Processing math: 60%
Research article

On the Diophantine equation 1x+1y+1z=13p

  • Received: 04 December 2016 Accepted: 06 January 2017 Published: 24 February 2017
  • In the present paper we obtained all positive integer solutions of some diophantine equations related to unit fraction.

    Citation: Xiaodan Yuan, Jiagui Luo. On the Diophantine equation 1x+1y+1z=13p[J]. AIMS Mathematics, 2017, 2(1): 111-127. doi: 10.3934/Math.2017.1.111

    Related Papers:

    [1] Wei Zhao, Jian Lu, Lin Wang . On the integral solutions of the Egyptian fraction equation ap=1x+1y+1z. AIMS Mathematics, 2021, 6(5): 4930-4937. doi: 10.3934/math.2021289
    [2] Jinyan He, Jiagui Luo, Shuanglin Fei . On the exponential Diophantine equation (a(al)m2+1)x+(alm21)y=(am)z. AIMS Mathematics, 2022, 7(4): 7187-7198. doi: 10.3934/math.2022401
    [3] Bingzhou Chen, Jiagui Luo . On the Diophantine equations x2Dy2=1 and x2Dy2=4. AIMS Mathematics, 2019, 4(4): 1170-1180. doi: 10.3934/math.2019.4.1170
    [4] Cheng Feng, Jiagui Luo . On the exponential Diophantine equation (q2lp2k2n)x+(pkqln)y=(q2l+p2k2n)z. AIMS Mathematics, 2022, 7(5): 8609-8621. doi: 10.3934/math.2022481
    [5] Jing Huang, Ao Han, Huafeng Liu . On a Diophantine equation with prime variables. AIMS Mathematics, 2021, 6(9): 9602-9618. doi: 10.3934/math.2021559
    [6] Jing Huang, Qian Wang, Rui Zhang . On a binary Diophantine inequality involving prime numbers. AIMS Mathematics, 2024, 9(4): 8371-8385. doi: 10.3934/math.2024407
    [7] Changsheng Luo, Jiagui Luo . Complete solutions of the simultaneous Pell equations (a2+1)y2x2=y2bz2=1. AIMS Mathematics, 2021, 6(9): 9919-9938. doi: 10.3934/math.2021577
    [8] Xiao Jiang, Shaofang Hong . On the denseness of certain reciprocal power sums. AIMS Mathematics, 2019, 4(3): 412-419. doi: 10.3934/math.2019.3.412
    [9] Liuying Wu . On a Diophantine equation involving fractional powers with primes of special types. AIMS Mathematics, 2024, 9(6): 16486-16505. doi: 10.3934/math.2024799
    [10] Bhabesh Das, Helen K. Saikia . On the Sum of Unitary Divisors Maximum Function. AIMS Mathematics, 2017, 2(1): 96-101. doi: 10.3934/Math.2017.1.96
  • In the present paper we obtained all positive integer solutions of some diophantine equations related to unit fraction.


    1. Introduction

    In 1950, Erdös [1] conjectured for any positive integer n>1, that the following diophantine equation

    1x+1y+1z=4n (1.1)

    has positive integer solutions x, y, z. Later, Strauss [1] made a more powerful conjecture: let n>2, then diophantine equation (1.1) has positive integer solution x,y,z with xy,xz,yz. He proved that the conjecture is true with n5000. In 1964, Zhao Ke, Qi Sun and Xianjue Zhang [3] proved that Strauss conjecture is equivalent to Erdös conjecture. In 1979, Ke and Sun [4] proved that Erdös-Strauss conjecture is true with n4105. In 1965, Yamamoto [10] proved that Erdös-Strauss conjecture is also true with n107. In 1978, Franceschine [2] proved that Erdös-Strauss conjecture is true with n108. Sierpiski made a similar conjecture: for any positive integer n1, that the following diophantine equation

    1x+1y+1z=5n (1.2)

    has the solutions x,y,z of positive integer. Palama [6,7] proved that Sierpiski conjecture is true with n922321.Stewart [9] also obtained above the result with n105743881 and n1(mod278460). In 1984, Liu [5] obtained all the solution of positive integers of the following diophantine equation

    1x+1y+1z=5121. (1.3)

    Write n=12p in (1.1) or write n=15p in (1.2), where p is an odd prime. We obtain diophantine equation

    1x+1y+1z=13p,xyz. (1.4)

    One can easily get all the solutions of positive integer of (1.4) when p|x. If 3|x,px, then one lets

    x=3ax1,y=ay1,z=az1,a=gcd(x/3,y,z),

    and so (1.4) is changed to

    3p(y1+z1)x1=(ax1p)y1z1. (1.5)

    Moreover, we write y1=dy2,z1=dz2,d=gcd(y1,z1). It is easy to see that gcd(d,x1)=1.

    If 3p|d, then we get that x1|y2z2 and y2z2|x1. It follows that x1=y2z2. Write d3p=d1, then (1.5) is changed to

    y2+z2d1=ay2z2p,gcd(y2,z2)=1,y2z2.

    If 3d,p|d and 3|y1, then we get that x1|y3z2 and y3z2|x1 where y2=3y3. It follows that x1=y3z2. Write dp=d1, then (1.5) is changed to

    3y3+z2d1=ay3z2p,gcd(3y3,z2)=1,3y3z2.

    If 3d,p|d and 3|z1, then we get that x1|y2z3 and y2z3|x1 where z2=3z3. It follows that x1=y2z3. Write dp=d1, then (1.5) is changed to

    y2+3z3d1=ay2z3p,gcd(y2,3z3)=1.

    If pd,3|d and p|y1, then we get that x1|y3z2 and y3z2|x1 where y2=py3. It follows that x1=y3z2. Write d3=d1, then (1.5) is changed to

    py3+z2d1=ay3z2p,gcd(py3,z2)=1,py3z2.

    If pd,3|d and p|z1, then we get that x1|y2z3 and y2z3|x1 where z2=pz3. It follows that x1=y2z3. Write d3=d1, then (1.5) is changed to

    y2+pz3d1=ay2z3p,gcd(y2,pz3)=1.

    If 3pd and 3|y1,p|z1, then we get that x1|y3z3 and y3z3|x1 where y2=3y3,z2=pz3. It follows that x1=y3z3. Then (1.5) is changed to

    3y3+pz3d=ay3z3p,gcd(3y3,pz3)=1.

    If 3pd and p|y1,3|z1, then we get that x1|y3z3 and y3z3|x1 where y2=py3,z2=3z3. It follows that x1=y3z3. Then (1.5) is changed to

    py3+3z3d=ay3z3p,gcd(py3,3z3)=1.

    If 3y1z1,pd and p|y1, then we get that x1|y3z2 and y3z2|x1 where y2=py3. It follows that x1=y3z2. Then (1.5) is changed to

    py3+z2d=ay3z2p3,gcd(py3,z2)=1.

    If 3y1z1,pd and p|z1, then we get that x1|y2z3 and y2z3|x1 where z2=pz3. It follows that x1=y2z3. Then (1.5) is changed to

    y2+pz3d=ay2z3p3,gcd(y2,pz3)=1.

    If 3y1z1,p|d, then we get that x1|y2z2 and y2z2|x1. It follows that x1=y2z2. Write dp=d1, then (1.5) is changed to

    y2+z2d1=ay2z2p3,gcd(y2,z2)=1.

    Thus we have proved that solving the equation (1.5) is equivalent to solving the following diophantine equations:

    y+zd=ayzp,gcd(y,z)=1,yz, (1.6)
    3y+zd=ayzp,gcd(3y,z)=1, (1.7)
    py+zd=ayzp,gcd(py,z)=1, (1.8)
    3y+pzd=ayzp,gcd(3y,pz)=1, (1.9)
    py+zd=ayzp3,gcd(py,z)=1,3yz, (1.10)
    y+zd=ayzp3,gcd(y,z)=1,yz,3yz. (1.11)

    In this paper, we investigate the equations (1.6), (1.7) and (1.8) with p=661. Actually, we get all the solutions of positive integer of them. That is, we have the following results:

    Theorem 1.1. If ayz66180, then all the solutions of positive integers of (1.6) are given by (a,d,y,z)=

    (1, 1, 2, 663), (1, 1, 3, 332), (1, 2, 1, 1323), (1, 2, 3, 265), (1, 3, 1, 992), (1, 3, 2, 397),

    (2, 1, 1, 662), (2, 1, 2, 221), (2, 1, 4, 95), (2, 2, 1, 441), (3, 1, 1, 331),

    (3, 1, 3, 83), (3, 3, 1, 248)(4, 2, 1, 189).

    Theorem 1.2. If ayz66190, then all the solutions of positive integers of (1.7) are given by (a,d,y,z)=

    (1, 1, 2, 667), (1, 1, 3, 335), (1, 1, 5, 169), (1, 1, 9, 86), (1, 1, 84, 11), (1, 1, 167, 7), (1, 1, 333, 5),

    (1, 1, 665, 4), (1, 2, 1, 1325), (1, 4, 2645, 1), (1, 5, 1, 827), (1, 5, 1653, 1), (1, 7, 1157, 1), (1, 11, 909, 1),

    (1, 19, 785, 1), (2, 1, 1, 664), (2, 1, 3, 134), (2, 1, 27, 14), (2, 1, 133, 4), (2, 1, 663, 2), (2, 2, 1323, 1),

    (2, 4, 529, 1), (3, 1, 1, 332), (3, 1, 221, 2), (3, 2, 1, 265), (3, 2, 441, 1), (4, 1, 662, 1), (5, 1, 1, 166),

    (5, 1, 331, 1), (5, 2, 189, 1), (6, 2, 147, 1), (8, 1, 51, 2), (10, 1, 39, 2), (12, 2, 63, 1).

    Theorem 1.3. Each of the following is true:

    1. If ayz66180, then all the solutions of positive integers of (1.6) are given by (a,d,y,z)=

    (1, 3, 5, 142), (1, 3, 17, 40), (1, 7, 6, 113), (1, 11, 18, 37), (1, 28, 17, 39), (1, 32, 13, 51),

    (1, 67, 2, 333), (1, 112, 3, 221), (1, 332, 1, 663), (1, 333, 2, 331), (1, 663, 1, 662), (2, 1, 5, 74),

    (2, 1, 11, 32), (2, 1, 14, 25), (2, 2, 11, 31), (2, 7, 1, 356), (2, 8, 5, 67), (2, 20, 1, 339), (2, 26, 1, 337),

    (2, 29, 4, 83), (2, 112, 1, 332), (2, 332, 1, 331), (3, 1, 11, 21), (3, 14, 13, 17), (3, 28, 1, 223),

    (3, 111, 1, 221), (4, 1, 6, 29), (4, 5, 1, 174), (4, 24, 1, 167), (5, 1, 4, 35), (5, 1, 6, 23), (5, 2, 1, 147),

    (5, 15, 1, 134), (6, 4, 1, 115), (6, 8, 3, 37), (7, 1, 2, 51), (7, 6, 5, 19), (7, 24, 1, 95), (8, 28, 1, 83),

    (9, 1, 2, 39), (9, 1, 4, 19), (9, 2, 3, 25), (9, 15, 1, 74), (11, 2, 1, 63), (11, 3, 1, 62), (13, 10, 3, 17),

    (13, 26, 1, 51), (14, 2, 1, 49), (15, 1, 5, 9), (17, 8, 3, 13), (17, 20, 1, 39), (19, 3, 5, 7), (19, 9, 1, 35),

    (20, 1, 2, 17), (21, 3, 1, 32), (23, 5, 1, 29), (24, 1, 4, 7), (25, 2, 1, 27), (26, 1, 2, 13), (28, 1, 3, 8),

    (29, 4, 1, 23), (32, 2, 1, 21), (35, 5, 1, 19), (39, 9, 1, 17), (51, 7, 1, 13), (74, 2, 1, 9), (83, 3, 1, 8),

    (95, 2, 1, 7), (111, 1, 2, 3), (221, 2, 1, 3), (331, 3, 1, 2), (332, 1, 1, 2), (662, 2, 1, 1), (663, 1, 1, 1).

    2. If ayz66190, then all the solutions of positive integers of (1.7) are given by (a,d,y,z)=

    (1, 9, 1, 744), (1, 29, 3, 223), (1, 31, 35, 19), (1, 37, 5, 133), (1, 67, 39, 17), (1, 73, 95, 7),

    (1, 83, 51, 13), (1, 101, 133, 5), (1, 115, 3, 221), (1, 127, 677, 1), (1, 167, 1, 665), (1, 333, 1, 663),

    (1, 337, 2, 331), (1, 665, 1, 662), (1, 995, 331, 2), (1, 995, 663, 1), (1, 1987, 662, 1), (2, 1, 13, 28),

    (2, 2, 3, 121), (2, 200, 333, 1), (2, 334, 1, 331), (2, 994, 331, 1), (3, 2, 4, 58), (3, 7, 2, 113),

    (3, 11, 6, 37), (3, 28, 13, 17), (3, 32, 17, 13), (3, 67, 111, 2), (3, 112, 1, 221), (3, 332, 221, 1),

    (4, 2, 9, 19), (5, 10, 7, 19), (5, 16, 19, 7), (5, 34, 1, 133), (5, 100, 133, 1), (6, 5, 16, 7), (6, 20, 113, 1),

    (8, 1, 18, 5), (8, 23, 84, 1), (9, 1, 1, 83), (9, 1, 7, 11), (12, 1, 2, 29), (12, 5, 58, 1), (13, 2, 1, 53),

    (13, 13, 3, 17), (15, 1, 2, 23), (15, 2, 49, 1), (17, 11, 3, 13), (17, 59, 39, 1), (18, 8, 1, 37), (26, 2, 27, 1),

    (27, 1, 13, 2), (27, 2, 1, 25), (33, 2, 21, 1), (34, 1, 5, 4), (37, 11, 18, 5), (39, 10, 1, 17), (39, 26, 17, 1),

    (45, 1, 3, 5), (51, 8, 1, 13), (51, 20, 13, 1), (75, 2, 9, 1), (84, 1, 1, 8), (96, 2, 7, 1), (112, 1, 3, 2),

    (133, 2, 1, 5), (167, 1, 1, 4), (221, 5, 3, 1), (222, 2, 3, 1), (331, 5, 1, 2), (331, 7, 2, 1), (333, 1, 1, 2),

    (334, 1, 2, 1), (662, 4, 1, 1), (663, 2, 1, 1), (665, 1, 1, 1).

    Theorem 1.4. All the solutions of positive integers of (1.8) with pyz are given by (a,d,y,z)=

    (1, 1, 2, 1983), (1, 2, 1, 1983), (1, 3, 1, 1322), (1, 3, 2, 661), (1, 331, 2, 333), (1, 662, 1, 663),

    (1, 1323, 1, 662), (1, 1653, 2, 331), (2, 1, 1, 1322), (2, 2, 1, 661), (2, 331, 1, 332), (2, 992, 1, 331).

    We organize this paper as follows. In Section 2, we present some lemmas which are needed in the proof of our main results. Consequently, in Sections 3 to 6, we give the proofs of Theorem 1.1 to 1.4 respectively.


    2. Some lemmas

    To prove the main theorems, we need the following lemmas.

    Lemma 2.1. Let 661+b=p, where p is an odd prime. If one of the following conditions is satisfied

    p1(modq),q=3,5or11orp3(mod7),orp23(mod29),orp5(mod41),

    then both equation (1.6) and equation (1.7) have no solution (a, d, y, z) of positive integers with ayz661=b.

    proof. We only prove the case p23(mod29). The proofs of other cases are similarly. By the assumption we have bp6610(mod29). Assume either (1.6) or (1.7) has a positive integer solution (a,d,y,z) with ayz661=b. It follows (y,z){(1,1),(1,p),(p,1)} and either

    y+z0(mod29) (2.1)

    or

    3y+z0(mod29). (2.2)

    One can easily to see neither (2.1) nor (2.2) is satisfied for any element (y,z){(1,1),(1,p),(p,1)}. This completes the proof of Lemma 2.1}.

    Lemma 2.2. Let 661+b=pq, where p,q are prime numbers.

    (i)If one of the following conditions is satisfied

    pq1(mod3),orpq1(mod5),orp1(mod7),q3(mod7),orp3(mod13),q5(mod13),orp3(mod17),q5(mod17),orp3(mod19),q5(mod19),orp3(mod20),q7(mod20),orp7(mod23),q9(mod23),orp3(mod31),q7(mod31),orp2(mod37),q14(mod37),orp23(mod52),q31(mod52),orp3(mod56),q15(mod56),orp2(mod57),q17(mod57),orpq2(mod73),orp2(mod85),q33(mod85),orp7(mod88),q19(mod88),

    then both equation (1.6) and equation (1.7) have no positive integer solution (a, d, y, z) with ayz661=b.

    (ii). If one of the following conditions is satisfied

    pq1(mod4),orpq±2(mod9),orp2(mod11),q6(mod11),

    then equation (1.6) has no positive integer solution (a, d, y, z) with ayz661=b.

    proof. (i) We only prove the case p7(mod23),q9(mod23).The proofs of other cases are similarly. By the assumption we have bpq6610(mod23). Assume either (1.6) or (1.7) has a positive integer solution (a,d,y,z) with ayz661=b. It follows (y,z){(1,puqv),(p,qv),(q,pu),(pq,1),u,v=0,1} and either

    y+z0(mod23) (2.3)

    or

    3y+z0(mod23). (2.4)

    One can easily to see neither (2.3) nor (2.4) is satisfied for any element (y,z){(1,puqv),(p,qv),(q,pu),(pq,1),u,v=0,1}. This completes the proof of part (i) of Lemma 2.2.

    The proof of part (ii) is similar.

    Lemma 2.3. Let 661+b=pqr, where p,q,r are prime. If one of the following conditions is satisfied

    pq3(mod11),r5(mod11),orpq3(mod25),r4(mod25),orpq2(mod31),r18(mod31),orpq2(mod55),r14(mod55),orpq19(mod61),r2(mod61),orpq5(mod64),r29(mod64),orp3(mod80),q13(mod80),r19(mod80),

    then both equation (1.6) and equation (1.7) have no positive integer solution (a, d, y, z) with ayz661=b.

    proof. We only prove the case pq19(mod61),r2(mod61). The proofs of other cases are similarly. By the assumption we have bpqr6610(mod61). Assume either (1.6) or (1.7) has a positive integer solution (a,d,y,z) with ayz661=b. It follows

    (y,z){(1,puqvrt),(p,qvrt),(q,purt),(r,puqv),(pq,rt),(pr,qv),(qr,pt),(pqr,1),u,v,t=0,1}

    and either

    y+z0(mod61) (2.5)

    or

    3y+z0(mod23). (2.6)

    One can easily to see neither (2.5) nor (2.6) is satisfied for any element (y,z){(1,puqvrt),(p,qvrt),(q,purt),(r,puqv),(pq,rt),(pr,qv),(qr,pt),(pqr,1),u,v,t=0,1}. This completes the proof of Lemma 2.3.

    Lemma 2.4. If 3|b, then equation (1.7) has no positive integer solution (a, d, y, z) with ayz661=b.

    proof. Assume (1.7) has a positive integer solution (a,d,y,z) with ayz661=b. Then we get b|3y+z. It implies that 3|z since 3|b, which contradicts with gcd(3,z)=1. This completes the proof of Lemma 2.4.

    Lemma 2.5. Let 661+b=2kp, where k is an integer more than 2 and p is an odd prime.

    If 1+2upv0(modb),p+2u0(modb), and 2t+pv0(modb), where v{0,1},0uk,1tk, then equation (1.6) has no positive integer solution (a, d, y, z) with ayz661=b.

    proof. Assume (1.6) has a positive integer solution (a,d,y,z) with ayz661=b. It follows

    (y,z){(1,2upv),(p,2u),(2t,pv),(2tp,1),0uk,v=0,1,1tk}

    and

    y+z0(modb), (2.7)

    which contradicts the assumption of Lemma 2.5.

    This completes the proof of Lemma 2.5.

    Lemma 2.6. Let (a,d,y,z) be a positive integer solution of equation (1.6) with ayz661=b. If b80,ad2, then y6.

    proof. We first prove that b1322. Otherwise b>1322, then we have zy+z213222=661.

    If ay2, then from ayz661=y+zd2z, we get z(ay2)z661 which contradicts with z661.

    If a=y=d=1, then we have 1=661 which is impossible.

    If a=y=1,d>1, then we have

    z=661d+1d1=661+662d1661+662=1323,

    which contradicts with z1322+661=1983.

    If a=1,y=2, then we have

    z=6612+6652(2d1)661+6652=663,

    which contradicts with z1322+661=1983.

    If a=2,y=1, then we have

    z=6612+6632(2d1)661+6632=662,

    which also contradicts with z1322+661=1983. Hence b1322 as desired.

    Assume now y6.

    If d2,b200, then y+z=db400. Since quadratic function

    f(y)=y(dby),0ydb2,

    is increasing function, so we have

    yz=f(y)f(6)=6(db6)6394=2364,

    which contradicts with ayz1983. If d2,80b200, then similarly we have

    yz=f(y)f(6)=6(db6)6154=924,

    which contradicts with ayz661+200=861.

    If d=1, then we have a2. It follows that yz[1983a][19832]=991. If b200, then similarly we have

    yz=f(y)f(6)=6(b6)6194=1164,

    which contradicts with yz991. If 80b200, then similarly we have

    yz=f(y)f(6)=6(b6)674=444,

    which contradicts with yz[861a][8612]=430.

    This completes the proof of Lemma 2.6.

    Lemma 2.7. Let (a, d, y, z) be a positive integer solution of equation (1.7) with ayz661=b. If 80b2644, and a5 or d7, then we have either y6 or z6.

    proof. Since gcd(3y,z)=1, so we have either 3yz or 3y>z. We prove that y6 if 3yz and z6 if 3y>z.

    We prove that z6 if 3yz. Otherwise z6.

    Case 1: d7. Then 3y+z=db, we get z(ay2)z661 which contradicts with z661.

    If b300, then y+z=db2100. Since quadratic function

    g(z)=z(dbz),0zdb2,

    is increasing function, so we have

    yz=g(z)3g(6)322094=4188,

    which contradicts with ayz3305.

    If 90b300, then similarly we have

    yz=g(z)3g(6)32624=1248,

    which contradicts with ayz661+300=961.

    Case 2: a5, then we have yz[3305a][33055]=661.

    If b400, then similarly we have

    yz=g(z)3g(6)32394=788,

    which contradicts with yz661.

    If 150b400, then similarly we have

    yz=g(z)3g(6)32144=288,

    which contradicts with yz[1061a][10615]=212.

    If 90b150, then similarly we have

    yz=g(z)3g(6)3284=168,

    which contradicts with yz[811a][8115]=162.

    Similarly we can prove that y6 if 3yz.

    This completes the proof of Lemma 2.7.


    3. Proof of Theorem 1.1

    Assume that (a,d,y,z) is a positive integer solution of equation (1.6) with ayz661=b80. Then we have y5 by Lemma :2.6. We divide the proof into four cases.

    Case 1: d=1. From equation (1.6), we get

    (ay1)z=661+y. (3.1)

    Replacing y by 1,2,3,4,5 in (3.1) respectively, we obtain

    (a1)z=2331,(2a1)z=31317,(3a1)z=883,(4a1)z=5719,(5a1)z=2937.

    Thus we get

    (a,y,z)=(2,1,662),(3,1,331),(2,2,221),(3,3,83),(2,4,95).

    Case 2: d=2. From equation (1.6), we get

    (2ay1)z=1322+y. (3.2)

    Replacing y by 1,2,3,4,5 in (3.2) respectively, we obtain

    (2a1)z=949,(4a1)z=4331,(6a1)z=2553,(8a1)z=61317,(10a1)z=1327.

    Thus we get

    (a,y,z)=(1,1,1323),(2,1,441),(4,1,189),(1,3,265).a

    Case 3: d=3. From equation (1.6), we get

    (3ay1)z=1983+y. (3.3)

    Replacing y by 1,2,3,4,5 in (3.3) respectively, we obtain

    (3a1)z=4331,(6a1)z=5397,(9a1)z=6331,(12a1)z=1987,(15a1)z=4771.

    Thus we get

    (a, y, z)=(1, 1, 992), (3, 1, 248), (1, 2, 397).

    Case 4: d\geq 4. If b\geq 100, then by the proof of Lemma 2.6 we know

    yz=f(y)\ge f(6)\ge 6\cdot 394=2364,

    which contradicts with ayz\leq 1983. If 80\leq b<100, then similarly we know

    yz=f(y)\ge f(6)\ge 6\cdot 314=1884,

    which contradicts with ayz\leq 761.

    So Theorem 1.1 is proved.


    4. Proof of Theorem 1.2

    Assume that (a, d, y, z) is a positive integer solution of equation (1.7) with ayz-661=b\geq 90. We divide the proof into three cases.

    Case 1: b>2644, assume that y>z. Then y>\frac{3y+z}{4}=\frac{b}{4}>661. If az>4, then from (1.7), we get ayz-661=\frac{3y+z}{d}<4y. It implies that y\leq (az-4)y<661, which contradicts with y>661. Hence az\leq 4. On the other hand, we have (adz-3)b=az^2+1983\leq 16+1983=1999 which contradicts with b>2644. Similarly we can prove that y\leq z is impossible.

    Case 2: 90\leq b\leq 2644, d<7 and a<5, then we have a\in\{1, 2, 3, 4\}, d\in\{1, 2, 4, 5\} since d|3y+z, \gcd(3y, z)=1.

    If a=1, from equation (1.7), we get

    (dy-1)(dz-3)=661{{d}^{2}}+3. (4.1)

    Replacing d by 1, 2, 4, 5 in (4.1) respectively, we obtain

    (y-1)(z-3)=8\cdot 83, (2y-1)(2z-3)=2647, (4y-1)(4z-3)=71\cdot 149, (5y-1)(5z-3)=16\cdot 1033.

    Thus we get

    (d, y, z)=(1, 2, 667), (1, 3, 335), (1, 5, 169), (1, 9, 86), (1, 84, 11), (1, 167, 7), (1, 333, 5),
    (1, 665, 4), (2, 1, 1325), (2, 1324, 2), (4, 2645, 1), (5, 1, 827), (5, 1653, 1).

    If a=2, from equation (1.7), we get

    (2dy-1)(2dz-3)=1322{{d}^{2}}+3. (4.2)

    Replacing d by 1, 2, 4, 5 in (4.2) respectively, we obtain

    (2y-1)(2z-3)=25\cdot 53, (4y-1)(4z-3)=11\cdot 13\cdot 17, (8y-1)(8z-3)=5\cdot 4231, (5y-1)(5z-3)=33053.

    Thus we get

    \begin{align} & (d, y, z)=(1, 1, 664), (1, 3, 134), (1, 27, 14), (1, 133, 4), (1, 663, 2), \\ & (2, 1323, 1), (4, 529, 1). \\ \end{align}

    If a=3, from equation (1.7), we get

    (3dy-1)(dz-1)=661{{d}^{2}}+1. (4.3)

    Replacing d by 1, 2, 4, 5 in (4.3) respectively, we obtain

    (3y-1)(z-1)=2\cdot 331, (6y-1)(2z-1)=5\cdot {{23}^{2}}, (9y-1)(3z-1)=2\cdot {{5}^{2}}\cdot 7\cdot 17, (15y-1)(5z-1)=2\cdot 8263.

    By computing we get that

    (d, y, z)=(1, 1, 332), (1, 221, 2), (2, 1, 265), (2, 441, 1).

    If a=4, we contend d<3. Otherwise d\geq 4, we have 3y+z=db\geq 4b. If b\geq 300, then we have yz\geq 1197, which contradicts with yz\leq [\frac{3305}{4}]=826. If 90\leq b<300, then we have yz\geq 357, which contradicts with yz\leq [\frac{961}{4}]=240. Hence d<3 as desired. From equation (1.7), we get

    (4dy-1)(4dz-3)=2644{{d}^{2}}+3. (4.4)

    Replacing d by 1, 2 in (4.4) respectively, we obtain

    (4y-1)(4z-3)=2647, (8y-1)(8z-3)=71\cdot 149.

    Thus we get

    (d, y, z)=(1, 662, 1).

    Case 3: 90\leq b\leq 2644, d\geq 7 or a\geq 5. Then we have either y\leq 5 or z\leq 5 by Lemma 2.7.

    Subcase 1: d=1, a\geq 5, from equation (1.7), we get

    \left( ay-1 \right)z=661+3y (4.5)

    and

    \left( az-3 \right)y=661+z. (4.6)

    Replacing y by 1, 2, 3, 4, 5 in (4.5) respectively, we obtain

    (a-1)z=8\cdot 83, (2a-1)z=23\cdot 29, (3a-1)z=2\cdot 5\cdot 67, (4a-1)z=673, (5a-1)z=4\cdot {{13}^{2}}.

    Thus we get

    (a, y, z)=(5, 1, 166).

    Replacing z by 1, 2, 4, 5 in (4.6) respectively, we obtain

    (a-3)y=2\cdot 331, (2a-3)y=3\cdot 13\cdot 17, (4a-3)y=5\cdot 7\cdot 19, (5a-3)y=2\cdot {{3}^{2}}\cdot 37.

    By computing we get

    (a, y, z)=(5, 331, 1), (8, 51, 2), (10, 39, 2).

    Subcase 2: d=2, a\geq 5, from equation (1.7), we get

    \left( 2ay-1 \right)z=1322+y (4.7)

    and

    \left( 2az-3 \right)y=1322+z. (4.8)

    Replacing y by 1, 2, 3, 4, 5 in (4.7) respectively, we obtain

    (2a-1)z={{5}^{2}}\cdot 53, (4a-1)z={{2}^{4}}\cdot 83, (6a-1)z={{11}^{3}}, (8a-1)z=2\cdot 23\cdot 29, (10a-1)z=7\cdot 191.

    By computing we know that the above equations have no positive integer solution (a, z) such that a\geq 5, b\geq 90.

    Replacing z by 1, 2, 4, 5 in (4.8) respectively, we obtain

    (2a-3)y={{3}^{3}}\cdot {{7}^{2}}, (4a-3)y={{2}^{2}}\cdot 331, (8a-3)y=2\cdot 3\cdot 13\cdot 17, (10a-3)y=1327.

    By computing we get

    (a, y, z)=(6, 147, 1), (12, 63, 1), (5, 189, 1).

    Subcase 3: d\geq 4, a\geq 5, then we have 3y+z=db\geq 4b. If b\geq 200, then we get that yz\geq 797 which contradicts with yz\leq [\frac{3305}{5}]=661. If 90\leq b<200, then we get that yz\geq 357 which contradicts with yz\leq [\frac{861}{5}]=172.

    Subcase 4: d\geq 7, a<5. We contend that a=1. Otherwise a\geq 2. If b\geq 300, then we get that yz\geq 2097 which contradicts with yz\leq [\frac{3305}{2}]=1652. If 90\leq b<300, then we get that yz\geq 627 which contradicts with yz\leq [\frac{861}{2}]=430. Thus a=1 as desired. From equation (1.7), we get

    (dy-1)(yz-661)=661+3{{y}^{2}} (4.9)

    and

    (dz-3)(yz-661)=1983+{{z}^{2}}. (4.10)

    Replacing y by 1, 2, 3, 4, 5 in (4.9) respectively, we obtain

    \begin{align} & (d-1)(z-661)=8\cdot 83, (2d-1)(2z-661)=673, (3d-1)(3z-661)={{4}^{2}}\cdot 43, (4d-1)(4z-661)=709, \\ & (5d-1)(5z-661)={{2}^{5}}\cdot 23. \\ \end{align}

    By computing we know that the above equations have no positive integer solution (a, z) such that d\geq 7, b\geq 90.

    Replacing z by 1, 2, 4, 5 in (4.8) respectively, we obtain

    (d-3)(y-661)={{2}^{6}}\cdot 31, (2d-3)(2y-661)=1987, (4d-3)(4y-661)=1999, (5d-3)(5y-661)=8\cdot 251.

    By computing we get that

    (d, y, z)=(7, 1157, 1), (11, 909, 1), (19, 785, 1).

    Therefore the proof of Theorem 1.2 is complete.


    5. Proof of Theorem 1.3

    Since

    \begin{align} & \begin{matrix} 661+12=673\equiv 1 & \left( \bmod 3 \right), 661+22=683\equiv 1 & \left( \bmod 11 \right), 661+30=691\equiv 1 & \left( \bmod 3 \right), \\ \end{matrix} \\ & \begin{matrix} 661+40=701\equiv 1 & \left( \bmod 5 \right), 661+48=709\equiv 1 & \left( \bmod 3 \right), 661+58=719\equiv 23 & \left( \bmod 29 \right), \\ \end{matrix} \\ & \begin{matrix} 661+66=727\equiv 1 & \left( \bmod 3 \right), 661+72=733\equiv 1 & \left( \bmod 3 \right), 661+78=739\equiv 1 & \left( \bmod 3 \right), \\ \end{matrix} \\ & \begin{matrix} 661+82=743\equiv 5 & \left( \bmod 41 \right), \\ \end{matrix} \\ \end{align}

    so both (1.6) and (1.7) have no positive integer solution (a, d, y, z) with ayz-661=b for b\in\{12, 22, 30, 40, 48, 58, 66, 72, 78, 82\} by Lemma 2.1.

    Since

    \begin{align} & \begin{matrix} 661+10=671=11\cdot 61, 11\equiv 61\equiv 1 & \left( \bmod 5 \right), \\ \end{matrix} \\ & \begin{matrix} 661+20=681=3\cdot 227, 227\equiv 7 & \left( \bmod 20 \right), 661+26=687=3\cdot 229, 229\equiv -5 & \left( \bmod 13 \right), \\ \end{matrix} \\ & 661+28=689=13\cdot 53, \\ & \begin{matrix} 661+34=695=5\cdot 139, 139\equiv 3 & \left( \bmod 17 \right), \\ \end{matrix} \\ & \begin{matrix} 661+37=698=2\cdot 347, 347\equiv 14 & \left( \bmod 37 \right), \\ \end{matrix} \\ & \begin{matrix} 661+38=699=3\cdot 233, 233\equiv 5 & \left( \bmod 19 \right), \\ \end{matrix} \\ & \begin{matrix} 661+46=707=7\cdot 101, 101\equiv 9 & \left( \bmod 23 \right), \\ \end{matrix} \\ & 661+52=713=23\cdot 31, \\ & \begin{matrix} 661+56=717=3\cdot 239, 239\equiv 1 & \left( \bmod 7 \right), \\ \end{matrix} \\ & \begin{matrix} 661+57=718=2\cdot 359, 359\equiv 17 & \left( \bmod 57 \right), \\ \end{matrix} \\ & \begin{matrix} 661+60=721=7\cdot 103, 7\equiv 103\equiv 1 & \left( \bmod 3 \right), \\ \end{matrix} \\ & \begin{matrix} 661+62=723=3\cdot 241, 241\equiv -7 & \left( \bmod 31 \right), \\ \end{matrix} \\ & \begin{matrix} 661+70=731=17\cdot 43, 17\equiv 3 & \left( \bmod 7 \right), 43\equiv 1 & \left( \bmod 7 \right), \\ \end{matrix} \\ & \begin{matrix} 661+56=717=3\cdot 239, 239\equiv 15 & \left( \bmod 56 \right), \\ \end{matrix} \\ & \begin{matrix} 661+73=734=2\cdot 367, 367\equiv 2 & \left( \bmod 73 \right), \\ \end{matrix} \\ & 661+76=737=11\cdot 67, \\ & \begin{matrix} 661+85=746=2\cdot 373, 373\equiv 33 & \left( \bmod 85 \right), \\ \end{matrix} \\ & \begin{matrix} 661+88=749=7\cdot 107, 107\equiv 19 & \left( \bmod 88 \right), \\ \end{matrix} \\ \end{align}

    so both (1.6) and (1.7) have no positive integer solution (a, d, y, z) with ayz-661=b for b\in\{10, 20, 26, 28, 34, 37, 38, 46, 52, 56, 57, 60, 62, 70, 73, 76, 85, 88\} by Lemma 2.2 (i).

    Since

    \begin{align} & \begin{matrix} 661+31=692={{2}^{2}}\cdot 173, 173\equiv 18 & \left( \bmod 31 \right), \\ \end{matrix} \\ & \begin{matrix} 661+44=705=3\cdot 5\cdot 47, 47\equiv 3 & \left( \bmod 11 \right), \\ \end{matrix} \\ & \begin{matrix} 661+50=711={{3}^{2}}\cdot 79, 79\equiv 4 & \left( \bmod 25 \right), \\ \end{matrix} \\ & \begin{matrix} 661+55=716={{2}^{2}}\cdot 179, 179\equiv 14 & \left( \bmod 55 \right), \\ \end{matrix} \\ & 661+61=722=2\cdot {{19}^{2}}, \\ & 661+64=725={{5}^{2}}\cdot 29, \\ & 661+80=741=3\cdot 13\cdot 19, \\ \end{align}

    so both (1.6) and (1.7) have no positive integer solution (a, d, y, z) with ayz-661=b for b\in\{31, 44, 50, 55, 61, 64\} by Lemma 2.3 (i).

    Since

    \begin{align} & 661+47=708={{2}^{2}}\cdot 3\cdot 59, 661+59=720={{2}^{4}}\cdot {{3}^{2}}\cdot 5, 661+68=729={{3}^{6}}, \\ & 661+71=732={{2}^{2}}\cdot 3\cdot 61, 661+77=738=2\cdot {{3}^{2}}\cdot 41, \\ \end{align}

    by computing we know both (1.6) and (1.7) have no positive integer solution (a, d, y, z) with ayz-661=b for b\in\{47, 59, 68, 71, 77\}.

    Since 661+27=688=2^4\cdot43, 27\nmid x, for any

    x\in \{1+{{2}^{\alpha }}{{43}^{\beta }}, 43+{{2}^{\alpha }}, {{2}^{t}}+{{43}^{\beta }}\},

    where \alpha\in\{0, 1, 2, 3, 4\}, \beta\in\{0, 1, \}, t\in\{1, 2, 3, 4\}.661+75=736=2^5\cdot23, 75\nmid x, for any

    x\in \{1+{{2}^{\alpha }}{{23}^{\beta }}, 23+{{2}^{\alpha }}, {{2}^{t}}+{{23}^{\beta }}\},

    where \alpha\in\{0, 1, 2, 3, 4, 5\}, \beta\in\{0, 1, \}, t\in\{1, 2, 3, 4, 5\} so (1.6) has no positive integer solution (a, d, y, z) with ayz-661=b for b\in\{27, 75\} by Lemma 2.5.

    Since

    \begin{align} & \begin{matrix} 661+18=679=7\cdot 97, 7\equiv 97\equiv -2 & \left( \bmod 9 \right), \\ \end{matrix} \\ & \begin{matrix} 661+24=685=5\cdot 137, 5\equiv 137\equiv 1 & \left( \bmod 4 \right), \\ \end{matrix} \\ & \begin{matrix} 661+33=694=2\cdot 347, 347\equiv 6 & \left( \bmod 11 \right), \\ \end{matrix} \\ & \begin{matrix} 661+36=697=17\cdot 41, 17\equiv 41\equiv 1 & \left( \bmod 4 \right), \\ \end{matrix} \\ & \begin{matrix} 661+42=703=19\cdot 37, 19\equiv 37\equiv 1 & \left( \bmod 3 \right), \\ \end{matrix} \\ & \begin{matrix} 661+45=706=2\cdot 353, 353\equiv 2 & \left( \bmod 9 \right), \\ \end{matrix} \\ \end{align}

    so (1.6) has no positive integer solution (a, d, y, z) with ayz-661=b for b\in\{18, 24, 33, 36, 42, 45\} by Lemma 2.2 (ii).

    For any b=3t, 1\leq t<29, (1.7) has no positive integer solution (a, d, y, z) with ayz-661=b by Lemma 2.4.

    Since

    \begin{align} & 661+3={{2}^{3}}\cdot 83, 661+6=2\cdot {{3}^{2}}\cdot 37, 661+9=2\cdot 5\cdot 67, 661+15={{2}^{2}}\cdot {{13}^{2}}, \\ & \\ \end{align}
    661+21=2\cdot 11\cdot 31, 661+39={{2}^{2}}\cdot {{5}^{2}}\cdot 7, 661+51={{2}^{3}}\cdot 89,

    so by computing we get that (a, d, y, z)=

    (2, 29, 4, 83), (2, 112, 1, 332), (8, 28, 1, 83), (83, 3, 1, 8), (332, 1, 1, 2), (23, 5, 1, 29),

    (29, 4, 1, 23), (2, 8, 5, 67), (5, 15, 1, 134), (26, 1, 2, 13), (2, 2, 11, 31), (11, 3, 1, 62),

    (2, 1, 14, 25), (5, 1, 4, 35), (2, 7, 1, 356),

    are positive integer solutions of (1.6).

    We are now in a position to discuss

    b\in \{1, 2, 4, 5, 7, 8, 11, 13, 14, 16, 17, 19, 23, 25, 28, 29, 32, 35, 41, 43, 49, 53, 59, 65, 67, 74, 79\}.

    Since

    \begin{align} & 661+1=2\cdot 331, 661+2=3\cdot 13\cdot 17, 661+4=5\cdot 7\cdot 19, 661+5=2\cdot {{3}^{2}}\cdot 37, \\ & 661+7={{2}^{2}}\cdot 167, 661+8=3\cdot 223, 661+11={{2}^{5}}\cdot 3\cdot 7, 661+13=2\cdot 337, 661+14={{3}^{3}}\cdot {{5}^{2}} \\ & 661+16=677, 661+17=2\cdot 3\cdot 113, 661+19={{2}^{3}}\cdot 5\cdot 17, 661+23={{2}^{2}}\cdot {{3}^{2}}\cdot 19, \\ & 661+25=2\cdot {{7}^{3}}, 661+28=13\cdot 53, 661+29=2\cdot 3\cdot 5\cdot 23, 661+32={{3}^{2}}\cdot 7\cdot 11, \\ & 661+35={{2}^{3}}\cdot 3\cdot 29, 661+41=2\cdot {{3}^{3}}\cdot 13, 661+43={{2}^{6}}\cdot 11, 661+49=2\cdot 5\cdot 71, \\ & 661+53=2\cdot 3\cdot 7\cdot 17, 661+59={{2}^{4}}\cdot 5\cdot {{3}^{2}}, 661+65=2\cdot 3\cdot {{11}^{2}}, \\ & 661+67={{2}^{3}}\cdot 7\cdot 13, 661+74=3\cdot 5\cdot {{7}^{2}}, 661+79={{2}^{2}}\cdot 5\cdot 37, \\ \end{align}

    so by computing we get that (a, d, y, z)=

    (662, 2, 1, 1), (1, 663, 1, 662), (1, 333, 2, 331), (2, 332, 1, 331), (331, 3, 1, 2), (663, 1, 1, 1),

    (1, 332, 1, 663), (1, 112, 3, 221), (1, 32, 13, 51), (1, 28, 17, 39), (3, 111, 1, 221), (3, 14, 13, 17),

    (13, 26, 1, 51), (13, 10, 3, 17), (17, 20, 1, 39), (17, 8, 3, 13), (39, 9, 1, 17), (51, 7, 1, 13),

    (221, 2, 1, 3), (7, 6, 5, 19), (19, 3, 5, 7), (7, 24, 1, 95), (19, 9, 1, 35), (35, 5, 1, 19),

    (95, 2, 1, 7), (1, 11, 18, 37), (1, 67, 2, 333), (9, 15, 1, 74), (74, 2, 1, 9), (6, 8, 3, 37),

    (111, 1, 2, 3), (4, 24, 1, 167), (3, 28, 1, 223), (32, 2, 1, 21), (24, 1, 4, 7), (28, 1, 3, 8),

    (21, 3, 1, 32), (2, 26, 1, 337), (15, 1, 5, 9), (9, 2, 3, 25), (25, 2, 1, 27), (1, 7, 6, 113),

    (2, 20, 1, 339), (1, 3, 17, 40), (20, 1, 2, 17), (9, 1, 4, 19), (14, 2, 1, 49), (5, 1, 6, 23),

    (6, 4, 1, 115), (11, 2, 1, 63), (3, 1, 11, 21), (4, 1, 6, 29), (4, 5, 1, 174), (9, 1, 2, 39),

    (2, 1, 11, 32), (1, 3, 5, 142), (7, 1, 2, 51), (5, 2, 1, 147), (2, 1, 5, 74)

    are the solutions of (1.6) and (a, d, y, z)=

    (662, 4, 1, 1), (1, 337, 2, 331), (1, 665, 1, 662), (1, 1987, 662, 1), (1, 995, 331, 2), (2, 334, 1, 331),

    (2, 994, 331, 1), (331, 5, 1, 2), (331, 7, 2, 1), (663, 2, 1, 1), (1, 333, 1, 663), (1, 995, 663, 1),

    (1, 115, 3, 221), (1, 83, 51, 13), (1, 67, 39, 17), (3, 112, 1, 221), (3, 332, 221, 1), (3, 28, 13, 17),

    (3, 32, 17, 13), (13, 13, 3, 17), (17, 59, 39, 1), (17, 11, 3, 13), (39, 10, 1, 17), (39, 26, 17, 1),

    (51, 8, 1, 13), (51, 20, 13, 1), (221, 5, 3, 1), (1, 167, 1, 665), (665, 1, 1, 1), (1, 37, 5, 133),

    (1, 101, 133, 5), (1, 31, 35, 19), (1, 73, 95, 7), (5, 34, 1, 133), (5, 10, 7, 19), (5, 16, 19, 7),

    (133, 2, 1, 5), (5, 100, 133, 1), (333, 1, 1, 2), (18, 8, 1, 37), (222, 2, 3, 1), (3, 11, 6, 37),

    (3, 67, 111, 2), (37, 11, 18, 5), (2, 200, 333, 1), (334, 1, 2, 1), (167, 1, 1, 4), (1, 29, 3, 223),

    (6, 5, 16, 7), (8, 23, 84, 1), (84, 1, 1, 8), (96, 2, 7, 1), (112, 1, 3, 2), (45, 1, 3, 5),

    (27, 2, 1, 25), (75, 2, 9, 1), (1, 127, 677, 1), (3, 7, 2, 113), (6, 20, 113, 1), (34, 1, 5, 4),

    (4, 2, 9, 19), (13, 2, 1, 53), (15, 1, 2, 23), (9, 1, 7, 11), (33, 2, 21, 1), (12, 1, 2, 29),

    (12, 5, 58, 1), (3, 2, 4, 58), (27, 1, 13, 2), (26, 2, 27, 1), (8, 1, 18, 5), (2, 2, 3, 121),

    (2, 1, 13, 28), (15, 2, 49, 1)

    are the solutions of (1.7).

    We are now in a position to discuss b\in\{83, 86, 89\}.

    Since 661+83=2^3\cdot3\cdot31, 661+86=3^2\cdot83 so by computing we get that (a, d, y, z)=(1, 9, 1, 744), (9, 1, 1, 83) are solutions of (1.7).

    Since 661+89=2\cdot3\cdot5^3, so by computing we get that (1.7) has no positive integer solution.

    This finishes the proof of Theorem 1.3.


    6. Proof of Theorem 1.4

    If ay>2, then from ayz-661=\frac{661y+z}{d}<2z, we get that z\leq (ay-2)z<661 which contradicts with z>661y. Hence a=y=1 or a=1, y=2 or a=2, y=1.

    a=y=1 implies that (d-1)(z-661)=2\cdot661. So

    (d, z)=(2, 1983), (3, 1322), (662, 663), (1323, 662).

    a=1, y=2 implies that (2d-1)(2z-661)=5\cdot661. So

    (d, z)=(1, 1983), (3, 661), (331, 333), (1653, 331).

    a=2, y=1 implies that (2d-1)(2z-661)=3\cdot661. So

    (d, z)=(1, 1322), (2, 661), (331, 332), (992, 331).

    This concludes the proof of Theorem 1.4.


    Conflict of Interest

    All authors declare no conflicts of interest in this paper.


    [1] Z. Cao, An intruduction to Diophantine equations, Haerbin Industril university Press, 400 (1989).
    [2] N. Franceschine, Egyptian fractions, Sonoma State Coll., 1978.
    [3] Z. Ke, Q. Sun, X. Zhang, On the Diophantine equatins \frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}, J. Sichuan University (in Chinese), 3 (1964), 23-37.
    [4] Z. Ke, Q. Sun, Some conjecture and problem in Number Theorey, Chinese Journal of Nature (in Chinese), 7 (1979), 411-413.
    [5] Y. Liu, On a problem of unit fraction, J. Sichuan University (in Chinese), 2 (1984), 113-114.
    [6] Palama, Sull’s equarione diofantea \frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}, Boll. Union Mat. Ital, 13 (1958), 65-72.
    [7] Palama, Sull’s equarione diofantea \frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}, Boll. Union Mat. Ital, 14 (1959), 82-94.
    [8] L. A. Rosati, Sull’s equarione diofantea \frac{4}{b}=\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}, Boll. Union Mat. Ital, 9 (1954), 59-63.
    [9] B.M.Stewart, Theory of numbers, Macmillan, New York, (1964), 198-207.
    [10] Yamamoto, On the Diophantine equatins \frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}, K. Men. Fac. Sci. Kyushu University, Ser.A., 19 (1965), 37-47.
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4927) PDF downloads(1193) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog