[1]
|
Peisl H (1978) Lattice strains due to hydrogen in metals, In: Alefeld G, Völkl J, Hydrogen in Metals I-Basic Properties, Heidelberg: Springer-Verlag.
|
[2]
|
Kirchheim R, Pundt A (2015) Hydrogen in Metals, In: Laughlin D, Hono K, Physical Metallurgy, 5 Eds., Elsevier, 2597-2705.
|
[3]
|
Fukai Y (2005) The Metal-Hydrogen System: Basic Bulk Properties, Heidelberg: Springer-Verlag.
|
[4]
|
Mooij L, Perkisas T, Palsson G, et al. (2014) The effect of microstructure on the hydrogenation of Mg/Fe thin film multilayers. Int J Hydrogen Energ 39:17092-17103. doi: 10.1016/j.ijhydene.2014.08.035
|
[5]
|
Hjörvarsson B, Andersson G, Karlsson E (1997) Metallic superlattices: Quasi two-dimensional playground for hydrogen. J Alloy Compd 253:51-57.
|
[6]
|
Pundt A, Kirchheim R (2006) Hydrogen in metals: microstructural aspects. Annu Rev Mater Res 36: 555-608. doi: 10.1146/annurev.matsci.36.090804.094451
|
[7]
|
Gremaud R, Gonzales-Silveira M, Pivak Y, et al. (2009) Hydrogenography of PdHx thin films: Influence of H-induced stress relaxation processes. Acta Mater 57:1209-1219. doi: 10.1016/j.actamat.2008.11.016
|
[8]
|
Baldi A, Gonzales-Silveira M, Palmisano V, et al. (2009) Destabilization of the Mg-H system through elastic constraints. Phys Rev Lett 102: 226102. doi: 10.1103/PhysRevLett.102.226102
|
[9]
|
Griessen R, Strohfeldt N, Giessen H (2016) Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles. Nat Mater 15: 311-317. doi: 10.1038/nmat4480
|
[10]
|
Wagner S, Pundt A (2016) Quasi-thermodynamic model on hydride formation in palladium-hydrogen thin films: Impact of elastic and microstructural constraints. Int J Hydrogen Energ 41: 2727-2738. doi: 10.1016/j.ijhydene.2015.11.063
|
[11]
|
Schwarz R, Khachaturyan A (2006) Thermodynamics of open two-phase systems with coherent interfaces: Application to metal-hydrogen systems. Acta Mater 54: 313-323. doi: 10.1016/j.actamat.2005.08.044
|
[12]
|
Boes N, Züchner H (1976) Electrochemical methods for studying diffusion permeation and solubility of hydrogen in metals. J Less Common Met 49: 223-240. doi: 10.1016/0022-5088(76)90037-0
|
[13]
|
Züchner H, Rauf T (1991) Electrochemical isotherm measurements on the Pd-H and PdAg-H systems. J Less Common Met 172-174: 816-823. doi: 10.1016/0022-5088(91)90208-L
|
[14]
|
Samwer K, Johnson W (1983) Structure of glassy early-transition-late-transition-metal hydrides. Phys Rev B 28: 2907-2913. doi: 10.1103/PhysRevB.28.2907
|
[15]
|
Myers S, Baskes M, Birnbaum H, et al. (1992) Hydrogen interaction with defects in crystalline solids. Rev Mod Phys 64: 559-617. doi: 10.1103/RevModPhys.64.559
|
[16]
|
Baldi A, Narayan T, Koh A, et al. (2014) In situ detection of hydrogen induced phase transitions in individual palladium nanocrystals. Nat Mater 13: 1143-1148. doi: 10.1038/nmat4086
|
[17]
|
Iwaoka H, Arita M, Horita Z (2016) Hydrogen diffusion in ultrafine-grained palladium: Roles of dislocations and grain boundaries. Acta Mater 107: 168-177. doi: 10.1016/j.actamat.2016.01.069
|
[18]
|
Melikhova O, Cizek, J, Prochazka I (2014) Hydrogen induced defects in palladium. Acta Phys Pol A 125: 752-755. doi: 10.12693/APhysPolA.125.752
|
[19]
|
Wagner S, Klose P, Burlaka V, et al. (2019) Structural phase transitions in niobium hydrogen thin films: Mechanical stress, phase equilibria and critical temperatures. ChemPhysChem 20: 1890-1904. doi: 10.1002/cphc.201900247
|
[20]
|
Mooji L, Dam B (2013) Hysteresis and the role of nucleation and growth in the hydrogenation of Mg nanolayers. Phys Chem Chem Phys 15: 2782-2792. doi: 10.1039/c3cp44441d
|
[21]
|
Uchida H, Wagner S, Hamm M, et al. (2015) Absorption kinetics and hydride formation in magnesium films: Effect of driving force revisited. Acta Mater 85: 279-289. doi: 10.1016/j.actamat.2014.11.031
|
[22]
|
Mütschele T, Kirchheim R (1987) Segregation and diffusion of hydrogen in grain boundaries of palladium. Scripta Metall 21: 135-140. doi: 10.1016/0036-9748(87)90423-6
|
[23]
|
Weissmüller J, Lemier C (1999) Lattice constants of solid solution microstructures: The case of nanocrystalline Pd-H. Phys Rev Lett 82: 213-216. doi: 10.1103/PhysRevLett.82.213
|
[24]
|
Song G, Geitz M, Abromeit A, et al. (1996) Solubility isotherms of hydrogen in epitaxial Nb(110) films. Phys Rev B 54:14093-14101. doi: 10.1103/PhysRevB.54.14093
|
[25]
|
Hamm M, Burlaka V, Wagner S, et al. (2015) Achieving reversibility of ultra-high mechanical stress by hydrogen loading of thin films. Appl Phys Lett 106: 243108. doi: 10.1063/1.4922285
|
[26]
|
Laudahn U, Pundt A, Bicker M, et al. (1999) Hydrogen-induced stress in Nb single layers. J Alloy Compd 293-295: 490-494. doi: 10.1016/S0925-8388(99)00471-5
|
[27]
|
Wicke E, Brodowsky H (1978) Hydrogen in palladium and palladium alloys, In: Alefeld G, Völkl J, Hydrogen in Metals II, Berlin, Heidelberg: Springer-Verlag.
|
[28]
|
Lacher J (1937) A theoretical formula for the solubility of hydrogen in palladium. P Roy Soc Lond A-Mat 161: 525-545. doi: 10.1098/rspa.1937.0160
|
[29]
|
Olsson S, Blixt A, Hjörvarsson B (2005) Mean-field-like structural phase transition of H in Fe/V(001) superlattices. J Phys-Condens Mat 17: 2073-2084. doi: 10.1088/0953-8984/17/13/007
|
[30]
|
Papaconstantopoulos D, Klein B, Economou E, et al. (1978) Band structure and superconductivity of PdDx and PdHx. Phys Rev B 17: 141-150.
|
[31]
|
Kirchheim R (1988) Hydrogen solubility and diffusivity in defective and amorphous metals. Prog Mater Sci 32: 261-325. doi: 10.1016/0079-6425(88)90010-2
|
[32]
|
Züttel A (1988) Metall-hydride. Vorlesungsskript.
|
[33]
|
Larché F, Cahn J (1973) A linear theory of thermochemical equilibrium of solids under stress. Acta Metall 21: 1051-1063. doi: 10.1016/0001-6160(73)90021-7
|
[34]
|
Larché F, Cahn J (1985) The interactions of composition and stress in crystalline solids. Acta Metall 33: 331-357. doi: 10.1016/0001-6160(85)90077-X
|
[35]
|
Wagner S, Moser M, Greubel C, et al. (2013) Hydrogen microscopy-Hydrogen distribution in buckled niobium hydrogen thin films. Int J Hydrogen Energ 38: 13822-13830. doi: 10.1016/j.ijhydene.2013.08.006
|
[36]
|
Ohring M (1992) The materials science of thin films, San Diego: Academic Press.
|
[37]
|
Kirchheim R (1981) Interaction of hydrogen with dislocations in palladium-II. Interpretation of activity results by a Fermi-Dirac distribution. Acta Metall 29: 845-853.
|
[38]
|
Bankmann J, Pundt A, Kirchheim R (2003) Hydrogen loading behaviour of multi-component amorphous alloys: model and experiment. J Alloy Compd 356: 566-569.
|
[39]
|
White C, Stein D (1978) Sulfur segregation to grain boundaries in Ni3Al and Ni3(Al, Ti) alloys. Metall Trans A 9: 13-22. doi: 10.1007/BF02647165
|
[40]
|
Wagner S, Pundt A (2011) Combined impact of micro-structure and mechanical stress on the electrical resistivity of PdHc thin films. Acta Mater 59: 1862-1870. doi: 10.1016/j.actamat.2010.11.052
|
[41]
|
Wagner S, Kramer T, Uchida U, et al. (2016) Mechanical stress and stress release channels in 10-350 nm palladium hydrogen thin films with different micro-structures. Acta Mater 114: 116-125. doi: 10.1016/j.actamat.2016.05.023
|
[42]
|
Kirchheim R, Mütschele T, Kieninger W (1988) Hydrogen in amorphous and nanocrystalline metals. Mater Sci Eng 99: 457-462. doi: 10.1016/0025-5416(88)90377-1
|
[43]
|
Pundt A, Nikitin E, Pekarski P, et al. (2004) Adhesion energy between metal films and polymers obtained by studying buckling induced by hydrogen. Acta Mater 52: 1579-1587. doi: 10.1016/j.actamat.2003.12.003
|
[44]
|
Lemier C, Weissmüller J (2007) Grain boundary segregation, stress and stretch: effects on hydrogen absorption in nanocrystalline palladium. Acta Mater 55: 1241-1254. doi: 10.1016/j.actamat.2006.09.030
|
[45]
|
Tan L, Allen T, Busby J (2013) Grain boundary engineering for structure materials of nuclear reactors. J Nucl Mat 441: 661-666. doi: 10.1016/j.jnucmat.2013.03.050
|
[46]
|
Chan S (1994) Degenerate epitaxy, coincidence epitaxy and origin of "special" boundaries in thin films. J Phys Chem Solids 55: 1137-1145. doi: 10.1016/0022-3697(94)90131-7
|
[47]
|
Brons J, Thompson G (2013) A comparison of grain boundary evolution during grain growth in fcc metals. Acta Mater 61:3936-3944. doi: 10.1016/j.actamat.2013.02.057
|
[48]
|
Divakar R, Raghunathan V (2003) Characterisation of interfaces in nanocrystalline palladium. Sadhana 28: 47-62. doi: 10.1007/BF02717125
|
[49]
|
Löffler J, Weissmüller J (1995) Grain-boundary atomic structure in nanocrystalline palladium from x-ray atomic distribution functions. Phys Rev B 52: 7076-7093. doi: 10.1103/PhysRevB.52.7076
|
[50]
|
Haas V, Birringer R, Gleiter H (1998) Preparation and characterisation of compacts from nanostructured powder produced in an aerosol flow condenser. Mater Sci Eng A-Struct 246: 86-92. doi: 10.1016/S0921-5093(97)00754-5
|
[51]
|
Gemma R (2011) Hydrogen in V-Fe thin films and Fe/V-Fe multi-layered thin films [Dissertation]. Göttingen: University of Gottingen.
|
[52]
|
Keblinski P, Wolf D, Phillpot S, et al. (1999) Structure of grain boundaries in nanocrystalline palladium by molecular dynamics simulation. Scripta Mater 41: 631-636. doi: 10.1016/S1359-6462(99)00142-6
|
[53]
|
Ferrin P, Kandoi S, Nilekar A, et al. (2012) Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A DFT study. Surf Sci 606: 679-689. doi: 10.1016/j.susc.2011.12.017
|
[54]
|
Dong W, Ledentu V, Sautet Ph, et al. (1998) Hydrogen adsorption on palladium: a comparative theoretical study of different surfaces. Surf Sci 411: 123-136. doi: 10.1016/S0039-6028(98)00354-9
|
[55]
|
Conrad H, Ertl G, Latta E (1974) Adsorption of hydrogen on palladium single crystal surfaces. Surf Sci 41: 435-446. doi: 10.1016/0039-6028(74)90060-0
|
[56]
|
Vekilova O, Bazhanov D, Simak S, et al. (2009) First-principles study of vacancy-hydrogen interaction in Pd. Phys Rev B 80: 024101.
|
[57]
|
Cizek J, Melikhova O, Vlcek M, et al. (2014) Hydrogen interaction with defects in nanocrystalline, polycrystalline and epitaxial Pd films. J Nano Res 26: 123-133.
|
[58]
|
Wagner S (2014) Dünne palladium-wassersoff-schichten als modellsystem [Dissertation]. Göttingen: University of Göttingen.
|
[59]
|
Switendick A (1979) Band structure calculations for metal hydrogen systems. Z Phys Chem 117: 89-112. doi: 10.1524/zpch.1979.117.117.089
|
[60]
|
Weissmüller J, Lemier C (2000) On the size dependence of the critical point of nanoscale interstitial solid solutions. Phil Mag Lett 80: 411-418.
|