Research article

The Cahn–Hilliard equation and some of its variants

  • Received: 31 August 2017 Accepted: 31 August 2017 Published: 06 September 2017
  • Our aim in this article is to review and discuss the Cahn–Hilliard equation, as well as some of its variants. Such variants have applications in, e.g., biology and image inpainting.

    Citation: Alain Miranville. The Cahn–Hilliard equation and some of its variants[J]. AIMS Mathematics, 2017, 2(3): 479-544. doi: 10.3934/Math.2017.2.479

    Related Papers:

  • Our aim in this article is to review and discuss the Cahn–Hilliard equation, as well as some of its variants. Such variants have applications in, e.g., biology and image inpainting.


    加载中
    [1] H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal. 194 (2009), 463-506.
    [2] H. Abels, S. Bosia and M. Grasselli, Cahn-Hilliard equation with nonlocal singular free energies, Ann. Mat. Pura Appl. 194 (2015), 1071-1106.
    [3] H. Abels and E. Feireisl, On a diffuse interface model for a two-phase flow of compressible viscous fluids, Indiana Univ. Math. J. 57 (2008), 659-698.
    [4] H. Abels and M. Wilke, Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy, Nonlinear Anal. 67 (2007), 3176-3193.
    [5] M. Ainsworth and Z. Mao, Well-posedness of the Cahn-Hilliard equation with fractional free energy and its Fourier Galerkin approximation, Chaos Solitons Fractals 102 (2017), 264-273.
    [6] M. Ainsworth and Z. Mao, Analysis and approximation of a fractional Cahn-Hilliard equation, SIAM J. Numer. Anal. 55 (2017), 1689-1718.
    [7] S.M. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall. 27 (1979), 1085-1095.
    [8] H.W. Alt and I. Pawłow, A mathematical model of dynamics of non-isothermal phase separation, Physica D 59 (1992), 389-416.
    [9] H.W. Alt and I. Pawłow, Existence of solutions for non-isothermal phase separation, Adv. Math. Sci. Appl. 1 (1992), 319-409.
    [10] P.F. Antonietti, L. Beirão da Veiga, S. Scacchi and M. Verani, C1virtual element method for the Cahn-Hilliard equation with polygonal meshes, SIAM J. Numer. Anal. 54 (2016), 34-56.
    [11] A.R. Appadu, J.K. Djoko, H.H. Gidey and J.M.S. Lubuma, Analysis of multilevel finite volume approximation of 2D convective Cahn-Hilliard equation, Jpn. J. Ind. Appl. Math. 34 (2017), 253-304.
    [12] P. Areias, E. Samaniego and T. Rabczuk, A staggered approach for the coupling of Cahn-Hilliard type diffusion and finite strain elasticity, Comput. Mech. 57 (2016), 339-351.
    [13] A. Aristotelous, O. Karakashian and S.M. Wise, A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver, Discrete Contin. Dyn. Systems Ser. B 18 (2013), 2211-2238.
    [14] A.C. Aristotelous, O.A. Karakashian and S.M. Wise, Adaptive, second-order in time, primitivevariable discontinuous Galerkin schemes for a Cahn-Hilliard equation with a mass source, IMA J. Numer. Anal. 35 (2015), 1167-1198.
    [15] A. V. Babin and M. I. Vishik, Attractors of evolution equations, North-Holland, Amsterdam, 1992.
    [16] F. Bai, C.M. Elliott, A. Gardiner, A. Spence and A.M. Stuart, The viscous Cahn-Hilliard equation. Part Ⅰ: computations, Nonlinearity 8 (1995), 131-160.
    [17] L. Baňas and R. Nürnberg, A multigrid method for the Cahn-Hilliard equation with obstacle potential, Appl. Math. Comput. 213 (2009), 290-303.
    [18] J.W. Barrett and J.F. Blowey, An error bound for the finite element approximation of the CahnHilliard equation with logarithmic free energy, Numer. Math. 72 (1995), 257-287.
    [19] J.W. Barrett and J.F. Blowey, Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility, Math. Comput. 68 (1999), 487-517.
    [20] J.W. Barrett, J.F. Blowey and H. Garcke, Finite element approximation of the Cahn-Hilliard equation with degenerate mobility, SIAM J. Numer. Anal. 37 (1999), 286-318
    [21] S. Bartels and R. Müller, A posteriori error controlled local resolution of evolving interfaces for generalized Cahn-Hilliard equations, Interfaces Free Bound. 12 (2010), 45-73.
    [22] S. Bartels and R. Müller, Error control for the approximation of Allen-Cahn and Cahn-Hilliard equations with a logarithmic potential, Numer. Math. 119 (2011), 409-435.
    [23] P.W. Bates and J. Han, The Neumann boundary problem for a nonlocal Cahn-Hilliard equation, J. Diff. Eqns. 212 (2005), 235-277.
    [24] A. Bertozzi, S. Esedoglu and A. Gillette, Inpainting of binary images using the Cahn-Hilliard equation, IEEE Trans. Imag. Proc. 16 (2007), 285-291.
    [25] A. Bertozzi, S. Esedoglu and A. Gillette, Analysis of a two-scale Cahn-Hilliard model for binary image inpainting, Multiscale Model. Simul. 6 (2007), 913-936.
    [26] K. Binder and H.L. Frisch, Dynamics of surface enrichment: A theory based on the Kawasaki spin-exchange model in the presence of a wall, Z. Phys. B 84 (1991), 403-418.
    [27] T. Blesgen and I.V. Chenchiah, Cahn-Hilliard equations incorporating elasticity: analysis and comparison to experiments, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 371 (2013), 1-16.
    [28] T. Blesgen and A. Schlömerkemper, On the Allen-Cahn/Cahn-Hilliard system with a geometrically linear elastic energy, Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), 241-266.
    [29] D. Blömker, B. Gawron and T. Wanner, Nucleation in the one-dimensional stochastic CahnHilliard model, Discrete Contin. Dyn. Systems 27 (2010), 25-52.
    [30] D. Blömker, S. Maier-Paape and T. Wanner, Second phase spinodal decomposition for the CahnHilliard-Cook equation, Trans. Amer. Math. Soc. 360 (2008), 449-489.
    [31] J.F. Blowey and C.M. Elliott, The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. Part Ⅰ. Mathematical analysis, Eur. J. Appl. Math. 2 (1991), 233-280.
    [32] L. Bo, K. Shi and Y. Wang, Support theorem for a stochastic Cahn-Hilliard equation, Electron. J. Prob. 15 (2010), 484-525.
    [33] L. Bo and Y. Wang, Stochastic Cahn-Hilliard partial differential equations with Lévy spacetime white noise, Stochastics and Dynamics 6 (2006), 229-244.
    [34] E. Bonetti, P. Colli, W. Dreyer, G. Gilardi, G. Schimperna and J. Sprekels, On a model for phase separation in binary alloys driven by mechanical effects, Physica D 165 (2002), 48-65.
    [35] E. Bonetti, W. Dreyer and G. Schimperna, Global solution to a viscous Cahn-Hilliard equation for tin-lead alloys with mechanical stresses, Adv. Diff. Eqns. 2 (2003), 231-256.
    [36] A. Bonfoh, M. Grasselli and A. Miranville, Long time behavior of a singular perturbation of the viscous Cahn-Hilliard-Gurtin equation, Math. Methods Appl. Sci. 31 (2008), 695-734.
    [37] A. Bonfoh, M. Grasselli and A. Miranville, Inertial manifolds for a singular perturbation of the viscous Cahn-Hilliard-Gurtin equation, Topol. Methods Nonlinear Anal. 35 (2010), 155-185.
    [38] A. Bonfoh, M. Grasselli and A. Miranville, Singularly perturbed 1D Cahn-Hilliard equation revisited, Nonlinear Diff. Eqns. Appl. (NoDEA) 17 (2010), 663-695.
    [39] A. Bonfoh and A. Miranville, On Cahn-Hilliard-Gurtin equations, Nonlinear Anal. 47 (2001), 3455-3466.
    [40] J. Bosch and M. Stoll, Preconditioning for vector-valued Cahn-Hilliard equations, SIAM J. Sci. Comput. 37 (2015), S216-S243.
    [41] J. Bosch and M. Stoll, A fractional inpainting model based on the vector-valued Cahn-Hilliard equation, SIAM J. Imaging Sci. 8 (2015), 2352-2382.
    [42] S. Bosia, M. Conti and M. Grasselli, On the Cahn-Hilliard-Brinkman system, Commun. Math. Sci. 13 (2015), 1541-1567.
    [43] S. Bosia, M. Grasselli and A. Miranville, On the longtime behavior of a 2D hydrodynamic model for chemically reacting binary fluid mixtures, Math. Methods Appl. Sci. 37 (2014), 726-743.
    [44] F. Boyer, Nonhomogeneous Cahn-Hilliard fluids, Ann. Inst. H. PoincaréAnal. Non Linéaire 18 (2001), 225-259.
    [45] F. Boyer, A theoretical and numerical model for the study of incompressible mixture flows, Computers and Fluids 31 (2002), 41-68.
    [46] F. Boyer, L. Chupin and P. Fabrie, Numerical study of viscoelastic mixtures through a CahnHilliard flow model, Eur. J. Mech. B Fluids 23 (2004), 759-780.
    [47] F. Boyer and C. Lapuerta, Study of a three component Cahn-Hilliard flow model, M2AN Math. Model. Numer. Anal. 40 (2006), 653-687.
    [48] F. Boyer, C. Lapuerta, S. Minjeaud and B. Piar, A local adaptive refinement method with multigrid preconditionning illustrated by multiphase flows simulations, ESAIM Proc. 27 (2009), 15-53.
    [49] F. Boyer, C. Lapuerta, S. Minjeaud, B. Piar and M. Quintard, Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows, Transp. Porous Media 82 (2010), 463-483.
    [50] F. Boyer and S. Minjeaud, Numerical schemes for a three component Cahn-Hilliard model, M2AN Math. Model. Numer. Anal. 45 (2011), 697-738.
    [51] F. Boyer and S. Minjeaud, Hierarchy of consistent n-component Cahn-Hilliard systems, Math. Models Methods Appl. Sci. 24 (2014), 2885-2928.
    [52] F. Boyer and F. Nabet, A DDFV method for a Cahn-Hilliard/Stokes phase field model with dynamic boundary conditions, M2AN Math. Model. Numer. Anal. , to appear
    [53] L.A. Caffarelli and N.E. Muler, An L∞ bound for solutions of the Cahn-Hilliard equation, Arch. Ration. Mech. Anal. 133 (1995), 129-144.
    [54] G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Ration. Mech. Anal. 92 (1986), 205-245.
    [55] G. Caginalp and X. Chen, Phase field equations in the singular limit of sharp interface problems, in On the evolution of phase boundaries, IMA Vol. Math. Appl. 43, M. Gurtin ed. , Springer, New York, 1-27,1992.
    [56] G. Caginalp and X. Chen, Convergence of the phase field model to its sharp interface limits, European J. Appl. Math. 9 (1998), 417-445.
    [57] G. Caginalp and E. Esenturk, Anisotropic phase field equations of arbitrary order, Discrete Contin. Dyn. Systems Ser. S 4 (2011), 311-350.
    [58] J.W. Cahn, On spinodal decomposition, Acta Metall. 9 (1961), 795-801.
    [59] J.W. Cahn, C.M. Elliott and A. Novick-Cohen, The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature, Eur. J. Appl. Math. 7 (1996), 287-301.
    [60] J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system Ⅰ. Interfacial free energy, J. Chem. Phys. 28 (1958), 258-267.
    [61] C. Cao and C.G. Gal, Global solutions for the 2D NS-CH model for a two-phase flow of viscous, incompressible fluids with mixed partial viscosity and mobility, Nonlinearity 25 (2012), 3211-3234.
    [62] J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system Ⅲ. Nucleation in a two component incompressible fluid, J. Chem. Phys. 31 (1959), 688-699.
    [63] C. Cardon-Weber, Cahn-Hilliard stochastic equation: existence of the solution and of its density, Bernouilli 7 (2001), 777-816.
    [64] M. Carrive, A. Miranville and A. Piétrus, The Cahn-Hilliard equation for deformable continua, Adv. Math. Sci. Appl. 10 (2000), 539-569.
    [65] A.N. Carvalho and T. Dlotko, Dynamics of the viscous Cahn-Hilliard equation, J. Math. Anal. Appl. 344 (2008), 703-725.
    [66] V. Chalupeckí, Numerical studies of Cahn-Hilliard equations and applications in image processing, in Proceedings of Czech-Japanese Seminar in Applied Mathematics 2004 (August 4-7,2004), Czech Technical University in Prague.
    [67] F. Chave, D.A. Di Pietro, F. Marche and F. Pigeonneau, A hybrid high-order method for the CahnHilliard problem in mixed form, SIAM J. Numer. Anal. 54 (2016), 1873-1898.
    [68] F. Chen and J. Shen, Efficient energy stable schemes with spectral discretization in space for anisotropic Cahn-Hilliard systems, Commun. Comput. Phys. 13 (2013), 1189-1208.
    [69] L. Chen and C. Xu, A time splitting space spectral element method for the Cahn-Hilliard equation, East Asian J. Appl. Math. 3 (2013), 333-351.
    [70] X. Chen, G. Caginalp and E. Esenturk, Interface conditions for a phase field model with anisotropic and non-local interactions, Arch. Rational Mech. Anal. 202 (2011), 349-372.
    [71] K. Cheng, C. Wang, S.M. Wise and Y. Yue, A second-order, weakly energy-stable pseudo-spectral scheme for the Cahn-Hilliard equation and its solution by the homogeneous linear iteration method, J. Sci. Comput. 69 (2016), 1083-1114.
    [72] L. Cherfils, H. Fakih, M. Grasselli and A. Miranville, A convergent convex splitting scheme for a nonlocal Cahn-Hilliard-Oono type equation with a transport term, in preparation.
    [73] L. Cherfils, H. Fakih and A. Miranville, Finite-dimensional attractors for the Bertozzi-EsedogluGillette-Cahn-Hilliard equation in image inpainting, Inv. Prob. Imag. 9 (2015), 105-125.
    [74] L. Cherfils, H. Fakih and A. Miranville, On the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation with logarithmic nonlinear terms, SIAM J. Imag. Sci. 8 (2015), 1123-1140.
    [75] L. Cherfils, H. Fakih and A. Miranville, A Cahn-Hilliard system with a fidelity term for color image inpainting, J. Math. Imag. Vision 54 (2016), 117-131.
    [76] L. Cherfils, H. Fakih and A. Miranville, A complex version of the Cahn-Hilliard equation for grayscale image inpainting, Multiscale Model. Simul. 15 (2017), 575-605.
    [77] L. Cherfils, S. Gatti and Miranville, A variational approach to a Cahn-Hilliard model in a domain with nonpermeable walls, J. Math. Sci. (N.Y.) 189 (2012), 604-636.
    [78] L. Cherfils, S. Gatti and A. Miranville, Corrigendum to "Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potentials"[J. Math. Anal. Appl. 343 (2008), 557-566], J. Math. Anal. Appl. 348 (2008), 1029-1030.
    [79] L. Cherfils and A. Miranville, Generalized Cahn-Hilliard equations with a logarithmic free energy, Rev. Real Acad. Sci. 94 (2000), 19-32.
    [80] L. Cherfils and A. Miranville, On the Caginalp system with dynamic boundary conditions and singular potentials, Appl. Math. 54 (2009), 89-115.
    [81] L. Cherfils, A. Miranville and S. Peng, Higher-order models in phase separation, J. Appl. Anal. Comput. 7 (2017), 39-56.
    [82] L. Cherfils, A. Miranville and S. Peng, Higher-order anisotropic models in phase separation, Adv. Nonlinear Anal. , to appear.
    [83] L. Cherfils, A. Miranville, S. Peng and W. Zhang, Higher-order generalized Cahn-Hilliard equations, Electron. J. Qualitative Theory Diff. Eqns. 9 (2017), 1-22.
    [84] L. Cherfils, A. Miranville and S. Zelik, The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math. 79 (2011), 561-596.
    [85] L. Cherfils, A. Miranville and S. Zelik, On a generalized Cahn-Hilliard equation with biological applications, Discrete Contin. Dyn. Systems Ser. B 19 (2014), 2013-2026.
    [86] L. Cherfils and M. Petcu, On the viscous Cahn-Hilliard-Navier-Stokes equations with dynamic boundary conditions, Commun. Pure Appl. Anal. 15 (2016), 1419-1449.
    [87] L. Cherfils, M. Petcu and M. Pierre, A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions, Discrete Contin. Dyn. Systems 27 (2010), 1511-1533.
    [88] R. Chill, E. Fašangová and J. Prüss, Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions, Math. Nachr. 279 (2006), 1448-1462.
    [89] Y. Choi, D. Jeong and J. Kim, A multigrid solution for the Cahn-Hilliard equation on nonuniform grids, Appl. Math. Comput. 293 (2017), 320-333.
    [90] R. Choksi and X. Ren, On a derivation of a density functional theory for microphase separation of diblock copolymers, J. Statist. Phys. 113 (2003), 151-176.
    [91] J.W. Cholewa and T. Dlotko, Global attractor for the Cahn-Hilliard system, Bull. Austral. Math. Soc. 49 (1994), 277-293.
    [92] J. W. Cholewa and T. Dlotko, Global attractors in abstract parabolic problems, London Mathematical Society Lecture Notes Series, Vol. 278, Cambridge University Press, Cambridge, 2000.
    [93] S.M. Choo and S.K. Chung, Asymtotic behaviour of the viscous Cahn-Hilliard equation, J. Appl. Math. Comput. 11 (2003), 143-154.
    [94] L. Chupin, An existence result for a mixture of non-newtonian fluids with stress-diffusion using the Cahn-Hilliard formulation, Discrete Contin. Dyn. Systems Ser. B 3 (2003), 45-68.
    [95] D. Cohen and J.M. Murray, A generalized diffusion model for growth and dispersion in a population, J. Math. Biol. 12 (1981), 237-248.
    [96] P. Colli, G. Gilardi and D. Hilhorst, On a Cahn-Hilliard type phase field model related to tumor growth, Discrete Contin. Dyn. Systems 35 (2015), 2423-2442.
    [97] P. Colli, G. Gilardi, P. Krejci and J. Sprekels, A continuous dependence result for a nonstandard system of phase field equations, Math. Methods Appl. Sci. 37 (2014), 1318-1324.
    [98] P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, Global existence for a strongly coupled Cahn-Hilliard system with viscosity, Boll. Unione Mat. Ital. 5 (2012), 495-513.
    [99] P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, An asymptotic analysis for a nonstandard Cahn-Hilliard system with viscosity, Discrete Contin. Dyn. Systems Ser. S 6 (2013), 353-368.
    [100] P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, Global existence and uniqueness for a singular/degenerate Cahn-Hilliard system with viscosity, J. Diff. Eqns. 254 (2013), 4217-4244.
    [101] P. Colli, G. Gilardi, E. Rocca and J. Sprekels, Vanishing viscosities and error estimate for a CahnHilliard type phase-field system related to tumor growth, Nonlinear Anal. Real World Appl. 26 (2015), 93-108.
    [102] P. Colli, G. Gilardi, E. Rocca and J. Sprekels, Asymptotic analyses and error estimates for a CahnHilliard type phase field system modelling tumor growth, Discrete Contin. Dyn. Systems Ser. S 10 (2017), 37-54.
    [103] P. Colli, G. Gilardi, E. Rocca and J. Sprekels, Optimal distributed control of a diffuse interface model of tumor growth, Nonlinearity 30 (2017), 2518-2546.
    [104] P. Colli, G. Gilardi and J. Sprekels, On the Cahn-Hilliard equation with dynamic boundary conditions and a dominating boundary potential, J. Math. Anal. Appl. 419 (2014), 972-994.
    [105] P. Colli, G. Gilardi and J. Sprekels, Global existence for a nonstandard viscous Cahn-Hilliard system with dynamic boundary condition, SIAM J. Math. Anal. 49 (2017), 1732-1760.
    [106] M. Conti and M. Coti Zelati, Attractors for the Cahn-Hilliard equation with memory in 2D, Nonlinear Anal. 72 (2010), 1668-1682.
    [107] M. Conti, S. Gatti and A. Miranville, Multi-component Cahn-Hilliard systems with dynamic boundary conditions, Nonlinear Anal. Real World Appl. 25 (2015), 137-166.
    [108] M. Conti and A. Giorgini, On the Cahn-Hilliard-Brinkman system with singular potential and nonconstant viscosity, submitted.
    [109] M. Conti and G. Mola, 3-D viscous Cahn-Hilliard equation with memory, Math. Methods Appl. Sci. 32 (2009), 1370-1395.
    [110] H. Cook, Brownian motion in spinodal decomposition, Acta Metall. 18 (1970), 297-306.
    [111] M.I.M. Copetti and C.M. Elliott, Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy, Numer. Math. 63 (1992), 39-65.
    [112] G. Da Prato and A. Debussche, Stochastic Cahn-Hilliard equation, Nonlinear Anal. 26 (1996), 241-263.
    [113] M. Dai, E. Feireisl, E. Rocca, G. Schimperna and M.E. Schonbek, Analysis of a diffuse interface model of multispecies tumor growth, Nonlinearity 30 (2017), 1639-1658.
    [114] R. Dal Passo, L. Giacomelli and A. Novick-Cohen, Existence for an Allen-Cahn/Cahn-Hilliard system with degenerate mobility, Interfaces Free Bound. 1 (1999), 199-226.
    [115] P.G. de Gennes, Dynamics of fluctuations and spinodal decomposition in polymer blends, J. Chem. Phys. 72 (1980), 4756-4763.
    [116] A. Debussche and L. Dettori, On the Cahn-Hilliard equation with a logarithmic free energy, Nonlinear Anal. 24 (1995), 1491-1514.
    [117] A. Debussche and L. Goudenège, Stochastic Cahn-Hilliard equation with double singular nonlinearities and two reflections, SIAM J. Math. Anal. 43 (2011), 1473-1494.
    [118] A. Debussche and L. Zambotti, Conservative stochastic Cahn-Hilliard equation with reflection, Ann. Probab. 35 (2007), 1706-1739.
    [119] F. Della Porta, A. Giorgini and M. Grasselli, The nonlocal Cahn-Hilliard-Hele-Shaw system with singular potential, submited.
    [120] F. Della Porta and M. Grasselli, On the nonlocal Cahn-Hilliard-Brinkman and Cahn-HilliardHele-Shaw systems, Commun. Pure Appl. Anal. 15 (2016), 299-317. Erratum, Commun. Pure Appl. Anal. 16 (2017), 369-372.
    [121] C.V. Di Leo, E. Rejovitzky and L. Anand, A Cahn-Hilliard-type phase-field theory for species diffusion coupled with large elastic deformations: application to phase-separating Li-ion electrode materials, J. Mech. Phys. Solids 70 (2014), 1-29.
    [122] A. Diegel, C. Wang and S.M. Wise, Stability and convergence of a second order mixed finite element method for the Cahn-Hilliard equation, IMA J. Numer. Anal. 36 (2016), 1867-1897.
    [123] T. Dlotko, Global attractor for the Cahn-Hilliard equation in H2 and H3, J. Diff. Eqns. 113 (1994), 381-393.
    [124] I.C. Dolcetta and S.F. Vita, Area-preserving curve-shortening flows: from phase separation to image processing, Interfaces Free Bound. 4 (2002), 325-343.
    [125] A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential attractors for dissipative evolution equations, Research in Applied Mathematics, Vol. 37, John-Wiley, New York, 1994.
    [126] A. Eden and V.K. Kalantarov, The convective Cahn-Hilliard equation, Appl. Math. Lett. 20 (2007), 455-461.
    [127] A. Eden and V.K. Kalantarov, 3D convective Cahn-Hilliard equation, Commun. Pure Appl. Anal. 6 (2007), 1075-1086.
    [128] A. Eden, V. Kalantarov and S.V. Zelik, Global solvability and blow up for the convective CahnHilliard equations with concave potentials, J. Math. Phys. 54 (2013), 1-12.
    [129] A. Eden, V. Kalantarov and S.V. Zelik, Infinite energy solutions for the Cahn-Hilliard equation in cylindrical domains, Math. Methods Appl. Sci. 37 (2014), 1884-1908.
    [130] M. Efendiev, H. Gajewski and S. Zelik, The finite dimensional attractor for a 4th order system of the Cahn-Hilliard type with a supercritical nonlinearity, Adv. Diff. Eqns. 7 (2002), 1073-1100.
    [131] M. Efendiev and A. Miranville, New models of Cahn-Hilliard-Gurtin equations, Contin. Mech. Thermodyn. 16 (2004), 441-451.
    [132] M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a singularly perturbed CahnHilliard system, Math. Nach. 272 (2004), 11-31.
    [133] N. Elezovic and A. Mikelic, On the stochastic Cahn-Hilliard equation, Nonlinear Anal. 16 (1991), 1169-1200.
    [134] C. M. Elliott, The Cahn-Hilliard model for the kinetics of phase separation, in Mathematical models for phase change problems, J. F. Rodrigues ed. , International Series of Numerical Mathematics, Vol. 88, Birkhauser, Bäsel, 1989.
    [135] C.M. Elliott and D.A. French, Numerical studies of the Cahn-Hilliard equation for phase separation, IMA J. Appl. Math. 38 (1987), 97-128.
    [136] C.M. Elliott and D.A. French, A non-conforming finite element method for the two-dimensional Cahn-Hilliard equation, SIAM J. Numer. Anal. 26 (1989), 884-903.
    [137] C.M. Elliott, D.A. French and F.A. Milner, A second order splitting method for the Cahn-Hilliard equation, Numer. Math. 54 (1989), 575-590.
    [138] C.M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal. 27 (1996), 404-423.
    [139] C.M. Elliott and H. Garcke, Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix, Physica D 109 (1997), 242-256.
    [140] C. M. Elliott and S. Luckhaus, A generalized diffusion equation for phase separation of a multicomponent mixture with interfacial energy, SFB 256 Preprint No. 195, University of Bonn, 1991.
    [141] C.M. Elliott and T. Ranner, Evolving surface finite element method for the Cahn-Hilliard equation, Numer. Math. 129 (2015), 483-534.
    [142] C.M. Elliott and A.M. Stuart, Viscous Cahn-Hilliard equation Ⅱ. Analysis, J. Diff. Eqns. 128 (1996), 387-414.
    [143] C.M. Elliott and S. Zheng, On the Cahn-Hilliard equation, Arch. Ration. Mech. Anal. 96 (1986), 339-357.
    [144] H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G.I. Tóth, G. Tegze and L. Gránásy, Phasefield-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview, Adv. Phys. 61 (2012), 665-743.
    [145] J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov and K. Sieradzki, Evolution of nanoporosity in dealloying, Nature 410 (2001), 450-453.
    [146] J.D. Eyre, Systems of Cahn-Hilliard equations, SIAM J. Appl. Math. 53 (1993), 1686-1712.
    [147] J. D. Eyre, Unconditionally gradient stable time marching the Cahn-Hilliard equation, in Computational and mathematical models of microstructural evolution, J. W. Bullard, R. Kalia, M. Stoneham and L. Q. Chen eds. , The Materials Research Society, 1998.
    [148] H. Fakih, A Cahn-Hilliard equation with a proliferation term for biological and chemical applications, Asymptot. Anal. 94 (2015), 71-104.
    [149] H. Fakih, Asymptotic behavior of a generalized Cahn-Hilliard equation with a mass source, Appl. Anal. 96 (2017), 324-348.
    [150] X. Feng, Y. Li and Y. Xing, Analysis of mixed interior penalty discontinuous Galerkin methods for the Cahn-Hilliard equation and the Hele-Shaw flow, SIAM J. Numer. Anal. 54 (2016), 825-847.
    [151] X. Feng and A. Prohl, Error analysis of a mixed finite element method for the Cahn-Hilliard equation, Numer. Math. 99 (2004), 47-84.
    [152] X. Feng and A. Prohl, Numerical analysis of the Cahn-Hilliard equation and approximation for the Hele-Shaw problem, Interfaces Free bound. 7 (2005), 1-28.
    [153] X. Feng and S. Wise, Analysis of a Darcy-Cahn-Hilliard diffuse interface model for the HeleShaw flow and its fully discrete finite element approximation, SIAM J. Numer. Anal. 50 (2012), 1320-1343.
    [154] W.M. Feng, P. Yu, S.Y. Hu, Z.K. Liu, Q. Du and L.Q. Chen, A Fourier spectral moving mesh method for the Cahn-Hilliard equation with elasticity, Commun. Comput. Phys. 5 (2009), 582-599.
    [155] H.P. Fischer, P. Maass and W. Dieterich, Novel surface modes in spinodal decomposition, Phys. Rev. Lett. 79 (1997), 893-896.
    [156] H.P. Fischer, P. Maass and W. Dieterich, Diverging time and length scales of spinodal decomposition modes in thin flows, Europhys. Lett. 42 (1998), 49-54.
    [157] H.P. Fischer, J. Reinhard, W. Dieterich, J.-F. Gouyet, P. Maass, A. Majhofer and D. Reinel, Timedependent density functional theory and the kinetics of lattice gas systems in contact with a wall, J. Chem. Phys. 108 (1998), 3028-3037.
    [158] S. Frigeri and M. Grasselli, Nonlocal Cahn-Hilliard-Navier-Stokes systems with singular potentials, Dyn. Partial Diff. Eqns. 9 (2012), 273-304.
    [159] S. Frigeri, M. Grasselli and E. Rocca, On a diffuse interface model of tumor growth, European J. Appl. Math. 26 (2015), 215-243.
    [160] T. Fukao, S. Yoshikawa and S. Wada, Structure-preserving finite difference schemes for the CahnHilliard equation with dynamic boundary conditions in the one-dimensional case, Commun. Pure Appl. Anal. 16 (2017), 1915-1938.
    [161] D. Furihata, A stable and conservative finite difference scheme for the Cahn-Hilliard equation, Numer. Math. 87 (2001), 675-699.
    [162] H. Gajewski and K. Zacharias, On a nonlocal phase separation model, J. Math. Anal. Appl. 286 (2003), 11-31.
    [163] C.G. Gal, A Cahn-Hilliard model in bounded domains with permeable walls, Math. Methods Appl. Sci. 29 (2006), 2009-2036.
    [164] C.G. Gal, Exponential attractors for a Cahn-Hilliard model in bounded domains with permeable walls, Electron. J. Diff. Eqns. 2006 (2006), 1-23.
    [165] C.G. Gal, A. Giorgini and M. Grasselli, The nonlocal Cahn-Hilliard equation with singular potential: well-posedness, regularity and strict separation property, J. Diff. Eqns. 263 (2017), 5253-5297.
    [166] C.G. Gal and M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 401-436.
    [167] C.G. Gal and M. Grasselli, Longtime behavior for a model of homogeneous incompressible twophase flows, Discrete Contin. Dyn. Systems 28 (2010), 1-39.
    [168] C.G. Gal and M. Grasselli, Longtime behavior of nonlocal Cahn-Hilliard equations, Discrete Contin. Dyn. Systems 34 (2014), 145-179.
    [169] C.G. Gal, M. Grasselli and A. Miranville, Cahn-Hilliard-Navier-Stokes systems with moving contact lines, Calc. Var. Partial Diff. Eqns. 55 (2016), 1-47.
    [170] C.G. Gal and A. Miranville, Uniform global attractors for non-isothermal viscous and non-viscous Cahn-Hilliard equations with dynamic boundary conditions, Nonlinear Anal. Real World Appl. 10 (2009), 1738-1766.
    [171] C.G. Gal and A. Miranville, Robust exponential attractors and convergence to equilibria for nonisothermal Cahn-Hilliard equations with dynamic boundary conditions, Discrete Contin. Dyn. Systems Ser. S 2 (2009), 113-147.
    [172] C.G. Gal and H. Wu, Asymptotic behavior of a Cahn-Hilliard equation with Wentzell boundary conditions and mass conservation, Discrete Contin. Dyn. Systems 22 (2008), 1041-1063.
    [173] P. Galenko, D. Danilov and V. Lebedev, Phase-field-crystal and Swift-Hohenberg equations with fast dynamics, Phys. Rev. E 79 (2009), 051110.
    [174] P. Galenko and D. Jou, Kinetic contribution to the fast spinodal decomposition controlled by diffusion, Physica A 388 (2009), 3113-3123.
    [175] P. Galenko and V. Lebedev, Analysis of the dispersion relation in spinodal decomposition of a binary system, Philos. Mag. Lett. 87 (2007), 821-827.
    [176] P. Galenko and V. Lebedev, Local nonequilibrium effect on spinodal decomposition in a binary system, Int. J. Thermodyn. 11 (2008), 21-28.
    [177] P. Galenko and V. Lebedev, Nonequilibrium effects in spinodal decomposition of a binary system, Phys. Lett. A 372 (2008), 985-989.
    [178] W. Gao and J. Yin, System of Cahn-Hilliard equations with nonconstant interaction matrix, Chinese Ann. Math., Ser. A 20 (1999), 169-176.
    [179] H. Garcke, On Cahn-Hilliard systems with elasticity, Proc. Roy. Soc. Edinburgh A 133 (2003), 307-331.
    [180] H. Garcke, On a Cahn-Hilliard model for phase separation with elastic misfit, Ann. Inst. H. Poincare Anal. Non Linéaire 22 (2005), 165-185.
    [181] H. Garcke, Mechanical effects in the Cahn-Hilliard model: A review on mathematical results, in Mathematical methods and models in phase transitions, A. Miranville ed. , Nova Sci. Publ. , New York, 43-77,2005.
    [182] H. Garcke, K.F. Lam, E. Sitka and V. Styles, A Cahn-Hilliard-Darcy model for tumour growth with chemotaxis and active transport, Math. Models Methods Appl. Sci. 26 (2016), 1095-1148.
    [183] H. Garcke and U. Weikard, Numerical approximation of the Cahn-Larché equation, Numer. Math. 100 (2005), 639-662.
    [184] S. Gatti, M. Grasselli, A. Miranville and V. Pata, On the hyperbolic relaxation of the onedimensional Cahn-Hilliard equation, J. Math. Anal. Appl. 312 (2005), 230-247.
    [185] S. Gatti, M. Grasselli, A. Miranville and V. Pata, Hyperbolic relaxation of the viscous CahnHilliard equation in 3-D, Math. Models Methods Appl. Sci. 15 (2005), 165-198.
    [186] S. Gatti, M. Grasselli, A. Miranville and V. Pata, Memory relaxation of first order evolution equations, Nonlinearity 18 (2005), 1859-1883.
    [187] S. Gatti, M. Grasselli, A. Miranville and V. Pata, Memory relaxation of the one-dimensional CahnHilliard equation, in Dissipative phase transitions, Ser. Adv. Math. Appl. Sci. , Vol. 71, World Sci. Publ. , Hackensack, NJ, 101-114,2006.
    [188] G. Giacomin and J.L. Lebowitz, Phase segregation dynamics in particle systems with long range interaction Ⅰ. Macroscopic limits, J. Statist. Phys. 87 (1997), 37-61.
    [189] G. Giacomin and J.L. Lebowitz, Phase segregation dynamics in particle systems with long range interaction Ⅱ. Interface motion, SIAM J. Appl. Math. 58 (1998), 1707-1729.
    [190] G. Gilardi, A. Miranville and G. Schimperna, On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Commun. Pure Appl. Anal. 8 (2009), 881-912.
    [191] G. Gilardi, A. Miranville and G. Schimperna, Long time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Chinese Ann. Math., Ser. B 31 (2010), 679-712.
    [192] A. Giorgini, M. Grasselli and A. Miranville, The Cahn-Hilliard-Oono equation with singular potential, Math. Models Methods Appl. Sci. , to appear.
    [193] A. Giorgini, M. Grasselli and H. Wu, The Cahn-Hilliard-Hele-Shaw system with singular potential, submitted.
    [194] A. Giorgini and A. Miranville, On the Cahn-Hilliard equation with fidelity term and singular potential, in preparation.
    [195] A. Giorgini, A. Miranville and R. Temam, Uniqueness and regularity results for the Navier-StokesCahn-Hilliard-Oono system with singular potentials, submitted.
    [196] G.R. Goldstein and A. Miranville, A Cahn-Hilliard-Gurtin model with dynamic boundary conditions, Discrete Contin. Dyn. Systems Ser. S 6 (2013), 387-400.
    [197] G.R. Goldstein, A. Miranville and G. Schimperna, A Cahn-Hilliard model in a domain with nonpermeable walls, Physica D 240 (2011), 754-766.
    [198] A.A. Golovin, A.A. Nepomnyashchy, S.H. Davis and M.A. Zaks, Convective Cahn-Hilliard models: from coarsening to roughening, Phys. Rev. Lett. 86 (2001), 1550-1553.
    [199] H. Gomez, V.M. Calo, Y. Basilevs and T.J.R. Hughes, Isogeometric analysis of Cahn-Hilliard phase field model, Comput. Methods Appl. Mech. Engrg. 197 (2008), 4333-4352.
    [200] G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations, Phys. Rev. E 47 (1993), 4289-4300.
    [201] G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. Ⅱ. Monte Carlo simulations, Phys. Rev. E 47 (1993), 4301-4312.
    [202] L. Goudenège, Stochastic Cahn-Hilliard equation with singular nonlinearity and reflection, Stochastic Process. Appl. 119 (2009), 3516-3548.
    [203] L. Goudenège and L. Manca, Asymptotic properties of stochastic Cahn-Hilliard equation with singular nonlinearity and degenerate noise, Stochastic Process. Appl. 125 (2015), 3785-3800.
    [204] L. Goudenège, D. Martin and G. Vial, High order finite element calculations for the deterministic Cahn-Hilliard equation, J. Sci. Comput. 52 (2012), 294-321.
    [205] C. Gräser, R. Kornhuber and U. Sack, Nonsmooth Schur-Newton methods for multicomponent Cahn-Hilliard systems, IMA J. Numer. Anal. 35 (2015), 652-679.
    [206] M. Grasselli, A. Miranville, R. Rossi and G. Schimperna, Analysis of the Cahn-Hilliard equation with a chemical potential dependent mobility, Commun. Partial Diff. Eqns. 36 (2011), 1193-1238.
    [207] M. Grasselli and M. Pierre, A splitting method for the Cahn-Hilliard equation with inertial term, Math. Models Methods Appl. Sci. 20 (2010), 1-28.
    [208] M. Grasselli and M. Pierre, Energy stable and convergent finite element schemes for the modified phase field crystal equation, ESAIM Math. Model. Numer. Anal. 50 (2016), 1523-1560.
    [209] M. Grasselli, G. Schimperna and A. Miranville, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials, Discrete Contin. Dyn. Systems 28 (2010), 67-98.
    [210] M. Grasselli, G. Schimperna, A. Segatti and S. Zelik, On the 3D Cahn-Hilliard equation with inertial term, J. Evol. Eqns. 9 (2009), 371-404.
    [211] M. Grasselli, G. Schimperna and S. Zelik, On the 2D Cahn-Hilliard equation with inertial term, Commun. Partial Diff. Eqns. 34 (2009), 137-170.
    [212] M. Grasselli, G. Schimperna and S. Zelik, Trajectory and smooth attractors for Cahn-Hilliard equations with inertial term, Nonlinearity 23 (2010), 707-737.
    [213] M. Grasselli and H. Wu, Well-posedness and longtime behavior for the modified phase-field crystal equation, Math. Models Methods Appl. Sci. 24 (2014), 2743-2783.
    [214] M. Grasselli and H. Wu, Robust exponential attractors for the modified phase-field crystal equation, Discrete Contin. Dyn. Systems 35 (2015), 2539-2564.
    [215] Z. Guan, V. Heinonen, J.S. Lowengrub, C. Wang and S.M. Wise, An energy stable, hexagonal finite difference scheme for the 2D phase field crystal amplitude equations, J. Comput. Phys. 321 (2016), 1026-1054.
    [216] Z. Guan, J. S. Lowengrub and C. Wang, Convergence analysis for second order accurate convex splitting schemes for the periodic nonlocal Allen-Cahn and Cahn-Hilliard equations, submitted.
    [217] Z. Guan, J.S. Lowengrub, C. Wang and S.M. Wise, Second-order convex splitting schemes for periodic nonlocal Cahn-Hilliard and Allen-Cahn equations, J. Comput. Phys. 277 (2014), 48-71.
    [218] Z. Guan, C. Wang and S.M. Wise, A Convergent convex splitting scheme for the periodic nonlocal Cahn-Hilliard equation, Numer. Math. 128 (2014), 377-406.
    [219] B. Guo, G. Wang and S. Wang, Well posedness for the stochastic Cahn-Hilliard equation driven by Lévy space-time white noise, Diff. Int. Eqns. 22 (2009), 543-560.
    [220] J. Guo, C. Wang, S.M. Wise and X. Yue, An H2 convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn-Hilliard equation, Comm. Math. Sci. 14 (2016), 489-515.
    [221] M. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D 92 (1996), 178-192.
    [222] M. Gurtin, D. Polignone and J. Vinals, Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci. 6 (1996), 815-831.
    [223] D. Han, A decoupled unconditionally stable numerical scheme for the Cahn-Hilliard-Hele-Shaw system, J. Sci. Comput. 66 (2016), 1102-1121.
    [224] D. Han and X. Wang, Decoupled energy-law preserving numerical schemes for the Cahn-HilliardDarcy system, Numer. Methods Partial Diff. Eqns. 32 (2016), 936-954.
    [225] D. Han, X. Wang and H. Wu, Existence and uniqueness of global weak solutions to a CahnHilliard-Stokes-Darcy system for two phase incompressible flows in karstic geometry, J. Diff. Eqns. 257 (2014), 3887-3933.
    [226] L. He and Y. Liu, A class of stable spectral methods for the Cahn-Hilliard equation, J. Comput. Phys. 228 (2009), 5101-5110.
    [227] Z. Hu, S.M. Wise, C. Wang and J.S. Lowengrub, Stable finite difference, nonlinear multigrid simulation of the phase field crystal equation, J. Comput. Phys. 228 (2009), 5323-5339.
    [228] Y. Huo, X. Jiang, H. Zhang and Y. Yang, Hydrodynamic effects on phase separation of binary mixtures with reversible chemical reaction, J. Chem. Phys. 118 (2003), 9830-9837.
    [229] Y. Huo, H. Zhang and Y. Yang, Effects of reversible chemical reaction on morphology and domain growth of phase separating binary mixtures with viscosity difference, Macromolecular Theory Simul. 13 (2004), 280-289.
    [230] S. Injrou and M. Pierre, Stable discretizations of the Cahn-Hilliard-Gurtin equations, Discrete Contin. Dyn. Systems 22 (2008), 1065-1080.
    [231] S. Injrou and M. Pierre, Error estimates for a finite element discretization of the Cahn-HilliardGurtin equations, Diff. Int. Eqns. 15 (2010), 1161-1192.
    [232] H. Israel, Long time behavior of an Allen-Cahn type equation with a singular potential and dynamic boundary conditions, J. Appl. Anal. Comput. 2 (2012), 29-56.
    [233] H. Israel, Well-posedness and long time behavior of an Allen-Cahn type equation, Commun. Pure Appl. Anal. 12 (2013), 2811-2827.
    [234] H. Israel, A. Miranville and M. Petcu, Well-posedness and long time behavior of a perturbed Cahn-Hilliard system with regular potentials, Asymptot. Anal. 84 (2013), 147-179.
    [235] H. Israel, A. Miranville and M. Petcu, Numerical analysis of a Cahn-Hilliard type equation with dynamic boundary conditions, Ric. Mat. 64 (2015), 25-50.
    [236] D. Jacquemin, Calculation of two phase Navier-Stokes flows using phase-field modeling, J. Comput. Phys. 155 (1999), 96-127.
    [237] J. Jiang, H. Wu and S. Zheng, Well-posedness and long-time behavior of a nonautonomous CahnHilliard-Darcy system with mass source modeling tumor growth, J. Diff. Eqns. 259 (2015), 3032-3077.
    [238] G. Karali, and A. Katsoulakis, The role of multiple microscopic mechanisms in cluster interface evolution, J. Diff. Eqns. 235 (2007), 418-438.
    [239] G. Karali and Y. Nagase, On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation, Discrete Contin. Dyn. Systems Ser. S 7 (2014), 127-137.
    [240] G. Karali and T. Ricciardi, On the convergence of a fourth order evolution equation to the AllenCahn equation, Nonlinear Anal. 72 (2010), 4271-4281.
    [241] A. Katsoulakis and G. Vlachos, From microscopic interactions to macroscopic laws of cluster evolution, Phys. Rev., 84 (2000), 1511-1514.
    [242] D. Kay, V. Styles and E. Süli, Discontinuous Galerkin finite element approximation of the CahnHilliard equation with convection, SIAM J. Numer. Anal. 47 (2009), 2660-2685.
    [243] D. Kay, V. Styles and R. Welford, Finite element approximation of a Cahn-Hilliard-Navier-Stokes system, Interfaces Free Bound. 10 (2008), 15-43.
    [244] E. Khain and L.M. Sander, A generalized Cahn-Hilliard equation for biological applications, Phys. Rev. E 77 (2008), 051129.
    [245] N. Kenmochi, M. Niezgódka and I. Pawłow, Subdifferential operator approach to the CahnHilliard equation with constraint, J. Diff. Eqns. 117 (1995), 320-356.
    [246] R. Kenzler, F. Eurich, P. Maass, B. Rinn, J. Schropp, E. Bohl and W. Dieterich, Phase separation in confined geometries: solving the Cahn-Hilliard equation with generic boundary conditions, Comput. Phys. Commun. 133 (2001), 139-157.
    [247] J. Kim, Phase field computations for ternary fluid flows, Comput. Methods Appl. Mech. Engrg. 196 (2007), 4779-4788.
    [248] J. Kim, Three-dimensional numerical simulations of a phase-field model for anisotropic interfacial energy, Commun. Korean Math. Soc. 22 (2007), 453-464.
    [249] J. Kim, A numerical method for the Cahn-Hilliard equation with a variable mobility, Commun. Nonlinear Sci. Numer. Simul. 12 (2007), 1560-1571.
    [250] J. Kim, A generalized continuous surface tension force formulation for phase-field models for multi-component immiscible fluid flows, Comput. Methods Appl. Mech. Engrg. 198 (2009), 37-40.
    [251] J. Kim and K. Kang, A numerical method for the ternary Cahn-Hilliard system with a degenerate mobility, Appl. Numer. Math 59 (2009), 1029-1042.
    [252] J. Kim and J. Lowengrub, Phase field modeling and simulation of three-phase flows, Interfaces Free Bound. 7 (2005), 435-466.
    [253] I. Klapper and J. Dockery, Role of cohesion in the material description of biofilms, Phys. Rev. E 74 (2006), 0319021-0319028.
    [254] R. Kobayashi, Modelling and numerical simulations of dendritic crystal growth, Phys. D 63 (1993), 410-423.
    [255] R.V. Kohn and F. Otto, Upper bounds for coarsening rates, Commun. Math. Phys. 229 (2002), 375-395.
    [256] M. Korzec, P. Nayar and P. Rybka, Global weak solutions to a sixth order Cahn-Hilliard type equation, SIAM J. Math. Anal. 44 (2012), 3369-3387.
    [257] M. Korzec and P. Rybka, On a higher order convective Cahn-Hilliard type equation, SIAM J. Appl. Math. 72 (2012), 1343-1360.
    [258] A. Kostianko and S. Zelik, Inertial manifolds for the 3D Cahn-Hilliard equations with periodic boundary conditions, Commun. Pure Appl. Anal. 14 (2015), 2069-2094.
    [259] J.S. Langer, Theory of spinodal decomposition in alloys, Ann. Phys. 65 (1975), 53-86.
    [260] N. Lecoq, H. Zapolsky and P. Galenko, Evolution of the structure factor in a hyperbolic model of spinodal decomposition, Eur. Phys. J. Special Topics 177 (2009), 165-175.
    [261] H.G. Lee and J. Kim, A second-order accurate non-linear difference scheme for the N-component Cahn-Hilliard system, Physica A 387 (2008), 19-20.
    [262] S. Lee, C. Lee, H.G. Lee and J. Kim, Comparison of different numerical schemes for the CahnHilliard equation, J. Korean Soc. Ind. Appl. Math. 17 (2013), 197-207.
    [263] D. Li and Z. Qiao, On second order semi-implicit Fourier spectral methods for 2D Cahn-Hilliard equations, J. Sci. Comput. 70 (2017), 301-341.
    [264] D. Li and C. Zhong, Global attractor for the Cahn-Hilliard system with fast growing nonlinearity, J. Diff. Eqns. 149 (1998), 191-210.
    [265] Y. Li, J. Kim and N. Wang, An unconditionally energy-stable second-order time-accurate scheme for the Cahn-Hilliard equation on surfaces, Commun. Nonlinear Sci. Numer. Simul. 53 (2017), 213-227.
    [266] Y. Li, H.G. Lee, B. Xia and J. Kim, A compact fourth-order finite difference scheme for the threedimensional Cahn-Hilliard equation, Comput. Phys. Commun. 200 (2016), 108-116.
    [267] C. Liu, Convective Cahn-Hilliard equation with degenerate mobility, Dyn. Contin. Discrete Impuls. Systems Ser. A Math. Anal. 16 (2009), 15-25.
    [268] C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Physica D 179 (2003), 211-228.
    [269] C. Liu and H. Tang, Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions, Evol. Eqns. Control Theory 6 (2017), 219-237.
    [270] F. Liu and J. Shen, Stabilized semi-implicit spectral deferred correction methods for Allen-Cahn and Cahn-Hilliard equations, Math. Methods Appl. Sci. 38 (2015), 4564-4575.
    [271] Q. -X. Liu, A. Doelman, V. Rottschäfer, M. de Jager, P. M. J. Herman, M. Rietkerk and J. van de Koppel, Phase separation explains a new class of self-organized spatial patterns in ecological systems, Proc. Nation. Acad. Sci. , http://www.pnas.org/cgi/doi/10.1073/pnas.1222339110.
    [272] J. Lowengrub, E. Titi and K. Zhao, Analysis of a mixture model of tumor growth, European J. Appl. Math. 24 (2013), 691-734.
    [273] J. Lowengrub and L. Truskinovski, Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proc. Royal Soc. London Ser. A 454 (1998), 2617-2654.
    [274] T. Ma and S. Wang, Cahn-Hilliard equations and phase transition dynamics for binary systems, Discrete Contin. Dyn. Systems 11 (2009), 741-784.
    [275] S. Maier-Paape, K. Mischaikow and T. Wanner, Rigorous numerics for the Cahn-Hilliard equation on the unit square, Rev. Mat. Complutense 21 (2008), 351-426.
    [276] S. Maier-Paape and T. Wanner, Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions. Part Ⅰ: Probability and wavelength estimate, Commun. Math. Phys. 195 (1998), 435-464.
    [277] S. Maier-Paape and T. Wanner, Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions: Nonlinear dynamics, Arch. Ration. Mech. Anal. 151 (2000), 187-219.
    [278] A. Makki and A. Miranville, Well-posedness for one-dimensional anisotropic Cahn-Hilliard and Allen-Cahn systems, Electron. J. Diff. Eqns. 2015 (2015), 1-15.
    [279] A. Makki and A. Miranville, Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions, Discrete Contin. Dyn. Systems Ser. S 9 (2016), 759-775.
    [280] H. Matsuoka and K.-I. Nakamura, A stable finite difference method for a Cahn-Hilliard type equation with long-range interaction, Sci. Rep. Kanazawa Univ. 57 (2013), 13-34.
    [281] S. Mikhailov, M. Hildebrand and G. Ertl, Nonequilibrium nanostructures in condensed reactive systems, in Coherent Structures in Complex Systems (Sitges, 2000), Vol. 567,252-269,2001.
    [282] R.M. Mininni, A. Miranville and S. Romanelli, Higher-order Cahn-Hilliard equations with dynamic boundary conditions, J. Math. Anal. Appl. 449 (2017), 1321-1339.
    [283] S. Minjeaud, An unconditionally stable uncoupled scheme for a triphasic Cahn-Hilliard/NavierStokes model, Numer. Methods Partial Diff. Eqns. 29 (2013), 584-618.
    [284] A. Miranville, Some generalizations of the Cahn-Hilliard equation, Asymptotic Anal. 22 (2000), 235-259.
    [285] A. Miranville, Long-time behavior of some models of Cahn-Hilliard equations in deformable continua, Nonlinear Anal. Real World Appl. 2 (2001), 273-304.
    [286] A. Miranville, Consistent models of Cahn-Hilliard-Gurtin equations with Neumann boundary conditions, Physica D 158 (2001), 233-257.
    [287] A. Miranville, Asymptotic behavior of the Cahn-Hilliard-Oono equation, J. Appl. Anal. Comput. 1 (2011), 523-536.
    [288] A. Miranville, Asymptotic behaviour of a generalized Cahn-Hilliard equation with a proliferation term, Appl. Anal. 92 (2013), 1308-1321.
    [289] A. Miranville, Asymptotic behavior of a sixth-order Cahn-Hilliard system, Cent. Eur. J. Math. 12 (2014), 141-154.
    [290] A. Miranville, Sixth-order Cahn-Hilliard equations with logarithmic nonlinear terms, Appl. Anal. 94 (2015), 2133-2146.
    [291] A. Miranville, Sixth-order Cahn-Hilliard systems with dynamic boundary conditions, Math. Methods Appl. Sci. 38 (2015), 1127-1145.
    [292] A. Miranville, A generalized Cahn-Hilliard equation with logarithmic potentials, Continuous and distributed systems Ⅱ, Stud. Systems Decis. Control, Springer, Vol. 30,137-148,2015.
    [293] A. Miranville, On the phase-field-crystal model with logarithmic nonlinear terms, RACSAM 110 (2016), 145-157.
    [294] A. Miranville and A. Piétrus, A new formulation of the Cahn-Hilliard equation, Nonlinear Anal. Real World Appl. 7 (2006), 285-307.
    [295] A. Miranville and A. Rougirel, Local and asymptotic analysis of the flow generated by the CahnHilliard-Gurtin equations, Z. Angew. Math. Phys. 57 (2006), 244-268.
    [296] A. Miranville, W. Saoud and R. Talhouk, Asymptotic behavior of a model for order-disorder and phase separation, Asymptot. Anal. 103 (2017), 57-76.
    [297] A. Miranville and G. Schimperna, Nonisothermal phase separation based on a microforce balance, Discrete Contin. Dyn. Systems Ser. B 5 (2005), 753-768.
    [298] A. Miranville and G. Schimperna, Generalized Cahn-Hilliard equations for multicomponent alloys, Adv. Math. Sci. Appl. 19 (2009), 131-154.
    [299] A. Miranville and G. Schimperna, On a doubly nonlinear Cahn-Hilliard-Gurtin system, Discrete Contin. Dyn. Systems Ser. B 14 (2010), 675-697.
    [300] A. Miranville and R. Temam, On the Cahn-Hilliard-Oono-Navier-Stokes equations with singular potentials, Appl. Anal. 95 (2016), 2609-2624.
    [301] A. Miranville and S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci. 27 (2004), 545-582.
    [302] A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions, Math. Methods Appl. Sci. 28 (2005), 709-735.
    [303] A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations, Evolutionary Partial Differential Equations, Vol. 4, C. M. Dafermos and M. Pokorny eds. , Elsevier, Amsterdam, 103-200,2008.
    [304] A. Miranville and S. Zelik, Doubly nonlinear Cahn-Hilliard-Gurtin equations, Hokkaido Math. J. 38 (2009), 315-360.
    [305] A. Miranville and S. Zelik, The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions, Discrete Contin. Dyn. Systems 28 (2010), 275-310.
    [306] F. Nabet, Convergence of a finite-volume scheme for the Cahn-Hilliard equation with dynamic boundary conditions, IMA J. Numer. Anal. 36 (2016), 1898-1942.
    [307] B. Nicolaenko and B. Scheurer, Low dimensional behaviour of the pattern formation equations, in Trends and practice of nonlinear analysis, V. Lakshmikantham ed. , North-Holland, 1985.
    [308] B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations, Commun. Partial Diff. Eqns. 14 (1989), 245-297.
    [309] A. Novick-Cohen, Energy methods for the Cahn-Hilliard equation, Quart. Appl. Math. 46 (1988), 681-690.
    [310] A. Novick-Cohen, On the viscous Cahn-Hilliard equation, in Material instabilities in continuum and related problems, J. M. Ball ed. , Oxford University Press, Oxford, 329-342,1988.
    [311] A. Novick-Cohen, The Cahn-Hilliard equation: Mathematical and modeling perspectives, Adv. Math. Sci. Appl. 8 (1998), 965-985.
    [312] A. Novick-Cohen, Triple-junction motion for an Allen-Cahn/Cahn-Hilliard system, Physica D 137 (2000), 1-24.
    [313] A. Novick-Cohen, The Cahn-Hilliard equation, in Handbook of Differential Equations, Evolutionary Partial Differential Equations, Vol. 4, C. M. Dafermos and M. Pokorny eds. , Elsevier, Amsterdam, 201-228,2008.
    [314] Y. Oono and S. Puri, Computationally efficient modeling of ordering of quenched phases, Phys. Rev. Lett. 58 (1987), 836-839.
    [315] A. Oron, S.H. Davis and S.G. Bankoff, Long-scale evolution of thin liquid films, Rev. Mod. Phys. 69 (1997), 931-980.
    [316] I. Pawłow and G. Schimperna, On a Cahn-Hilliard model with nonlinear diffusion, SIAM J. Math. Anal. 45 (2013), 31-63.
    [317] I. Pawłow and G. Schimperna, A Cahn-Hilliard equation with singular diffusion, J. Diff. Eqns. 254 (2013), 779-803.
    [318] I. Pawłow and W.M. Zajaczkowski, Strong solvability of 3-D Cahn-Hilliard system in elastic solids, Math. Methods Appl. Sci. 32 (2008), 879-914.
    [319] I. Pawłow and W.M. Zajaczkowski, Weak solutions to 3-D Cahn-Hilliard system in elastic solids, Topol. Methods Nonlinear Anal. 32 (2008), 347-377.
    [320] I. Pawłow and W.M. Zajaczkowski, Global regular solutions to Cahn-Hilliard system coupled with viscoelasticity, Math. Methods Appl. Sci. 32 (2009), 2197-2242.
    [321] I. Pawłow and W.M. Zajaczkowski, Long time behaviour of a Cahn-Hilliard system coupled with viscoelasticity, Ann. Polon. Math. 98 (2010), 1-21.
    [322] I. Pawłow and W. Zajaczkowski, A sixth order Cahn-Hilliard type equation arising in oil-watersurfactant mixtures, Commun. Pure Appl. Anal. 10 (2011), 1823-1847.
    [323] I. Pawłow and W. Zajaczkowski, On a class of sixth order viscous Cahn-Hilliard type equations, Discrete Contin. Dyn. Systems Ser. S 6 (2013), 517-546.
    [324] M. Pierre, Habilitation thesis, Universite de Poitiers, 2011. ´
    [325] P. Podio-Guidugli, Models of phase segregation and diffusion of atomic species on a lattice, Ric. Mat. 55 (2006), 105-118.
    [326] J. Prüss, R. Racke and S. Zheng, Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions, Ann. Mat. Pura Appl. (4) 185 (2006), 627-648.
    [327] J. Prüss, V. Vergara and R. Zacher, Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory, Discrete Contin. Dyn. Systems 26 (2010), 625-647.
    [328] T. Qian, X.-P. Wang and P. Sheng, A variational approach to moving contact line hydrodynamics, J. Fluid Mech. 564 (2006), 333-360.
    [329] R. Racke and S. Zheng, The Cahn-Hilliard equation with dynamic boundary conditions, Adv. Diff. Eqns. 8 (2003), 83-110.
    [330] A. Rajagopal, P. Fischer, E. Kuhl and P. Steinmann, Natural element analysis of the Cahn-Hilliard phase-field model, Comput. Mech. 46 (2010), 471-493.
    [331] A. Roggensack and C. Kraus, Existence of weak solutions for the Cahn-Hilliard reaction model including elastic effects and damage, J. Partial Diff. Eqns. 30 (2017), 111-145.
    [332] R. Rossi, On two classes of generalized viscous Cahn-Hilliard equations, Commun. Pure Appl. Anal. 4 (2005), 405-430.
    [333] R. Rossi, Global attractor for the weak solutions of a class of viscous Cahn-Hilliard equations, in Dissipative phase transitions, Ser. Adv. Math. Appl. Sci. , Vol. 71, World Sci. Publ. , Hackensack, NJ, 247-268,2006.
    [334] A. Rougirel, Convergence to steady state and attractors for doubly nonlinear equations, J. Math. Anal. Appl. 339 (2008), 281-294.
    [335] P. Rybka and K.-H. Hoffmann, Convergence of solutions to Cahn-Hilliard equation, Commun. Partial Diff. Eqns. 24 (1999), 1055-1077.
    [336] A. Sariaydin-Filibelioglu, B. Karaszen and M. Uzunca, Energy stable interior penalty discontinuous Galerkin finite element method for Cahn-Hilliard equation, Int. J. Nonlinear Sci. Numer. Simul. 18 (2017), 303-314.
    [337] G. Savaré and A. Visintin, Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 8 (1997), 49-89.
    [338] A. Savostianov and S. Zelik, Global well-posedness and attractors for the hyperbolic CahnHilliard-Oono equation in the whole space, Math. Models Methods Appl. Sci. 26 (2016), 1357-1384.
    [339] A. Savostianov and S. Zelik, Finite dimensionality of the attractor for the hyperbolic CahnHilliard-Oono equation in R3, Math. Methods Appl. Sci. 39 (2016), 1254-1267.
    [340] R. Scala and G. Schimperna, On the viscous Cahn-Hilliard equation with singular potential and inertial term, AIMS Math. 1 (2016), 64-76.
    [341] G. Schimperna, Weak solution to a phase-field transmission problem in a concentrated capacity, Math. Methods Appl. Sci. 22 (1999), 1235-1254.
    [342] G. Schimperna, Global attractor for Cahn-Hilliard equations with nonconstant mobility, Nonlinearity 20 (2007), 2365-2387.
    [343] G. Schimperna and S. Zelik, Existence of solutions and separation from singularities for a class of fourth order degenerate parabolic equations, Trans. Amer. Math. Soc. 365 (2013), 3799-3829.
    [344] J. Shen and X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Contin. Dyn. Systems 28 (2010), 1669-1691.
    [345] J. Shen and X. Yang, Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows, Chinese Ann. Math., Ser. B 31 (2010), 743-758.
    [346] W. Shen and S. Zheng, On the coupled Cahn-Hilliard equations, Commun. Partial Diff. Eqns. 18 (1993), 701-727.
    [347] R.H. Stogner, G.F. Carey and B.T. Murray, Approximation of Cahn-Hilliard diffuse interface models using parallel adaptative mesh refinement and coarsening with C1 elements, Int. J. Numer. Methods Engrg. 76 (2008), 636-661.
    [348] J.E. Taylor, Mean curvature and weighted mean curvature, Acta Metall. Mater. 40 (1992), 1475-1495.
    [349] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Second edition, Applied Mathematical Sciences, Vol. 68, Springer-Verlag, New York, 1997.
    [350] U. Thiele and E. Knobloch, Thin liquid films on a slightly inclined heated plate, Physica D 190 (2004), 213-248.
    [351] G. Tierra and F. Guillén-González, Numerical methods for solving the Cahn-Hilliard equation and its applicability to related energy-based models, Arch. Comput. Methods Engrg. 22 (2015), 269-289.
    [352] S. Torabi, J. Lowengrub, A. Voigt and S. Wise, A new phase-field model for strongly anisotropic systems, Proc. R. Soc. A 465 (2009), 1337-1359.
    [353] S. Tremaine, On the origin of irregular structure in Saturn's rings, Astron. J. 125 (2003), 894-901.
    [354] J. Verdasca, P. Borckmans and G. Dewel, Chemically frozen phase separation in an adsorbed layer, Phys. Review E 52 (1995), 4616-4619.
    [355] S. Villain-Guillot, Phases modulées et dynamique de Cahn-Hilliard, Habilitation thesis, Université Bordeaux I, 2010.
    [356] C. Wang and S.M. Wise, Global smooth solutions of the modified phase field crystal equation, Methods Appl. Anal. 17 (2010), 191-212.
    [357] C. Wang and S.M. Wise, An energy stable and convergent finite difference scheme for the modified phase field crystal equation, SIAM J. Numer. Anal. 49 (2011), 945-969.
    [358] W. Wang, L. Chen and J. Zhou, Postprocessing mixed finite element methods for solving CahnHilliard equation: methods and error analysis, J. Sci. Comput. 67 (2016), 724-746.
    [359] X. Wang and H. Wu, Long-time behavior for the Hele-Shaw-Cahn-Hilliard system, Asymptot. Anal. 78 (2012), 217-245.
    [360] X. Wang and Z. Zhang, Well-posedness of the Hele-Shaw-Cahn-Hilliard system, Ann. Inst. H. Poincare Anal. Non Linéaire 30 (2013), 367-384.
    [361] S.J. Watson, F. Otto, B. Rubinstein and S.H. Davis, Coarsening dynamics of the convective CahnHilliard equation, Physica D 178 (2003), 127-148.
    [362] G.N. Wells, E. Kuhl and K. Garikipati, A discontinuous Galerkin method for Cahn-Hilliard equation, J. Comput. Phys. 218 (2006), 860-877.
    [363] A.A. Wheeler and G.B. McFadden, On the notion of ξ-vector and stress tensor for a general class of anisotropic diffuse interface models, Proc. R. Soc. London Ser. A 453 (1997), 1611-1630.
    [364] M. Wilke, Lp-theory for a Cahn-Hilliard-Gurtin system, Evol. Eqns. Control Theory 1 (2012), 393-429.
    [365] S.M. Wise, Unconditionally stable finite difference, nonlinear multigrid simulations of the CahnHilliard-Hele-Shaw system of equations, J. Sci. Comput. 44 (2010), 38-68.
    [366] S. Wise, J. Kim and J. Lowengrub, Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method, J. Comput. Phys. 226 (2007), 414-446.
    [367] S.M. Wise, C. Wang and J.S. Lowengrub, An energy stable and convergent finite difference scheme for the phase field crystal equation, SIAM J. Numer. Anal. 47 (2009), 2269-2288.
    [368] H. Wu and S. Zheng, Convergence to equilibrium for the Cahn-Hilliard equation with dynamic boundary conditions, J. Diff. Eqns. 204 (2004), 511-531.
    [369] Y. Xia, Y. Xu and C.-W. Shu, Application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system, Commun. Comput. Phys. 5 (2009), 821-835.
    [370] J. Yin and C. Liu, Cahn-Hilliard type equations with concentration dependent mobility, in Mathematical methods and models in phase transitions, A. Miranville ed. , Nova Sci. Publ. , New York, 79-93,2005.
    [371] B. You and F. Li, Well-posedness and global attractor of the Cahn-Hilliard-Brinkman system with dynamic boundary conditions, Dyn. Partial Diff. Eqns. 13 (2016), 75-90.
    [372] P. Yue, J.J. Feng, C. Liu and J. Shen, A diffuse-interface method for simulating two-phase flows of complex fluids, J. Fluid Mech. 515 (2004), 293-317.
    [373] T. Zhang and Q. Wang, Cahn-Hilliard vs singular Cahn-Hilliard equations in phase field modeling, Commun. Comput. Phys. 7 (2010), 362-382.
    [374] X. Zhang and C. Liu, Existence of solutions to the Cahn-Hilliard/Allen-Cahn equation with degenerate mobility, Electron. J. Diff. Eqns. 2016 (2016), 1-22.
    [375] L.-Y. Zhao, H. Wu and H.-Y. Huang, Convergence to equilibrium for a phase-field model for the mixture of two incompressible fluids, Commun. Math. Sci. 7 (2009), 939-962.
    [376] S. Zheng, Asymptotic behavior of solution to the Cahn-Hilliard equation, Appl. Anal. 23 (1986), 165-184.
    [377] X. Zheng, C. Yang, X.-C. Cai and D. Keyes, A parallel domain decomposition-based implicit method for the Cahn-Hilliard-Cook phase-field equation in 3D, J. Comput. Phys. 285 (2015), 55-70.
    [378] J.X. Zhou and M.E. Li, Solving phase field equations with a meshless method, Commun. Numer. Methods Engrg. 22 (2006), 1109-1115.
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(12149) PDF downloads(4560) Cited by(70)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog