Citation: Brice Landry Doumbé Bangola. Phase-field system with two temperatures and a nonlinear coupling term[J]. AIMS Mathematics, 2018, 3(2): 298-315. doi: 10.3934/Math.2018.2.298
[1] | G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Ration. Mech. An., 92 (1986), 205–245. |
[2] | S. Aizicovici, E. Feireisl, Long-time stabilization of solutions to a phase-field model with memory, J. Evol. Equ., 1 (2001), 69–84. |
[3] | S. Aizicovici, E. Feireisl, F. Issard-Roch, Long-time convergence of solutions to a phase-field system, Math. Methods Appl. Sci., 24 (2001), 277–287. |
[4] | D. Brochet, X. Chen, D. Hilhorst, Finite-dimensional exponential attractors for the phase-field model, Appl. Anal., 49 (1993), 197–212. |
[5] | M. Brokate, J. Sprekels, Hysteresis and Phase Transitions, Springer, New York, 1996. |
[6] | L. Cherfils, A. Miranville, Some results on the asymptotic behavior of the Caginalp system with singular potentials, Adv. Math. Sci. Appl., 17 (2007), 107–129. |
[7] | L. Cherfils, A. Miranville, On the Caginalp system with dynamic boundary conditions and singular potentials, Appl. Math., 54 (2009), 89–115. |
[8] | R. Chill, E. Fasangová, J. Prüss, Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions, Math. Nachr., 279 (2006), 1448–1462. |
[9] | C. I. Christov, P. M. Jordan, Heat conduction paradox involving second-sound propagation in moving media, Phys. Rev. Lett., 94 (2005), 154301. |
[10] | J. N. Flavin, R. J. Knops, L. E. Payne, Decay estimates for the constrained elastic cylinder of variable cross-section, Quart. Appl. Math., 47 (1989), 325–350. |
[11] | S. Gatti, A. Miranville, Asymptotic behavior of a phase-field system with dynamic boundary conditions, in: Differential Equations: Inverse and Direct Problems (Proceedings of the workshop "Evolution Equations: Inverse and Direct Problems ", Cortona, June 21–25, 2004), in A. Favini, A. Lorenzi (Eds), A Series of Lecture Notes in Pure and Applied Mathematics, Chapman Hall, 251 (2006), 149–170. |
[12] | C. Giorgi, M. Grasselli, V. Pata, Uniform attractors for a phase-field model with memory and quadratic nonlinearity, Indiana U. Math. J., 48 (1999), 1395–1445. |
[13] | M. Grasseli, A. Miranville, V. Pata, et al. Well-posedness and long time behavior of a parabolichyperbolic phase-field system with singular potentials, Math. Nachr., 280 (2007), 1475–1509. |
[14] | M. Grasselli, On the large time behavior of a phase-field system with memory, Asymptotic Anal., 56 (2008), 229–249. |
[15] | M. Grasselli, A. Miranville, G. Shimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials, Discrete Contin. Dyn. Syst., 28 (2010), 67–98. |
[16] | M. Grasselli, V. Pata, Exstence of a universal attractor for a fully hyperbolic phase-field system, J. Evol. Equ., 4 (2004), 27–51. |
[17] | A. Miranville, Some mathematical models in phase transition, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 271–306. |
[18] | A. Miranville and S. Zelik, Robust exponential attractors for singularly perturbed phase-field type equations, Electron. J. Differential Equations, 2002. |
[19] | Z. Zhang, Asymptotic behavior of solutions to the phase-field equations with Neumann boundary conditions, Commun. Pure Appl. Anal., 4 (2005), 683–693. |
[20] | A. Miranville and R. Quintanilla, A Caginalp phase-field system based on type Ⅲ heat conduction with two temperatures, Q. Appl. Math., 74 (2016), 375–398. |
[21] | A. Andami Ovono, B. L. Doumbé Bangola and M. A. Ipopa, On the Caginalp phase-field system based on type Ⅲ with two temperatures and nonlinear coupling, to appear. |
[22] | M. Grasselli, V. Pata, Robust exponential attractors for a phase-field system with memory, J. Evol. Equ., 5 (2005), 465–483. |
[23] | M. Grasselli, H. Petzeltová, G. Schimperna, Long time behavior of solutions to the Caginalp system with singular potentials, Z. Anal. Anwend., 25 (2006), 51–73. |
[24] | M. Grasselli, H.Wu, S. Zheng, Asymptotic behavior of a nonisothermal Ginzburg-Landau model, Q. Appl. Math., 66 (2008), 743–770. |
[25] | A. E. Green, P. M. Naghdi, A new thermoviscous theory for fluids, J. Non-Newtonian Fluid Mech., 56 (1995), 289–306. |
[26] | A. E. Green, P. M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc. Roy. Soc. Lond. A, 432 (1991), 171–194. |
[27] | A. E. Green, P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 15 (1992), 253–264. |
[28] | J. Jiang, Convergence to equilibrium for a parabolic-hyperbolic phase-field model with Cattaneo heat flux law, J. Math. Anal. Appl., 341 (2008), 149–169. |
[29] | J. Jiang, Convergence to equilibrium for a fully hyperbolic phase field model with Cattaneo heat flux law, Math. Methods Appl. Sci., 32 (2009), 1156–1182. |
[30] | Ph. Laurencçot, Long-time behaviour for a model of phase-field type, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 167–185. |
[31] | A. Miranville, R. Quintanilla, Some generalizations of the Caginalp phase-field system, Appl. Anal., 88 (2009), 877–894. |
[32] | A. Miranville, R. Quintanilla, A generalization of the Caginalp phase-field system based on the Cattaneo law, Nonlinear Anal-Theor, 71 (2009), 2278–2290. |
[33] | A. Miranville, R. Quintanilla, A Caginalp phase-field system with a nonlinear coupling, Nonlinear Anal-Real, 11 (2010), 2849–2861. |
[34] | A. Miranville, S. Zelik, Robust exponential attractors for singularly perturbed phase-field type equations, Electron. J. Differ. Eq., 2002 (2002), 1–28. |
[35] | A. Miranville, S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in: C. M. Dafermos, M. Pokorny (Eds. ), Handbook of Differential Equations, Evolutionary Partial Differential Equations, Elsevier, Amsterdam, 2008. |
[36] | A. Novick-Cohen, A phase field system with memory: Global existence, J. Int. Equ. Appl., 14 (2002), 73–107. |
[37] | R. Quintanilla, On existence in thermoelasticity without energy dissipation, J. Thermal Stresses, 25 (2002), 195–202. |
[38] | R. Quintanilla, End effects in thermoelasticity Math. Methods Appl. Sci., 24 (2001), 93–102. |
[39] | R. Quintanilla, R. Racke, Stability in thermoelasticity of type Ⅲ, Discrete Cont. Dyn-B, 3 (2003), 383–400. |
[40] | R. Quintanilla, Phragmén-Lindelöf alternative for linear equations of the anti-plane shear dynamic problem in viscoelasticity, Dynam. Contin. Discrete Impuls. Systems, 2 (1996), 423–435. |
[41] | R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, in: Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997. |
[42] | Z. Zhang, Asymptotic behavior of solutions to the phase-field equations with Neumann boundary conditions, Commun. Pure Appl. Anal., 4 (2005), 683–693. |
[43] | B. L. Doumbé Bangola, Global and esponential attractors for a Caginalp type phase-field problem, Cent. Eur. J. Math., 11 (2013), 1651–1676. |
[44] | B. L. Doumbé Bangola, Etude de mod`eles de champ de phase de type Caginalp, PhD Thesis, Université de Poitiers, 2013. |
[45] | A. Miranville and R. Quintanilla, A phase-field model based on a three-phase-lag heat conduction, Appl. Math. Opt., 63 (2011), 133–150. |
[46] | A. Miranville and R. Quintanilla, A type Ⅲ phase-field system with a logarithmic potential, Appl. Math. Lett., 24 (2011), 1003–1008. |
[47] | A. Miranville and R. Quintanilla, A generalization of Allen-Cahn equation, IMA J. Appl. Math., 80 (2015), 410–430. |
[48] | P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys. (ZAMP), 19 (1968), 614–627. |
[49] | P. J. Chen, M. E. Gurtin and W. O. Williams, A note on non-simple heat conduction, Z. Angew. Math. Phys. (ZAMP), 19 (1968), 969–970. |
[50] | P. J. Chen, M. E. Gurtin and W. O. Williams, On the thermodynamics of non-simple materials with two temperatures, Z. Angew. Math. Phys. (ZAMP), 20 (1969), 107–112. |