Citation: Canot Hélène, Frénod Emmanuel. Modeling electromagnetism in and near composite material using two-scale behavior of the time-harmonic Maxwell equations[J]. AIMS Mathematics, 2017, 2(2): 269-304. doi: 10.3934/Math.2017.2.269
[1] | T. Abboud and I. Terrasse, Modélisation des phénomènes de propagation d'ondes, Centre Poly-Média de l'école Polytechnique, 2007. |
[2] | Y. Amirat, K. Hamdache and A. Ziani, Homogénéisation d'équations hyperboliques du premier ordre et application aux écoulements missibles en milieux poreux, Ann. Inst. H. Poincaré, 6 (1989), 397-417. |
[3] | G. Allaire, Homogenization and Two-scale Convergence, SIAM Journal on Mathematical Analysis, 23 (1992), 1482-1518. |
[4] | G. Allaire and M. Briand, Multiscale convergence and reiterated homogenization, Roy.Soc.Edinburgh, 126 (1996), 297-342. |
[5] | Y. Amirat and V. Shelukhin, Homogenization of time-harmonic Maxwell equations and the frequency dispersion effect, J.Maths.Pures.Appl., 95 (2011), 420-443. |
[6] | A. Back and E. Frenod, Geometric Two-Scale Convergence on Manifold and Applications to the Vlasov Equation Discrete and Continuous Dynamical Systems-Serie S. Special Issue on Numerical Methods based on Homogenization and Two-Scale Convergence, 8 (2015), 223-241. |
[7] | S. Berthier, Optique des milieux composites, Ed. Polytechnicia, 1993. |
[8] | D. Cionarescu and P. Donato, An introduction to homogenization, Oxford University Press. , 1999. |
[9] | M. Costabel, M. Dauge and S. Nicaise, Corner Singularities of Maxwell interface and Eddy current problems, Advances and Applications, 147 (2004), 241-256. |
[10] | N. Crouseilles, E. Frenod, S. Hirstoaga and A. Mouton, Two-Scale Macro-Micro decomposition of the Vlasov equation with a strong magnetic field, Mathematical Models and Methods in Applied Sciences, 23 (2012), 1527-1559. |
[11] | E. Frénod, P. A. Raviart and E. Sonnendrücker, Asymptotic Expansion of the Vlasov Equation in a Large External Magnetic Field, J. Math. Pures et Appl. 80, (2001), 815-843. |
[12] | S. Guenneau, F. Zolla and A. Nicolet, Homogenization of 3D finite photonic crystals with heterogeneous permittivity and permeability, Waves in Random and Complex Media, 17 (2007), 653-697. |
[13] | P.R.P. Hoole and S.R.H. Hoole, Guided waves along an unmagnetized lightning plasma channel, IEEE Transactions on Magnetics, 24 (1998), 3165-3167. |
[14] | P.R.P. Hoole, S.R.H. Hoole, S. Thirukumaran, R. Harikrishnan, K. Jeevan and K. Pirapaharan, Aircraft-lightning electrodynamics using the transmission line model part Ⅰ: review of the transmission line model, Progress In Electromagnetics Research M, 31, (2013), 85-101. |
[15] | P. Laroche, P. Blanchet, A. Delannoy, and F. Issac, Experimental Studies of Lightning Strikes to Aircraft, JOURNAL AEROSPACELAB, 112 (2012). |
[16] | M. Leboulch, Analyse spectrale VHF, UHF du rayonnement deséclairs, Hamelin, CENT. |
[17] | J. C. Maxwell, A dynamical theory of the Electromagnetic Field, Phisophical transacting of the Royal Society of London, (1885), 459-512. |
[18] | P. Monk, Finite Element Methods for Maxwell's Equations, Oxford Science publication, Numerical Mathematics and scientific computation, Clarendon Press-Oxford, 2003. |
[19] | J. C. Nédélec, Acoustic and electromagnetic equations; integral representations for harmonic problems, Springer-Verlag, Berlin, 2001. |
[20] | M. Neuss-Radu, Some extensions of two-scale convergence, Comptes rendus de l'Academie des sciences, 322 (1996), 899-904. |
[21] | G. Nguetseng. A General Convergence Result for a Functional Related to the Theory of Homogenization, 20 (1989), 608-623. |
[22] | G. Nguetseng, Asymptotic Analysis for a Stiff Variational Problem Arising in Mechanics, SIAM Journal on Mathematical Analysis, 21 (1990), 1394-1414. |
[23] | S. Nicaise, S. Hassani and A. Maghnouji, Limit behaviors of some boundary value problems with high and/or low valued parameters, Advances in differential equations, 14 (2009), 875-910. |
[24] | O. Ouchetto, S. Zouhdi and A. Bossavit et al. , Effective constitutive parameters of periodic composites, Microwave conference, European, 2 (2005). |
[25] | H.E. Pak, Geometric two-scale convergence on forms and its applications to Maxwell's equations, Proceedings of the Royal Society of Edinburgh, European, 135A (2005), 133-147. |
[26] | N. Wellander, Homogenization of the Maxwell equations: Case Ⅰ. Linear theory, Appl Math, 46 (2001), 29-51. |
[27] | N. Wellander, Homogenization of the Maxwell equations: Case Ⅱ. Nonlinear conductivity, Appl Math, 47 (2002), 255-283. |
[28] | N. Wellander and B. Kristensson, Homogenization of the Maxwell equations at fixed frequency, Technical Report, (2002), 1-37. |
[29] | Pr. Welter, Cours : Matériaux diélectriques, Master Matériaux, Institut Le Bel. |