Research article

Interval-valued Choquet integral for set-valued mappings: definitions, integral representations and primitive characteristics

  • Received: 03 May 2020 Accepted: 29 July 2020 Published: 06 August 2020
  • MSC : 26E50, 28E10

  • In this paper, a new kind of real-valued major Choquet integral, real-valued minor Choquet integral and interval-valued Choquet integrals for set-valued functions is introduced and investigated. The representations of the Choquet integral of set-valued functions with respect to a fuzzy measure are given. In particular, we focus on the case of the distorted Lebesgue measure as a fuzzy measure. Furthermore, the characteristics of the primitive of Choquet integral for set-valued functions are given as Radon-Nikodym property in some sense.

    Citation: Zengtai Gong, Xuyang Kou, Ting Xie. Interval-valued Choquet integral for set-valued mappings: definitions, integral representations and primitive characteristics[J]. AIMS Mathematics, 2020, 5(6): 6277-6297. doi: 10.3934/math.2020404

    Related Papers:

  • In this paper, a new kind of real-valued major Choquet integral, real-valued minor Choquet integral and interval-valued Choquet integrals for set-valued functions is introduced and investigated. The representations of the Choquet integral of set-valued functions with respect to a fuzzy measure are given. In particular, we focus on the case of the distorted Lebesgue measure as a fuzzy measure. Furthermore, the characteristics of the primitive of Choquet integral for set-valued functions are given as Radon-Nikodym property in some sense.


    加载中


    [1] R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl., 12 (1965), 1-12. doi: 10.1016/0022-247X(65)90049-1
    [2] P. Billingsley, Probability and Measure, Wiley, 1994.
    [3] D. Candeloro, R. Mesiar, A. R. Sambucini, A special class of fuzzy measures: Choquet integral and applications, Fuzzy Sets and Systems, 355 (2019), 83-99. doi: 10.1016/j.fss.2018.04.008
    [4] G. Choquet, Theory of capacities, J. Annals det Institut Fourier, 5 (1955), 131-295
    [5] S. J. Cho, B. S. Lee, G. M. Lee, et al. Fuzzy integrals for set-valued mappings, Fuzzy Sets and Systems, 117 (2001), 333-337. doi: 10.1016/S0165-0114(98)00385-6
    [6] M. Grabisch, T. Murofushi, M, Sugeno, Fuzzy Measures and Integrals: Theory and Applications, Physica-verlag, Heidelberg, 2000.
    [7] M. Grabisch, C. Labreuche, A decade of applications of the Choquet and Sugeno integrals in multicriteria decision aid, Ann. Oper. Res., 175 (2010), 247-286. doi: 10.1007/s10479-009-0655-8
    [8] Z. T. Gong, Z. Q. Wei, Choquet integral of set-valued functions with respect to multisubmeasures, Journal of Shandong University (Natural Science) (in Chinese), 50 (2015), 63-71.
    [9] Y. Huang, C. X. Wu, Real-valued Choquet integral for set-valued mappings, Int. J. Approx. Reason., 55 (2014), 683-688. doi: 10.1016/j.ijar.2013.09.011
    [10] L. C. Jang, J. S. Kwon, On the represtentation of Choquet of set-valued functions and null set, Fuzzy Sets and Systems, 112 (2000), 233-239. doi: 10.1016/S0165-0114(98)00184-5
    [11] L. C. Jang, B. M. Kil, Y. K. Kim, et al. Some properties of Choquet integrals of set-valued functions, Fuzzy Sets and Systems, 91 (1997), 95-98. doi: 10.1016/S0165-0114(96)00124-8
    [12] J. Li, Order continuity of monotone set function and convergence of measurable functions sequence, Appl. Math. Comput., 135 (2003), 211-218.
    [13] T. Murofushi, M. Sugeno, An integral of fuzzy measures and the Choquet integral as integral with respect to a fuzzy measure, Fuzzy Sets and Systems, 29 (1989), 201-227. doi: 10.1016/0165-0114(89)90194-2
    [14] F. Y. Meng, Q. Zhang, Induced continuous Choquet integral operators and their application to group decision making, Comput. Ind. Eng., 68 (2014), 42-53. doi: 10.1016/j.cie.2013.11.013
    [15] Y. Ouyang, J. Li, Some properties of monotone set functions defined by Choquet integral, Journal of Southeast University (in Chinese), 19 (2003), 424-427.
    [16] E. Pap, A. Iosif, A. Gavrilut, Integrability of an interval-valued multifunction with respect to an interval-valued set multifunction, Iranian Journal of Fuzzy Systems, 15 (2018), 47-63.
    [17] D. Paternain, L. De Miguel, G. Ochoa, et al, The interval-Valued Choquet integral based on admissible permutations, IEEE T. Fuzzy Syst., 27 (2019), 1638-1647. doi: 10.1109/TFUZZ.2018.2886157
    [18] C. Stamate, A. Croitoru, The general Pettis-Sugeno integral of vector multifunctions relative to a vector fuzzy multimeasure, Fuzzy Sets and Systems, 327 (2017), 123-136. doi: 10.1016/j.fss.2017.07.007
    [19] M. Sugeno, A note on derivatives of functions with respect to fuzzy measures, Fuzzy Sets and Systems, 222 (2013), 1-17. doi: 10.1016/j.fss.2012.11.003
    [20] V. Torra, Y. Narukawa, Numerical integration for the Choquet integral, Inform. Fusion, 31 (2016), 137-145. doi: 10.1016/j.inffus.2016.02.007
    [21] V. Torra, Y. Narukawa, The interpretation of fuzzy integrals and their application to fuzzy systems, Int. J. Approx. Reason., 41 (2006), 43-58. doi: 10.1016/j.ijar.2005.08.001
    [22] A. Tversky, D. Kahneman, Advances in prospect theory: cumulative representation of uncertainty, J. Risk Uncertain, 5 (1992), 297-323. doi: 10.1007/BF00122574
    [23] C. X. Wu, M. Ma, The Foundament of Fuzzy Analysis, National Defense Industry Press (in Chinese), Beijing, 1991.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3101) PDF downloads(215) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog