Citation: Xiaodan Yuan, Jiagui Luo. On the Diophantine equation $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3p}$[J]. AIMS Mathematics, 2017, 2(1): 111-127. doi: 10.3934/Math.2017.1.111
[1] | Z. Cao, An intruduction to Diophantine equations, Haerbin Industril university Press, 400 (1989). |
[2] | N. Franceschine, Egyptian fractions, Sonoma State Coll., 1978. |
[3] | Z. Ke, Q. Sun, X. Zhang, On the Diophantine equatins $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$, J. Sichuan University (in Chinese), 3 (1964), 23-37. |
[4] | Z. Ke, Q. Sun, Some conjecture and problem in Number Theorey, Chinese Journal of Nature (in Chinese), 7 (1979), 411-413. |
[5] | Y. Liu, On a problem of unit fraction, J. Sichuan University (in Chinese), 2 (1984), 113-114. |
[6] | Palama, Sull’s equarione diofantea $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$, Boll. Union Mat. Ital, 13 (1958), 65-72. |
[7] | Palama, Sull’s equarione diofantea $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$, Boll. Union Mat. Ital, 14 (1959), 82-94. |
[8] | L. A. Rosati, Sull’s equarione diofantea $\frac{4}{b}=\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}$, Boll. Union Mat. Ital, 9 (1954), 59-63. |
[9] | B.M.Stewart, Theory of numbers, Macmillan, New York, (1964), 198-207. |
[10] | Yamamoto, On the Diophantine equatins $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$, K. Men. Fac. Sci. Kyushu University, Ser.A., 19 (1965), 37-47. |