Suppose that λ∗(Nβ1/|Ω|−γ1−β1V ) < 0 and λ∗(Nβ2/|Ω|−γ2−β2Ǔ) ≥ 0.
Since the solution of the competition model (4.1) always converges, we can proceed
analogously to show that (I1(x, t), I2(x, t)) → (I∗1 (x), I∗2 (x)) as t → ∞ uniformly
for x ∈ Ω, where (I∗1 (x), I∗2 (x)) is a solution of (4.11)-(4.12). It is easy to see that
I∗2 ≤ V . Let ε > 0 be given. Since S + I1 + I2 → N/|Ω| and I2 → I∗2 as t → ∞,
there exists T1 > 0 such that

∂I1
∂t
− d∆I1 ≥ I1

(
N

|Ω|
β1 − γ1 − β1I1 − β1(I∗2 + ε)

)
for (x, t) ∈ Ω× (T1,∞).

Let Ǐ be the solution of the following problem:

∂Ǐ
∂t = d∆Ǐ + Ǐ

(
N
|Ω|β1 − γ1 − β1Ǐ − β1(V + ε)

)
, x ∈ Ω, t ∈ (T1,∞),

∂Ǐ
∂n = 0, x ∈ ∂Ω, t ∈ (T1,∞),

Ǐ(x, T ) = I1(x, T1), x ∈ Ω.

(4.16)

The comparison principle yields that I1 ≥ Ǐ on Ω×[T1,∞). If ε > 0 is small enough,
then λ∗(Nβ1/|Ω| − γ1 − β1(V + ε)) < 0, and it follows from Lemma 4.1 that Ǐ(x, t)
converges to a positive equilibrium Ǐ∗ε (x). Moreover, Ǐ∗ε (x) → Ǔ(x) as ε → 0. Let
δ > 0 be given. We then have that I1(x, t) ≥ Ǔ(x) − δ/2 for large t. Noticing the
fact that S + I1 + I2 → N/|Ω| as t→∞, there exists T2 > T1 such that

∂I2
∂t
− d∆I2 ≤ I2

(
N

|Ω|
β2 − γ2 − β2(Ǔ − δ)− β2I2

)
for (x, t) ∈ Ω× (T2,∞).

Let Î be the solution of the following problem:

∂Î
∂t = d∆Î + Î

(
N
|Ω|β2 − γ2 − β2(Ǔ − δ)− β2Î

)
, x ∈ Ω, t ∈ (T2,∞),

∂Î
∂n = 0, x ∈ ∂Ω, t ∈ (T2,∞),

Î(x, T ) = I2(x, T2), x ∈ Ω.

(4.17)

The comparison principle then implies that I2 ≤ Î on Ω×[T2,∞). Since λ∗(Nβ2/|Ω|
−γ2 − β2Ǔ) ≥ 0, it follows from Lemma 4.1 that Î → Î∗δ (≥ 0) as t → ∞. Taking

δ → 0 then gives Î∗δ → 0, which leads to that I2 → 0 as t → ∞. Consequently,
I1 → U as t → ∞, and so E1 is globally attractive. Similarly, we can prove the
other case that λ∗(Nβ2/|Ω| − γ2 − β2U) < 0 and λ∗(Nβ1/|Ω| − γ1 − β1V̌ ) ≥ 0.
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An endemic equilibrium (S̄, Ī1, Ī2) is called a coexistence equilibrium if both Ī1
and Ī2 are nontrivial. If such an equilibrium exists, then we certainly do not have
the competitive exclusion.

Theorem 4.5. Suppose that R1 > 1. We assume that both λ∗(Nβ1/|Ω|−γ1−β1V )
and λ∗(Nβ2/|Ω|−γ2−β2U) are negative. Then there exists at least one coexistence
equilibrium of (2.1)-(2.3). Moreover, the model (2.1)-(2.3) is permanent in the
sense that there exist positive constants m0 and M0 such that

m0 ≤ S(x, t), I1(x, t), I2(x, t) ≤M0

for all x ∈ Ω and t ≥ T0, where T0 is dependent on the initial condition.

Proof. As in the proof of Theorem 4.4, we can see that (I1(x, t), I2(x, t))→ (I∗1 (x),
I∗2 (x)) as t → ∞ uniformly for x ∈ Ω, where (I∗1 (x), I∗2 (x)) is a solution of (4.11)-
(4.12). Moreover, the assumption on the principal eigenvalues guarantees that
(I∗1 (x), I∗2 (x)) is strictly componentwise positive (see p. 307 of [13]). In addition,
by the comparison principle, we have I∗1 + I∗2 < N/|Ω|. Hence, noticing the fact
that S+ I1 + I2 → N/|Ω|, we conclude that (S, I1, I2)→ (S∗, I∗1 , I

∗
2 ) as t→∞ with

S∗ = N/|Ω| − I∗1 − I∗2 strictly positive on Ω.
It then suffices to prove that there does not exist a sequence {(I∗1,n, I∗2,n)} of

equilibria of (4.11)-(4.12) which converges to (U, 0) or (0, V ) or satisfies I∗1,n+I∗2,n →
N/|Ω|. The nonexistence of such a sequence converging to (U, 0) or (0, V ) has been
proved in [13] (see p. 290). So we only need to assume that {(I∗1,n, I∗2,n)} exists
and satisfies I∗1,n + I∗2,n → N/|Ω|. Noticing (4.11) and the uniform boundededness
of {(I∗1,n, I∗2,n)}, it follows from a standard compact argument that there exists a

subsequence {(I∗1,nj
, I∗2,nj

)} such that {(I∗1,nj
, I∗2,nj

)} → (Ĩ∗1 , Ĩ
∗
2 ), where Ĩ∗i , i = 1, 2,

satisfies that d∆Ĩ∗i − γiĨ∗i = 0. It then follows from the maximum principle that

Ĩ∗i ≡ 0, which contradicts Ĩ∗1 + Ĩ∗2 = N/|Ω|.

5. Conditions for competitive exclusion and coexistence. In this section, we
verify the validity of conditions in Theorems 4.4 and 4.5. We first consider Theorem
4.4. It suffices to verify the validity of conditions in part (a). In view of (4.2) and
Remark 1, we choose Nβ2/|Ω| > γ2 in Ω. It then follows from Lemma 4.1 that (0, V )
exists. Moreover, V ≤ N/|Ω| −minΩ{γ2/β2} in Ω. Since β1 does not depend on β2

and γ2, we can choose β1 so large that minΩ{γ2/β2} > maxΩ{γ1/β1}, which implies

that Nβ1/|Ω|−γ1−β1V > 0 in Ω. Then by (4.2), λ∗(Nβ1/|Ω|−γ1−β1V ) < 0, which
in conjunction with Lemma 4.1 guarantees the existence of Ǔ . Clearly, Ǔ ≥ N/|Ω|−
maxΩ{γ1/β1}− V ≥ minΩ{γ2/β2}−maxΩ{γ1/β1} in Ω. For simplicity, we now let
γ2 take the form γ2 = r2β2, where r2 is a positive constant close to N/|Ω| such that
(N/|Ω|+maxΩ{γ1/β1})/2 ≤ r2 < N/|Ω|. This implies that Nβ2/|Ω|−γ2−β2Ǔ ≤ 0

in Ω. It then follows from (4.2) that λ∗(Nβ2/|Ω| − γ2 − β2Ǔ) ≥ 0.
We now consider Theorem 4.5. For any α ∈ C(Ω), it is well known that λ∗(α)→

minΩ{−α(x)} as d→ 0 [7]. Let α+(x) = max{α(x), 0} for any x ∈ Ω. Suppose that

α(x) > 0 for some x ∈ Ω, then there exists d∗ > 0 such that the unique positive
solution u of the problem

d∆u+ (α(x)− u)u = 0, x ∈ Ω,

∂u
∂n = 0, x ∈ ∂Ω

(5.1)

exists for all d < d∗, and u→ α+ as d→ 0.
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Figure 1. Population of infected individuals

For simplicity, let Ω be the one dimensional open interval (0, 1) and β1 = β2 = 1.
Suppose that N/|Ω| > γi for i = 1, 2 so that R1 > 1. Then we have that U →
N/|Ω| − γ1 and V → N/|Ω| − γ2 as d→ 0. Moreover, one can show that

λ∗(Nβ1/|Ω| − γ1 − β1V )→ min
Ω
{γ1(x)− γ2(x)} (5.2)

and
λ∗(Nβ2/|Ω| − γ2 − β2U)→ min

Ω
{γ2(x)− γ1(x)} (5.3)

as d→ 0.
Let γ1 = 1 + x and γ2 = 2− x. Choose the initial data as

S(x, 0) = 3 + cosπx,

I1(x, 0) = I2(x, 0) = 2 + cosπx

such that N/|Ω| > γi holds for i = 1, 2. Then it follows from γ1 − γ2 = 2x − 1
and (5.2)-(5.3) that both λ∗(Nβ1/|Ω| − γ1− β1V ) and λ∗(Nβ2/|Ω| − γ2− β2U) are
negative for small diffusion rate d. Therefore the conditions in Theorem 4.5 hold,
and we expect the coexistence between the two strains for small diffusion rates here.
This is confirmed by the numerical simulation. In Figure 1, we can see that the
population of infected individuals converges to a nonzero value. Actually, (S, I1, I2)
converges to the endemic equilibrium (the steady states of the two strains are shown
in Figure 2).

6. Conclusion. We have established competitive exclusion and coexistence results
for a multi-strain pathogen model with diffusion and with mass action incidence
term. We showed that for a spatially homogenous environment competitive exclu-
sion is the only outcome when the basic reproduction number is greater than one
and when it is less than one then the disease-free equilibrium is globally attrac-
tive. These results are analogous to many differential equation models, as to be
expected since the transmission and recovery rates are independent of space. We
also showed that when the transmission and recovery rates are non-homogeneous
then coexistence is possible under additional conditions on the model parameters.
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Figure 2. Infected individuals at t=50

One of the key properties in our model that facilitate the analysis is the conser-
vation of the total population given in equation (2.3). When such assumption is
dropped in ordinary differential equation models to allow for modeling disease added
mortality (e.g., [1, 2, 3]), it results in the added difficulty that the total population
can no longer be conserved and its dynamics can only be described by a differential
inequality. In the future we hope to extend the current study to accommodate such
important property of certain diseases that lead to mortality.

Acknowledgments. The authors would like to thank the referees for their helpful
comments.
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