Research article

Analysis of compartments-in-series models of liver metabolism as partial differential equations: the effect of dispersion and number of compartments

  • Received: 25 October 2018 Accepted: 07 January 2019 Published: 15 February 2019
  • Non-alcoholic fatty liver disease is the most common cause of chronic liver disease. Precipitated by the build up of extra fat in the liver not caused by alcohol, it is still not understood why steatosis occurs where it does in the liver microstructure in non-alcoholic fatty liver disease. It is likely, however, that the location of steatosis is due, at least in part, to metabolic zonation (heterogeneity among liver cells in function and enzyme expression). Recently, there has been an influx of computational and mathematical models in order to investigate the relationship between metabolic zonation and steatosis in non-alcoholic fatty liver disease. Of interest among these models are "compartments-in-series" models. Compartments-in-series models include the spatial distribution of metabolite concentrations via series of compartments that are connected through some representation of blood flow. In this paper, we analyze one such model, focusing specifically at how the number of compartments and inclusion of dispersion in the flow affect simulation results. We find the number of compartments to have a much larger effect than the inclusion of dispersion, however this is likely due to numerical artifacts. Overall, we conclude that considering partial differential equations that are equivalent to compartments-in-series models would be beneficial both in computation and in theoretical analyses.

    Citation: Marcella Noorman, Richard Allen, Cynthia J. Musante, H. Thomas Banks. Analysis of compartments-in-series models of liver metabolism as partial differential equations: the effect of dispersion and number of compartments[J]. Mathematical Biosciences and Engineering, 2019, 16(3): 1082-1114. doi: 10.3934/mbe.2019052

    Related Papers:

  • Non-alcoholic fatty liver disease is the most common cause of chronic liver disease. Precipitated by the build up of extra fat in the liver not caused by alcohol, it is still not understood why steatosis occurs where it does in the liver microstructure in non-alcoholic fatty liver disease. It is likely, however, that the location of steatosis is due, at least in part, to metabolic zonation (heterogeneity among liver cells in function and enzyme expression). Recently, there has been an influx of computational and mathematical models in order to investigate the relationship between metabolic zonation and steatosis in non-alcoholic fatty liver disease. Of interest among these models are "compartments-in-series" models. Compartments-in-series models include the spatial distribution of metabolite concentrations via series of compartments that are connected through some representation of blood flow. In this paper, we analyze one such model, focusing specifically at how the number of compartments and inclusion of dispersion in the flow affect simulation results. We find the number of compartments to have a much larger effect than the inclusion of dispersion, however this is likely due to numerical artifacts. Overall, we conclude that considering partial differential equations that are equivalent to compartments-in-series models would be beneficial both in computation and in theoretical analyses.


    加载中


    [1] M. F. Abdelmalek and A. M. Diehl, Nonalcoholic fatty liver disease as a complication of insulin resistance, Med. Clin. North Am., 91 (2007), 1125-1149.
    [2] L. A. Adams, P. Angulo and K. D. Lindor, Nonalcoholic fatty liver disease, CMAJ, 172 (2005), 899-905.
    [3] C. M. Anderson and A. Stahl, SLC27 fatty acid transport proteins, Mol. Aspects Med., 34 (2013), 516-528.
    [4] Y. G. Anissimov and M. S. Roberts, A compartmental model of hepatic disposition kinetics: 1. Model development and application to linear kinetics, J. Pharmacokinet. Pharmacodyn., 29 (2002), 131-156.
    [5] J. P. Arab, M. Arrese and M. Trauner, Recent insights into the pathogenesis of nonalcoholic fatty liver disease, Annu. Rev. Pathol. Mech. Dis., 13 (2018), 321-350.
    [6] W. B. Ashworth, N. A. Davis and I. D. L. Bogle, A computational model of hepatic energy metabolism: understanding zonated damage and steatosis in NAFLD, PLoS Comput. Biol., 12 (2016), e1005105.
    [7] W. B. Ashworth, C. Perez-Galvan, N. A. Davies and I. D. L. Bogle, Liver function as an engineering system, AIChE J., 62 (2016), 3285-3297.
    [8] B. A. Banini and A. J. Sanyal, Nonalcoholic fatty liver disease: epidemiology, pathogenesis, natural history, diagnosis, and current treatment options, Clin. Med. Insights Ther., 8 (2016), 75-84.
    [9] H. T. Banks, Modeling and Control in the Biomedical Sciences, Lecture Notes in Biomathematics, Vol 6, Springer-Verlag, New York, 1975.
    [10] H.T. Banks and H.T. Tran, Mathematical and Experimental Modling of Physical and Biological Processes, Chapman & Hall/CRC Press, Taylor & Francis Group, Boca Raton, 2009.
    [11] L. Bass, S. Keiding, K. Winkler and N. Tygstrup, Enzymatic elimination of substrates flowing through the intact liver, J. Theor. Biol., 61 (1976), 393-409.
    [12] L. Bass, P. Robinson and A. J. Bracken, Hepatic elimination of flowing substrates: the distributed model, J. Theor. Biol., 72 (1978), 161-184.
    [13] N. Berndt, M. S. Horger, S. Bulik and H. G. Holzhütter, A multiscale modelling approach to assess the impact of metabolic zonation and microperfusion on the hepatic carbohydrate metabolism, PLoS Comput. Biol., 14 (2018), e1006005.
    [14] S. N. Bhatia, M. Toner, B. D. Foy, A. Rotem, K. M. O'Neil, R. G. Tompkins and M. L. Yarmush, Zonal liver cell heterogeneity: effects of oxygen on metabolic functions of hepatocytes, Cell. Eng., 1 (1996), 125-135.
    [15] P. N. Black, C. Ahowesso, D. Montefusco, N. Saini and C. C. DiRusso, Fatty acid transport proteins: targeting FATP2 as a gatekeeper involved in the transport of exogenous fatty acids, Medchemcomm, 7 (2016), 612-622.
    [16] P. N. Black, A. Sandoval, E. Arias-Barrau and C. C. DiRusso, Targeting the fatty acid transport proteins (FATP) to understand the mechanisms linking fatty acid transport to metabolism, Immunol. Endocr. Metab. Agents Med. Chem., 9 (2009), 11-17.
    [17] E. M. Brunt, Pathology of nonalcoholic fatty liver disease, Nat. Rev. Gastroenterol. Hepatol., 7 (2010), 195-203.
    [18] E. M. Brunt, Pathology of fatty liver disease, Mod. Pathol., 20 (2007), S40-S48.
    [19] E. M. Brunt, C. G. Janney, A. M. Di Bisceglie, B. A. Neuschwander-Tetri and B. R. Bacon, Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions, Am. J. Gastroenterol., 94 (1999), 2467-2474.
    [20] X. Buqué, A. Cano, M. E. Miquilena-Colina, C. García-Monzón, B. Ochoa and P. Aspichueta, High insulin levels are required for FAT/CD36 plasma membrane translocation and enhanced fatty acid uptake in obese Zucker rat hepatocytes, Am. J. Physiol. Endocrinol. Metab., 303 (2012), E504-E514.
    [21] D. Calvetti, A. Kuceyeski and E. Somersalo, Sampling-based analysis of a spatially distributed model for liver metabolism at steady state, Multiscale Model. Simul., 7 (2008), 407-431.
    [22] G. D. Cartee, Mechanisms for greater insulin-stimulated glucose uptake in normal and insulin-resistant skeletal muscle after acute exercise, Am. J. Physiol. Endocrinol. Metab., 309 (2015), E949-E959.
    [23] N. Chalasani, L. Wilson, D. E. Kleiner, O. W. Cummings, E. M. Brunt and A. Ünalp, Relationship of steatosis grade and zonal location to histological features of steatohepatitis in adult patients with non-alcoholic fatty liver disease, J. Hepatol., 48 (2008), 829-834.
    [24] E. Chalhoub, L. Xie, V. Balasubramanian, J. Kim and J. Belovich, A distributed model of carbohydrate transport and metabolism in the liver during rest and high-intensity exercise, Ann. Biomed. Eng., 35 (2007), 474-491.
    [25] M. Colletti, C. Cicchini, A. Conigliaro, L. Santangelo, T. Alonzi, E. Pasquini, M. Tripodi and L. Amicone, Convergence of Wnt signaling on the HNF4α-driven transcription in controlling liver zonation, Gastroenterology, 137 (2009), 660-672.
    [26] S. W. Coppack, R. M. Fisher, G. F. Gibbons, S. M. Humphreys, M. J. McDonough, J. L. Potts and K. N. Frayn, Postprandial substrate deposition in human forearm and adipose tissues in vivo, Clin. Sci. (Lond.), 79 (1990), 339-348.
    [27] M. E. Daly, C. Vale, M. Walker, A. Littlefield, K. G. Alberti and J. C. Mathers, Acute effects of insulin sensitivity and diurnal metabolic profiles of a high-sucrose compared with a high-starch diet, Am. J. Clin. Nutr., 67 (1998), 1186-1196.
    [28] R. A. DeFronzo and E. Ferrannini, Influence of plasma glucose and insulin concentration on plasma glucose clearance in man, Diabetes, 31 (1982), 683-688.
    [29] A. Deussen and J. B. Bassingthwaighte, Modeling [15O] oxygen tracer data for estimating oxygen consumption, Am. J. Physiol., 270 (1996), H1115-H1130.
    [30] Gerda de Vries, Thomas Hillen, Mark Lewis, Johannes Muller and Birgitt Schonfisch, A Course in Mathematical Biology: Quantitative Modelling with Mathematical and Computational Methods, SIAM, Philadephia, 2006.
    [31] G. Dimitriadis, P. Mitrou, V. Lambadiari, E. Boutati, E. Maratou, E. Koukkou, M. Tzanela, N. Thalassinos and S. A. Raptis, Glucose and lipid fluxes in the adipose tissue after meal ingestion in hyperthyroidism, J. Clin. Endocrinol. Metab., 91 (2006), 1112-1118.
    [32] H. Doege, R. A. Baillie, A. M. Ortegon, B. Tsang, Q. Wu, S. Punreddy, D. Hirsch, N. Watson, R. Gimeno and A. Stahl, Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis, Gastroenterology, 130 (2006), 1245-1258.
    [33] H. Doege, D. Grimm, A. Falcon, B. Tsang, T. A. Storm, H. Xu, A. M. Ortegon, M. Kazantzis, M. A. Kay and A. Stahl, Silencing of hepatic fatty acid transporter protein 5in vivo reverses diet-induced non-alcoholic fatty liver disease and improves hyperglycemia, J. Biol. Chem., 283 (2008), 22186-22192.
    [34] B. Erdogmus, A. Tamer, R. Buyukkaya, B. Yazici, A. Buyukkaya, E. Korkut, A. Alcelik and U. Korkmaz, Portal vein hemodynamics in patients with non-alcoholic fatty liver disease, Tohoku J. Exp. Med., 215 (2008), 89-93.
    [35] A. Falcon, H. Doege, A. Fluitt, B. Tsang, N. Watson, M. A. Kay and A. Stahl, FATP2 is a hepatic fatty acid transporter and peroxisomal very long-chain acyl-CoA synthetase, Am. J. Physiol. Endocrinol. Metab., 299 (2010), E384-E393.
    [36] S. Fogler, Elements of Chemical Reaction Engineering, 3rd edition, Prentice Hall, New Jersey, 2001.
    [37] E. L. Forker and B. Luxon, Hepatic transport kinetics and plasma disappearance curves: distributed modeling vs. conventional approach, Am. J. Physiol., 235 (1978), E648-E660.
    [38] R. L. Fournier, Basic Transport Phenomena in Biomedical Engineering, Taylor & Francis, New York, 1998.
    [39] X. Fu, J. P. Sluka, S. G. Clendenon1, K. W. Dunn, Z. Wang, J. E. Klaunig and J. A. Glazier, Modeling of Xenobiotic Transport and Metabolism in Virtual Hepatic Lobule Models, PLOS ONE, 13 (2018), e0198060.
    [40] R. Gebhardt, Metabolic zonation of the liver: regulation and implications for liver function, Pharmacol. Ther., 53 (1992), 275-354.
    [41] Z. Gong, E. Tas, S. Yakar and R. Muzumdar, Hepatic lipid metabolism and non-alcoholic fatty liver disease in aging, Mol. Cell. Endocrinol., 455 (2017), 115-130.
    [42] M. R. Gray and Y. K. Tam, The series-compartment model for hepatic elimination, Drug Metab. Dispos., 15 (1987), 27-31.
    [43] J. T. Haas, S. Francque and B. Staels, Pathophysiology and mechanisms of nonalcoholic fatty liver disease. Annu. Rev. Physiol., 78 (2016), 181-205.
    [44] K. C. Hames, A. Vella, B. J. Kemp and M. D. Jensen, Free fatty acid uptake in humans with CD36 deficiency. Diabetes, 63 (2014), 3606-3614.
    [45] T. Hardy, F. Oakley, Q. M. Anstee and C. P. Day, Nonalcoholic fatty liver disease: pathogenesis and disease spectrum. Annu. Rev. Pathol. Mech. Dis., 11 (2016), 451-496.
    [46] B. S. Hijmans, A. Grefhorst, M. H. Oosterveer and A. K. Groen, Zonation of glucose and fatty acid metabolism in the liver: mechanism and metabolic consequences, Biochimie, 96 (2014), 121-129.
    [47] W. Hundsdorfer and J. G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer, Berlin, Germany, 2003.
    [48] K. Jungermann, Metabolic zonation of liver parenchyma: significance for the regulation of glycogen metabolism, gluconeogenesis, and glycolysis, Diabetes Metab. Rev., 3 (1987), 269-293.
    [49] K. Jungermann and N. Katz, Functional hepatocellular heterogeneity, Hepatology, 2 (1982), 385-395.
    [50] K. Jungermann and N. Katz, Functional specialization of different hepatocyte populations, Physiol. Rev., 69 (1989), 708-764.
    [51] K. Jungermann and T. Kietzmann, Oxygen: modulator of metabolic zonation and disease of the liver, Hepatology, 31 (2000), 255-260.
    [52] K. Jungermann and T. Kietzmann, Role of oxygen in the zonation of carbohydrate metabolism and gene expression in liver, Kidney Int., 51 (1997), 402-412.
    [53] K. Jungermann and T. Kietzmann, Zonation of parenchymal and nonparenchymal metabolism in liver, Annu. Rev. Nutr., 16 (1996), 179-203.
    [54] K. Jungermann and D. Sasse, Heterogeneity of liver parenchymal cells, Trends Biochem. Sci., 3 (1978), P198-P202.
    [55] N. R. Katz, Metabolic heterogeneity of hepatocytes across the liver acinus, J. Nutr., 122 (1992), 843-849.
    [56] T. Kietzmann, Metabolic zonation of the liver: the oxygen gradient revisited, Redox Biol.,11 (2017), 622-630.
    [57] T. Kietzmann, E.Y. Dimova, D. Flúgel and J. G. Scharf, Oxygen: modulator of physiological and pathophysiological processes in the liver, Z. Gastroenterol., 44 (2006), 67-76.
    [58] T. Kietzmann and K. Jungermann, Modulation by oxygen of zonal gene expression in liver studied in primary rat hepatocyte cultures, Cell. Biol. Toxicol., 13 (1997), 243-255.
    [59] M. Kot, Elements of Mathematical Biology, Cambridge University Press, Cambridge, UK, 2001.
    [60] Y. Li, C. C. Chow, A. B. Courville, A. D. Sumner and V. Periwal, Modeling glucose and free fatty acid kinetics in glucose and meal tolerance test, Theor. Biol. Med. Model., 13 (2016).
    [61] D. Magalotti, G. Marchesini, S. Ramilli, A. Berzigotti, G. Bianchi and M. Zoli, Splanchnic haemodynamics in non-alcoholic fatty liver disease: effect of a dietary/pharmacological treatment: a pilot study, Dig. Liver Dis., 36 (2004), 406-411.
    [62] D. G. Mashek, Hepatic fatty acid trafficking: multiple forks in the road, Adv. Nut., 4 (2013), 697-710.
    [63] M. E. Miquilena-Colina, E. Lima-Cabello, S. Sánchez-Campos, M. V. García-Mediavilla, M. Fernández-Bermejo, T. Lozano-Rodríguez, J. Vargas-Castrillón, X. Buqe, B. Ochoa, P. Aspichueta, J. González-Gallego and C. García-Monzón, Hepatic fatty acid translocase CD36 upregulation is associated with insulin resistance, hyperinsulinaemia and increased steatosis in non-alcoholic steatohepatitis and chronic hepatitis C, Gut, 60 (2011), 1394-1402.
    [64] H. Mitsuyoshi, K. Yasui, Y. Harano, M. Endo, K. Tsuji, M. Minami, Y. Itoh, T. Okanoue and T. Yoshikawa, Analysis of hepatic genes involved in the metabolism of fatty acids and iron in nonalcoholic fatty liver disease, Hepatol. Res., 39 (2009), 366-373.
    [65] A. Mohammadi, M. Ghasemi-rad, H. Zahedi, G. Toldi and T. Alinia, Effect of severity of steatosis as assessed ultrasonographically on hepatic vascular indices in non-alcoholic fatty liver disease, Med. Ultrason., 13 (2011), 200-206.
    [66] E. P. Newberry, Y. Xie, S. Kennedy, X. Han, K. K. Buhman, J. Luo, R. W. Gross and N. O. Davidson, Decreased hepatic triglyceride accumulation and altered fatty acid uptake in mice with deletion of the liver fatty acid-binding protein gene, J. Biol. Chem., 278 (2003), 51664-51672.
    [67] H. Ohno, Y. Naito, H. Nakajima and M. Tomita, Construction of a biological tissue model based on a single-cell model: a computer simulation at metabolic heterogeneity in the liver lobule, Artif. Life, 14 (2008), 3-28.
    [68] A. Okubo, Difffusion and Ecological Problems: Mathematical Models, Springer-Verlag, Berlin, Heidelberg, New York, 1980.
    [69] K. S. Pang, M. Weiss and P. Macheras, Advanced pharmacokinetic models based on organ clearance, circulatory, and fractal concepts, AAPS J., 9 (2007), E268-E283.
    [70] S. Park, S. H. J. Kim, G. E. P. Ropella, M. S. Roberts and C. A. Hunt, Tracing multiscale mechanisms of drug disposition in normal and diseased livers, J. Pharmacol. Exp. Ther., 334 (2010), 124-136.
    [71] V. Periwal, C. C. Chow, R. N. Bergman, M. Rick, G. L. Vega and A. E. Sumner, Evaluation of quantitative models of the effect of insulin on lipolysis and glucose disposal, Am. J. Physiol. Regul. Integr. Comp. Physiol., 295 (2008), R1089-R1096.
    [72] I. Probst, P. Schwartz and K. Jungermann, Induction in primary culture of `gluconeogenic' and `glycolytic' hepatocytes resembling periportal and perivenous cells, Eur. J. Biochem., 126 (1982), 271-278.
    [73] G. Rajaraman, M. S. Roberts, D. Hung, G. Q. Wang and F. J. Burczynski, Membrane binding proteins are the major determinants for the hepatocellular transmembrane flux of long-chain fatty acids bound to albumin, Pharm. Res., 22 (2005), 1793-1804.
    [74] V Rezania, D. Coombe and J. A. Tuszynski, A physiologically-based flow network model for hepatic drug elimination III: 2D/3D DLA lobule models, Theor. Biol. Med. Model., 13 (2016).
    [75] T. Ricken, U. Dahmen and O. Dirsch, A biphasic model for sinusoidal liver perfusion remodeling after outflow obstruction. Biomech. Model. Mechanobiol., 9 (2010), 435-450.
    [76] T. Ricken, D. Werner, H. G. Holzhütter, M. König, U. Dahmen and O. Dirsch, Modeling function-perfusion behavior in liver lobules including tissue, blood, glucose, lactate and glycogen by use of a coupled two-scale PDE-ODE approach, Biomech. Model. Mechanobiol., 14 (2015), 515-536.
    [77] T. Ricken, N. Waschinsky and D. Werner, Simulation of steatosis zonation in liver lobule-a continuummechanical bi-scale, tri-phasic, multi-component approach, inLecture Notes in Applied and Computational Mechanics, Vol. 84, (eds. P. Wriggers and T. Lenarz), Springer, (2018), 15-33.
    [78] M. S. Roberts and M. Rowland, Correlation between in-vitro microsomal enzyme activity and whole organ hepatic elimination kinetics: analysis with a dispersion model, J. Pharm. Pharmacol., 38 (1986), 177-181.
    [79] M. S. Roberts and M. Rowland, Hepatic elimination-dispersion model, J. Pharm. Sci., 74 (1985), 585-587.
    [80] S. I. Rubinow, Introduction to Mathematical Biology, John Wiley & Sons, New York, 1975.
    [81] J. Schleicher, U. Dahmen, R. Guthke and S. Schuster, Zonation of hepatic fat accumulation: insights from mathematical modelling of nutrient gradients and fatty acid uptake, J. R. Soc. Interface, 14 (2017), 20170443.
    [82] S. Sheikh-Bahaei, J. J. Maher and C. A. Hunt, Computational experiments reveal plausible mechanisms for changing patterns of hepatic zonation of xenobiotic clearance and hepatotoxicity, J. Theor. Biol., 265 (2010), 718-733.
    [83] J. Shi and K. V. Kandror, Study of glucose uptake in adipose cells, Methods Mol. Biol., 456 (2008), 307-315.
    [84] J. P. Sluka, X. Fu, Maciej Swat, J. M. Belmonte, A. Cosmanescu, S. G. Clendeno, J. F. Wambaugh, and J. A. Glazier, A liver-centric multiscale modeling framework for xenobiotics, PLOS ONE (11), 2016: DOI:10.1371/journal.pone.0162428.
    [85] M. Soresi, L. Giannitrapani, D. Noto, A. Terranova, M. E. Campagna, A. B. Cefal, A. Giammanco and G. Montalto, Effects of steatosis on hepatic hemodynamics in patients with metabolic syndrome, Ultrasound Med. Biol., 41 (2015), 1545-1552.
    [86] A. W. Thorburn, B. Gumbiner, F. Bulacan, P. Wallace and R. R. Henry, Intracellular glucose oxidation and glycogen synthase activity are reduced in non-insulin-dependent (type II) diabetes independent of impaired glucose uptake, J. Clin. Invest., 85 (1990), 522-529.
    [87] C. Torre, C. Perret and S. Colnot, Molecular determinants of liver zonation, Prog. Mol. Biol. Transl. Sci., 97 (2010), 127-150.
    [88] V. van Ginneken, E. de Vries, E. Verheij and J. van der Greef, Potential biomarkers for ``fatty liver'' (hepatic steatosis) and hepatocellular carcinoma (HCC) and an explanation of their pathogenesis, Gastroenterol. Liver Clin. Med., 1 (2017), 001.
    [89] D. Wölfle and K. Jungermann, Long-term effects of physiological oxygen concentrations on glycolysis and gluconeogenesis in hepatocyte cultures, Eur. J. Biochem., 151, (1985), 299-303.
    [90] Q. Wu, A. M. Ortegon, B. Tsang, H. Doege, K. R. Feingold and A. Stahl, FATP1 is an insulin-sensitive fatty acid transporter involved in diet-induced obesity, Mol. Cell. Biol., 26 (2006), 3455-3467.
    [91] M. M. Yeh and E. M. Brunt, Pathological features of fatty liver disease, Gastroenterology, 147 (2014), 754-764.
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4173) PDF downloads(603) Cited by(2)

Article outline

Figures and Tables

Figures(11)  /  Tables(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog