Citation: Asifa Tassaddiq. An application of theory of distributions to the family of λ-generalized gamma function[J]. AIMS Mathematics, 2020, 5(6): 5839-5858. doi: 10.3934/math.2020374
[1] | H. M. Srivastava, A new family of the λ-generalized Hurwitz-Lerch Zeta functions with applications, Appl. Math. Inf. Sci., 8 (2014), 1485-1500. |
[2] | H. M. Srivastava, R. K. Saxena, T. K. Pogány, et al. Integral and computational representations of the extended Hurwitz-Lerch Zeta function, Integr. Transf. Spec. F., 22 (2011), 487-506. |
[3] | H. M. Srivastava, D. Jankov, T. K. Pogány, et al. Two-sided inequalities for the extended Hurwitz-Lerch Zeta function, Comput. Math. Appl., 62 (2011), 516-522. |
[4] | M. J. Luo, R. K. Raina, New Results for Srivastava's λ-Generalized Hurwitz-Lerch Zeta Function, Filomat, 31 (2017), 2219-2229. |
[5] | H. M. Srivastava, F. Ghanim, R. M. El-Ashwah, Inclusion properties of certain subclass of univalent meromorphic functions defined by a linear operator associated with the λ-generalized Hurwitz-Lerch zeta function, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2017 (2017), 34-50. |
[6] | H. M. Srivastava, S. Gaboury, New expansion formulas for a family of the λ-generalized Hurwitz-Lerch zeta functions, Int. J. Math. Math. Sci., 2014 (2014), 1-13. |
[7] | H. M. Srivastava, S. Gaboury, F. Ghanim, Certain subclasses of meromorphically univalent functions defined by a linear operator associated with the λ-generalized Hurwitz-Lerch zeta function, Integr. Transf. Spec. F., 26 (2015), 258-272. |
[8] | H. M. Srivastava, S. Gaboury, F. Ghanim, Some further properties of a linear operator associated with the λ-generalized Hurwitz-Lerch zeta function related to the class of meromorphically univalent functions, Appl. Math. Comput., 259 (2015), 1019-1029. |
[9] | H. M. Srivastava, Some properties and results involving the zeta and associated functions, Functional Analysis, Approximation and Computation, 7 (2015), 89-133. |
[10] | H. M. Srivastava, N. Jolly, M. K. Bansal, et al. A new integral transform associated with the λ-extended Hurwitz-Lerch zeta function, RACSAM., 113 (2019), 1679-1692. |
[11] | A. Tassaddiq, Some difference equations for Srivastava's λ-generalized Hurwitz-Lerch zeta functions with applications, Symmetry, 11 (2019), 1-16. |
[12] | A. Tassaddiq, λ-generalized gamma functions, J. Eng. Appl. Sci., 5 (2018), 25-34. |
[13] | M. A. Chaudhry, S. M. Zubair, On a Class of Incomplete Gamma Functions with Applications, CRC Press, New York, 2001. |
[14] | S. Mubeen, S. D. Purohit, M. Arshad, et al. Extension of k-gamma, k-beta functions and k-beta distribution, J. Math. Anal., 7 (2016), 118-131. |
[15] | R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulgaciones Matemáticas, 15 (2007), 179-192. |
[16] | M. A. Chaudhry, A. Qadir, Fourier transform and distributional representation of Gamma function leading to some new identities, Int. J. Math. Math. Sci., 2004 (2004), 2091-2096. |
[17] | A. Tassaddiq, A. Qadir, Fourier transform and distributional representation of the generalized gamma function with some applications, Appl. Math. Comput., 218 (2011), 1084-1088. |
[18] | A. Tassaddiq, A. Qadir, Fourier transform representation of the extended Fermi-Dirac and Bose-Einstein functions with applications to the family of the zeta and related functions, Integr. Transf. Spec. F., 22 (2011), 453-466. |
[19] | A. Tassaddiq, Some Representations of the Extended Fermi-Dirac and Bose-Einstein Functions with Applications, National University of Sciences and Technology, Islamabad, Pakistan, 2012. |
[20] | M. H. Al-Lail, A. Qadir, Fourier transform representation of the generalized hypergeometric functions with applications to the confluent and gauss hypergeometric functions, Appl. Math. Comput., 263 (2015), 392-397. |
[21] | A. Tassaddiq, A new representation of the extended Fermi-Dirac and Bose-Einstein functions, Int. J. Math. Appl., 5 (2017), 435-446. |
[22] | A. Tassaddiq, R. Safdar, T. Kanwal, A distributional representation of gamma function with generalized complex domian, Advances in Pure Mathematics, 7 (2017), 441-449. |
[23] | A. Tassaddiq, A new representation of the Srivastava λ-generalized Hurwitz-Lerch zeta functions, Symmetry, 10 (2018), 1-20. |
[24] | A. Tassaddiq, A new representation of the k-gamma functions, Mathematics, 7 (2019), 1-13. |
[25] | A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev, Integrals and Series: Elementary Functions, CRC Press, 1992. |
[26] | F. W. J. Olver, D. W. Lozier, R. F. Boisvert, et al. NIST Handbook of Mathematical Functions, Cambridge university press, 2010. |
[27] | Z. H. Yang, J. F. Tian, M. H. Ha, A new asymptotic expansion of a ratio of two gamma functions and complete monotonicity for its remainder, P. Am. Math. Soc., 148 (2020), 2163-2178. |
[28] | Z. H. Yang, J. F. Tian, Sharp bounds for the ratio of two zeta functions, J. Comput. Appl. Math., 364 (2020), 1-14. |
[29] | Z. H. Yang, J. F. Tian, Asymptotic expansions for the gamma function in terms of hyperbolic functions, J. Math. Anal. Appl., 478 (2019), 133-155. |
[30] | Z. H. Yang, J. F. Tian, Monotonicity, convexity, and complete monotonicity of two functions related to the gamma function, RACSAM., 113 (2019), 3603-3617. |
[31] | Z. H. Yang, J. F. Tian, A comparison theorem for two divided differences and applications to special functions, J. Math. Anal. Appl., 464 (2018), 580-595. |
[32] | Z. H. Yang, J. F. Tian, A class of completely mixed monotonic functions involving the gamma function with applications, P. Am. Math. Soc., 146 (2018), 4707-4721. |
[33] | F. Qi, R. P. Agarwal, On complete monotonicity for several classes of functions related to ratios of gamma functions, J. Inequal. Appl., 2019 (2019), 1-42. |
[34] | Z. H. Yang, W. M. Qian, Y. M. Chu, et al. On rational bounds for the gamma function. J. Inequal. Appl., 2017 (2017), 1-17. |
[35] | Z. H. Yang, W. M. Qian, Y. M. Chu, et al. On approximating the error function, Math. Inequal. Appl., 21 (2018), 469-479. |
[36] | Z. H. Yang, W. Zhang, Y. M. Chu, Sharp Gautschi inequality for parameter 0 < p < 1 with applications, Math. Inequal. Appl., 20 (2017), 1107-1120. |
[37] | G. E. Šilov, I. M. Gelʹfand, Generalized Functions: Properties and Operations, Academic Press, 1969. |
[38] | A. H. Zamanian, Distribution theory and transform analysis: an introduction to generalized functions, with applications, Courier Corporation, 1987. |
[39] | I. Richards, H. Youn, Theory of Distributions: A Non-Technical Introduction, Cambridge University Press, UK, 2007. |
[40] | N. N. Lebedeve, Special Functions and Their Applications, PrenUce-Hall, Londres, 1965. |
[41] | R. F. Hoskins, J. S. Pinto, Theories of Generalised Functions: Distributions, Ultradistributions and Other Generalised Functions, Elsevier, 2005. |