Citation: Nazar Khan, Bilal Khan, Qazi Zahoor Ahmad, Sarfraz Ahmad. Some Convolution Properties of Multivalent Analytic Functions[J]. AIMS Mathematics, 2017, 2(2): 260-268. doi: 10.3934/Math.2017.2.260
[1] | L. Fejer, Uber die positivitat von summen, die nach trigonometrischen order Legendreschen funktionen fortschreiten, Acta Litt. Ac. Sci. Szeged., 2 (1925), 75-86. |
[2] | A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56 (1991), 87-92. |
[3] | A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl., 155 (1991), 364-370. |
[4] | S. Kanas and A. Wiśniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327-336. |
[5] | S. Kanas and A. Wiśniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., 45 (2000), 647-657. |
[6] | D. W. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the conference on complex analysis, Conf. Proc. Lecture Notes Anal. , International Press, Massachusetts, 1994, 157-169. |
[7] | K. I. Noor and N. Khan, Some convolution properties of a subclass of p-valent functions, Maejo Int. J. Sci. Technol., 9 (2015), 181-192. |
[8] | K. I. Noor, Q. Z. Ahmad and M. A. Noor, On some subclasses of analytic functions defined by fractional derivative in the conic regions, Appl. Math. Inf. Sci., 9 (2015), 819-824. |
[9] | K. I. Noor, J. Sokol and Q. Z. Ahmad, Applications of conic type regions to subclasses of meromorphic univalent functions with respect to symmetric points, RACSAM, 2016, 1-14. |
[10] | M. Nunokawa, S. Hussain, N. Khan and Q. Z. Ahmad, A subclass of analytic functions related with conic domain, J. Clas. Anal., 9 (2016), 137-149. |
[11] | S. Ozaki, On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku A., 40 (1935), 167-188. |
[12] | S. Ponnusamy and V. Singh, Convolution properties of some classes of analytic functions, J. Math. Sci., 89 (1998), 1008-1020. |
[13] | W. Rogosinski and G. Szego, Uber die abschimlte von potenzreihen die in ernein kreise beschrankt bleiben. Math. Z., 28 (1928), 73-94. |
[14] | F. Ronning, On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Sklodowska, Sect A., 45 (1991), 117-122. |
[15] | R. Singh and S. Singh, Convolution properties of a class of starlike functions, Proc.Amer. Math. Soc., 106 (1989), 145-152. |