Citation: Song-Tao Liu, Hang Zhang. The mitotic checkpoint complex (MCC): looking back and forth after 15 years[J]. AIMS Molecular Science, 2016, 3(4): 597-634. doi: 10.3934/molsci.2016.4.597
[1] | Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246: 629-634. doi: 10.1126/science.2683079 |
[2] | Li R, Murray AW (1991) Feedback control of mitosis in budding yeast. Cell 66: 519-531. doi: 10.1016/0092-8674(81)90015-5 |
[3] | Hoyt MA, Totis L, Roberts BT (1991) S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66: 507-517. |
[4] | Sudakin V, Ganoth D, Dahan A, et al. (1995) The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol Biol Cell 6: 185-197. doi: 10.1091/mbc.6.2.185 |
[5] | King RW, Peters JM, Tugendreich S, et al. (1995) A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81: 279-288. doi: 10.1016/0092-8674(95)90338-0 |
[6] | Irniger S, Piatti S, Michaelis C, et al. (1995) Genes involved in sister chromatid separation are needed for B-type cyclin proteolysis in budding yeast. Cell 81: 269-278. doi: 10.1016/0092-8674(95)90337-2 |
[7] | Tugendreich S, Tomkiel J, Earnshaw W, et al. (1995) CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell 81: 261-268. doi: 10.1016/0092-8674(95)90336-4 |
[8] | Cohen-Fix O, Peters JM, Kirschner MW, et al. (1996) Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev 10: 3081-3093. doi: 10.1101/gad.10.24.3081 |
[9] | Funabiki H, Kumada K, Yanagida M (1996) Fission yeast Cut1 and Cut2 are essential for sister chromatid separation, concentrate along the metaphase spindle and form large complexes. EMBO J 15: 6617-6628. |
[10] | Hwang LH, Lau LF, Smith DL, et al. (1998) Budding yeast Cdc20: a target of the spindle checkpoint. Science 279: 1041-1044. doi: 10.1126/science.279.5353.1041 |
[11] | He X, Patterson TE, Sazer S (1997) The Schizosaccharomyces pombe spindle checkpoint protein mad2p blocks anaphase and genetically interacts with the anaphase-promoting complex. Proc Natl Acad Sci U S A 94: 7965-7970. doi: 10.1073/pnas.94.15.7965 |
[12] | Li Y, Gorbea C, Mahaffey D, et al. (1997) MAD2 associates with the cyclosome/anaphase-promoting complex and inhibits its activity. Proc Natl Acad Sci U S A 94: 12431-12436. doi: 10.1073/pnas.94.23.12431 |
[13] | Fang G, Yu H, Kirschner MW (1998) The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev 12: 1871-1883. doi: 10.1101/gad.12.12.1871 |
[14] | Sudakin V, Chan GK, Yen TJ (2001) Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol 154: 925-936. doi: 10.1083/jcb.200102093 |
[15] | Hardwick KG, Johnston RC, Smith DL, et al. (2000) MAD3 encodes a novel component of the spindle checkpoint which interacts with Bub3p, Cdc20p, and Mad2p. J Cell Biol 148: 871-882. doi: 10.1083/jcb.148.5.871 |
[16] | Millband DN, Hardwick KG (2002) Fission yeast Mad3p is required for Mad2p to inhibit the anaphase-promoting complex and localizes to kinetochores in a Bub1p-, Bub3p-, and Mph1p-dependent manner. Mol Cell Biol 22: 2728-2742. doi: 10.1128/MCB.22.8.2728-2742.2002 |
[17] | Fraschini R, Beretta A, Sironi L, et al. (2001) Bub3 interaction with Mad2, Mad3 and Cdc20 is mediated by WD40 repeats and does not require intact kinetochores. Embo J 20: 6648-6659. doi: 10.1093/emboj/20.23.6648 |
[18] | Chen RH (2002) BubR1 is essential for kinetochore localization of other spindle checkpoint proteins and its phosphorylation requires Mad1. J Cell Biol 158: 487-496. doi: 10.1083/jcb.200204048 |
[19] | Chao WC, Kulkarni K, Zhang Z, et al. (2012) Structure of the mitotic checkpoint complex. Nature 484: 208-213. doi: 10.1038/nature10896 |
[20] | Alfieri C, Chang L, Zhang Z, et al. (2016) Molecular basis of APC/C regulation by the spindle assembly checkpoint. Nature 536: 431-436. doi: 10.1038/nature19083 |
[21] | Yamaguchi M, VanderLinden R, Weissmann F, et al. (2016) Cryo-EM of Mitotic Checkpoint Complex-Bound APC/C Reveals Reciprocal and Conformational Regulation of Ubiquitin Ligation. Mol Cell 63: 593-607. doi: 10.1016/j.molcel.2016.07.003 |
[22] | Sczaniecka M, Feoktistova A, May KM, et al. (2008) The spindle checkpoint functions of Mad3 and Mad2 depend on a Mad3 KEN box-mediated interaction with Cdc20-anaphase-promoting complex (APC/C). J Biol Chem 283: 23039-23047. doi: 10.1074/jbc.M803594200 |
[23] | Musacchio A (2015) The Molecular Biology of Spindle Assembly Checkpoint Signaling Dynamics. Curr Biol 25: R1002-1018. doi: 10.1016/j.cub.2015.08.051 |
[24] | Jia L, Kim S, Yu H (2013) Tracking spindle checkpoint signals from kinetochores to APC/C. Trends Biochem Sci 38 302-311. |
[25] | London N, Biggins S (2014) Signalling dynamics in the spindle checkpoint response. Nat Rev Mol Cell Biol 15: 736-747. doi: 10.1038/nrm3888 |
[26] | Foley EA, Kapoor TM (2013) Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol 14: 25-37. |
[27] | Lara-Gonzalez P, Westhorpe FG, Taylor SS (2012) The spindle assembly checkpoint. Curr Biol 22: R966-980. doi: 10.1016/j.cub.2012.10.006 |
[28] | Stukenberg PT, Burke DJ (2008) The role of the kinetochore in spindle checkpoint signaling. In: De Wulf P, Earnshaw, W.C., eds., editor. The Kinetochore: from Molecular Discoveries to Cancer Therapy. New York: Springer. |
[29] | Rieder CL, Cole RW, Khodjakov A, et al. (1995) The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J Cell Biol 130: 941-948. doi: 10.1083/jcb.130.4.941 |
[30] | Li X, Nicklas RB (1995) Mitotic forces control a cell-cycle checkpoint. Nature 373: 630-632. doi: 10.1038/373630a0 |
[31] | Weiss E, Winey M (1996) The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint. J Cell Biol 132: 111-123. doi: 10.1083/jcb.132.1.111 |
[32] | Suijkerbuijk SJ, van Dam TJ, Karagoz GE, et al. (2012) The vertebrate mitotic checkpoint protein BUBR1 is an unusual pseudokinase. Dev Cell 22: 1321-1329. doi: 10.1016/j.devcel.2012.03.009 |
[33] | Vleugel M, Hoogendoorn E, Snel B, et al. (2012) Evolution and function of the mitotic checkpoint. Dev Cell 23: 239-250. doi: 10.1016/j.devcel.2012.06.013 |
[34] | Guo Y, Kim C, Ahmad S, et al. (2012) CENP-E--dependent BubR1 autophosphorylation enhances chromosome alignment and the mitotic checkpoint. J Cell Biol 198: 205-217. doi: 10.1083/jcb.201202152 |
[35] | Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8: 379-393. |
[36] | Zachos G, Black EJ, Walker M, et al. (2007) Chk1 is required for spindle checkpoint function. Dev Cell 12: 247-260. doi: 10.1016/j.devcel.2007.01.003 |
[37] | Chan GK, Jablonski SA, Starr DA, et al. (2000) Human Zw10 and ROD are mitotic checkpoint proteins that bind to kinetochores. Nat Cell Biol 2: 944-947. doi: 10.1038/35046598 |
[38] | Yao X, Abrieu A, Zheng Y, et al. (2000) CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nat Cell Biol 2: 484-491. doi: 10.1038/35019518 |
[39] | Williams BC, Li Z, Liu S, et al. (2003) Zwilch, a New Component of the ZW10/ROD Complex Required for Kinetochore Functions. Mol Biol Cell 14: 1379-1391. doi: 10.1091/mbc.E02-09-0624 |
[40] | Montembault E, Dutertre S, Prigent C, et al. (2007) PRP4 is a spindle assembly checkpoint protein required for MPS1, MAD1, and MAD2 localization to the kinetochores. J Cell Biol 179: 601-609. doi: 10.1083/jcb.200703133 |
[41] | Santaguida S, Vernieri C, Villa F, et al. (2011) Evidence that Aurora B is implicated in spindle checkpoint signalling independently of error correction. Embo J 30: 1508-1519. doi: 10.1038/emboj.2011.70 |
[42] | Xia G, Luo X, Habu T, et al. (2004) Conformation-specific binding of p31(comet) antagonizes the function of Mad2 in the spindle checkpoint. Embo J 23: 3133-3143. doi: 10.1038/sj.emboj.7600322 |
[43] | Habu T, Kim SH, Weinstein J, et al. (2002) Identification of a MAD2-binding protein, CMT2, and its role in mitosis. Embo J 21: 6419-6428. doi: 10.1093/emboj/cdf659 |
[44] | Tipton AR, Wang K, Oladimeji P, et al. (2012) Identification of novel mitosis regulators through data mining with human centromere/kinetochore proteins as group queries. BMC Cell Biol 13: 15. doi: 10.1186/1471-2121-13-15 |
[45] | Wang K, Sturt-Gillespie B, Hittle JC, et al. (2014) Thyroid hormone receptor interacting protein 13 (TRIP13) AAA-ATPase is a novel mitotic checkpoint-silencing protein. J Biol Chem 289: 23928-23937. doi: 10.1074/jbc.M114.585315 |
[46] | Eytan E, Wang K, Miniowitz-Shemtov S, et al. (2014) Disassembly of mitotic checkpoint complexes by the joint action of the AAA-ATPase TRIP13 and p31(comet). Proc Natl Acad Sci U S A 111: 12019-12024. doi: 10.1073/pnas.1412901111 |
[47] | Gao YF, Li T, Chang Y, et al. (2011) Cdk1-phosphorylated CUEDC2 promotes spindle checkpoint inactivation and chromosomal instability. Nat Cell Biol 13: 924-933. doi: 10.1038/ncb2287 |
[48] | Mansfeld J, Collin P, Collins MO, et al. (2011) APC15 drives the turnover of MCC-CDC20 to make the spindle assembly checkpoint responsive to kinetochore attachment. Nat Cell Biol 13: 1234-1243. doi: 10.1038/ncb2347 |
[49] | Foster SA, Morgan DO (2012) The APC/C subunit Mnd2/Apc15 promotes Cdc20 autoubiquitination and spindle assembly checkpoint inactivation. Mol Cell 47: 921-932. doi: 10.1016/j.molcel.2012.07.031 |
[50] | Uzunova K, Dye BT, Schutz H, et al. (2012) APC15 mediates CDC20 autoubiquitylation by APC/C(MCC) and disassembly of the mitotic checkpoint complex. Nat Struct Mol Biol 19: 1116-1123. doi: 10.1038/nsmb.2412 |
[51] | Reddy SK, Rape M, Margansky WA, et al. (2007) Ubiquitination by the anaphase-promoting complex drives spindle checkpoint inactivation. Nature 446: 921-925. doi: 10.1038/nature05734 |
[52] | Stegmeier F, Rape M, Draviam VM, et al. (2007) Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature 446: 876-881. doi: 10.1038/nature05694 |
[53] | Garnett MJ, Mansfeld J, Godwin C, et al. (2009) UBE2S elongates ubiquitin chains on APC/C substrates to promote mitotic exit. Nat Cell Biol 11: 1363-1369. doi: 10.1038/ncb1983 |
[54] | Griffis ER, Stuurman N, Vale RD (2007) Spindly, a novel protein essential for silencing the spindle assembly checkpoint, recruits dynein to the kinetochore. J Cell Biol 177: 1005-1015. doi: 10.1083/jcb.200702062 |
[55] | Liu D, Vleugel M, Backer CB, et al. (2010) Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora B kinase. J Cell Biol 188: 809-820. doi: 10.1083/jcb.201001006 |
[56] | Rosenberg JS, Cross FR, Funabiki H (2011) KNL1/Spc105 recruits PP1 to silence the spindle assembly checkpoint. Curr Biol 21: 942-947. doi: 10.1016/j.cub.2011.04.011 |
[57] | Howell BJ, McEwen BF, Canman JC, et al. (2001) Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J Cell Biol 155: 1159-1172. doi: 10.1083/jcb.200105093 |
[58] | Foley EA, Maldonado M, Kapoor TM (2011) Formation of stable attachments between kinetochores and microtubules depends on the B56-PP2A phosphatase. Nat Cell Biol 13: 1265-1271. doi: 10.1038/ncb2327 |
[59] | Suijkerbuijk SJ, Vleugel M, Teixeira A, et al. (2012) Integration of kinase and phosphatase activities by BUBR1 ensures formation of stable kinetochore-microtubule attachments. Dev Cell 23: 745-755. doi: 10.1016/j.devcel.2012.09.005 |
[60] | Pinsky BA, Biggins S (2005) The spindle checkpoint: tension versus attachment. Trends Cell Biol 15: 486-493. doi: 10.1016/j.tcb.2005.07.005 |
[61] | King JM, Nicklas RB (2000) Tension on chromosomes increases the number of kinetochore microtubules but only within limits. J Cell Sci 113 Pt 21: 3815-3823. |
[62] | Wilson L, Jordan MA (1995) Microtubule dynamics: taking aim at a moving target. Chem Biol 2: 569-573. doi: 10.1016/1074-5521(95)90119-1 |
[63] | Wilson L, Panda D, Jordan MA (1999) Modulation of microtubule dynamics by drugs: a paradigm for the actions of cellular regulators. Cell Struct Funct 24: 329-335. doi: 10.1247/csf.24.329 |
[64] | Skoufias DA, Andreassen PR, Lacroix FB, et al. (2001) Mammalian mad2 and bub1/bubR1 recognize distinct spindle-attachment and kinetochore-tension checkpoints. Proc Natl Acad Sci U S A 98: 4492-4497. doi: 10.1073/pnas.081076898 |
[65] | Kapoor TM, Mayer TU, Coughlin ML, et al. (2000) Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J Cell Biol 150: 975-988. doi: 10.1083/jcb.150.5.975 |
[66] | Collin P, Nashchekina O, Walker R, et al. (2013) The spindle assembly checkpoint works like a rheostat rather than a toggle switch. Nat Cell Biol 15: 1378-1385. doi: 10.1038/ncb2855 |
[67] | Dick AE, Gerlich DW (2013) Kinetic framework of spindle assembly checkpoint signalling. Nat Cell Biol 15: 1370-1377. doi: 10.1038/ncb2842 |
[68] | Chen RH, Waters JC, Salmon ED, et al. (1996) Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science 274: 242-246. doi: 10.1126/science.274.5285.242 |
[69] | Li Y, Benezra R (1996) Identification of a human mitotic checkpoint gene: hsMAD2. Science 274: 246-248. doi: 10.1126/science.274.5285.246 |
[70] | Mao Y, Abrieu A, Cleveland DW (2003) Activating and silencing the mitotic checkpoint through CENP-E-dependent activation/inactivation of BubR1. Cell 114: 87-98. doi: 10.1016/S0092-8674(03)00475-6 |
[71] | Ji Z, Gao H, Yu H (2015) CELL DIVISION CYCLE. Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80C. Science 348: 1260-1264. |
[72] | Hiruma Y, Sacristan C, Pachis ST, et al. (2015) CELL DIVISION CYCLE. Competition between MPS1 and microtubules at kinetochores regulates spindle checkpoint signaling. Science 348: 1264-1267. |
[73] | Aravamudhan P, Goldfarb AA, Joglekar AP (2015) The kinetochore encodes a mechanical switch to disrupt spindle assembly checkpoint signalling. Nat Cell Biol 17: 868-879. doi: 10.1038/ncb3179 |
[74] | Luo X, Yu H (2008) Protein metamorphosis: the two-state behavior of Mad2. Structure 16: 1616-1625. doi: 10.1016/j.str.2008.10.002 |
[75] | Mapelli M, Musacchio A (2007) MAD contortions: conformational dimerization boosts spindle checkpoint signaling. Curr Opin Struct Biol 17: 716-725. doi: 10.1016/j.sbi.2007.08.011 |
[76] | Peters JM (2006) The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 7: 644-656. |
[77] | Barford D (2011) Structural insights into anaphase-promoting complex function and mechanism. Philos Trans R Soc Lond B Biol Sci 366: 3605-3624. doi: 10.1098/rstb.2011.0069 |
[78] | Chang L, Barford D (2014) Insights into the anaphase-promoting complex: a molecular machine that regulates mitosis. Curr Opin Struct Biol 29: 1-9. |
[79] | Qiao R, Weissmann F, Yamaguchi M, et al. (2016) Mechanism of APC/CCDC20 activation by mitotic phosphorylation. Proc Natl Acad Sci U S A 113: E2570-2578. doi: 10.1073/pnas.1604929113 |
[80] | Zhang S, Chang L, Alfieri C, et al. (2016) Molecular mechanism of APC/C activation by mitotic phosphorylation. Nature 533: 260-264. doi: 10.1038/nature17973 |
[81] | Steen JA, Steen H, Georgi A, et al. (2008) Different phosphorylation states of the anaphase promoting complex in response to antimitotic drugs: a quantitative proteomic analysis. Proc Natl Acad Sci U S A 105: 6069-6074. doi: 10.1073/pnas.0709807104 |
[82] | Fujimitsu K, Grimaldi M, Yamano H (2016) Cyclin-dependent kinase 1-dependent activation of APC/C ubiquitin ligase. Science 352: 1121-1124. doi: 10.1126/science.aad3925 |
[83] | Kimata Y, Baxter JE, Fry AM, et al. (2008) A role for the Fizzy/Cdc20 family of proteins in activation of the APC/C distinct from substrate recruitment. Mol Cell 32: 576-583. doi: 10.1016/j.molcel.2008.09.023 |
[84] | Glotzer M, Murray AW, Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349: 132-138. doi: 10.1038/349132a0 |
[85] | Pfleger CM, Kirschner MW (2000) The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev 14: 655-665. |
[86] | Di Fiore B, Davey NE, Hagting A, et al. (2015) The ABBA motif binds APC/C activators and is shared by APC/C substrates and regulators. Dev Cell 32: 358-372. doi: 10.1016/j.devcel.2015.01.003 |
[87] | Reis A, Levasseur M, Chang HY, et al. (2006) The CRY box: a second APCcdh1-dependent degron in mammalian cdc20. EMBO Rep 7: 1040-1045. doi: 10.1038/sj.embor.7400772 |
[88] | Burton JL, Xiong Y, Solomon MJ (2011) Mechanisms of pseudosubstrate inhibition of the anaphase promoting complex by Acm1. EMBO J 30: 1818-1829. doi: 10.1038/emboj.2011.90 |
[89] | Diaz-Martinez LA, Tian W, Li B, et al. (2015) The Cdc20-binding Phe box of the spindle checkpoint protein BubR1 maintains the mitotic checkpoint complex during mitosis. J Biol Chem 290: 2431-2443. doi: 10.1074/jbc.M114.616490 |
[90] | Lischetti T, Zhang G, Sedgwick GG, et al. (2014) The internal Cdc20 binding site in BubR1 facilitates both spindle assembly checkpoint signalling and silencing. Nat Commun 5: 5563. doi: 10.1038/ncomms6563 |
[91] | Elowe S, Dulla K, Uldschmid A, et al. (2010) Uncoupling of the spindle-checkpoint and chromosome-congression functions of BubR1. J Cell Sci 123: 84-94. doi: 10.1242/jcs.056507 |
[92] | Morgan DO (2016) Cell division: Mitotic regulation comes into focus. Nature 536: 407-408. doi: 10.1038/nature19423 |
[93] | Tipton AR, Wang K, Link L, et al. (2011) BUBR1 and Closed MAD2 (C-MAD2) Interact Directly to Assemble a Functional Mitotic Checkpoint Complex. J Biol Chem 286: 21173-21179. doi: 10.1074/jbc.M111.238543 |
[94] | Izawa D, Pines J (2015) The mitotic checkpoint complex binds a second CDC20 to inhibit active APC/C. Nature 517: 631-634. |
[95] | Lara-Gonzalez P, Scott MI, Diez M, et al. (2011) BubR1 blocks substrate recruitment to the APC/C in a KEN-box-dependent manner. J Cell Sci 124: 4332-4345. doi: 10.1242/jcs.094763 |
[96] | Larsen NA, Al-Bassam J, Wei RR, et al. (2007) Structural analysis of Bub3 interactions in the mitotic spindle checkpoint. Proc Natl Acad Sci U S A 104: 1201-1206. doi: 10.1073/pnas.0610358104 |
[97] | Larsen NA, Harrison SC (2004) Crystal structure of the spindle assembly checkpoint protein Bub3. J Mol Biol 344: 885-892. doi: 10.1016/j.jmb.2004.09.094 |
[98] | Primorac I, Weir JR, Chiroli E, et al. (2013) Bub3 reads phosphorylated MELT repeats to promote spindle assembly checkpoint signaling. Elife 2: e01030. |
[99] | Overlack K, Primorac I, Vleugel M, et al. (2015) A molecular basis for the differential roles of Bub1 and BubR1 in the spindle assembly checkpoint. Elife 4: e05269. |
[100] | Taylor SS, Ha E, McKeon F (1998) The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J Cell Biol 142: 1-11. doi: 10.1083/jcb.142.1.1 |
[101] | Yu H (2007) Cdc20: a WD40 activator for a cell cycle degradation machine. Mol Cell 27: 3-16. doi: 10.1016/j.molcel.2007.06.009 |
[102] | Visintin R, Prinz S, Amon A (1997) CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 278: 460-463. doi: 10.1126/science.278.5337.460 |
[103] | Schwab M, Lutum AS, Seufert W (1997) Yeast Hct1 is a regulator of Clb2 cyclin proteolysis. Cell 90: 683-693. doi: 10.1016/S0092-8674(00)80529-2 |
[104] | Tian W, Li B, Warrington R, et al. (2012) Structural analysis of human Cdc20 supports multisite degron recognition by APC/C. Proc Natl Acad Sci U S A 109: 18419-18424. doi: 10.1073/pnas.1213438109 |
[105] | He J, Chao WC, Zhang Z, et al. (2013) Insights into degron recognition by APC/C coactivators from the structure of an Acm1-Cdh1 complex. Mol Cell 50: 649-660. doi: 10.1016/j.molcel.2013.04.024 |
[106] | Chang L, Zhang Z, Yang J, et al. (2014) Molecular architecture and mechanism of the anaphase-promoting complex. Nature 513: 388-393. doi: 10.1038/nature13543 |
[107] | Buschhorn BA, Petzold G, Galova M, et al. (2011) Substrate binding on the APC/C occurs between the coactivator Cdh1 and the processivity factor Doc1. Nat Struct Mol Biol 18: 6-13. doi: 10.1038/nsmb.1979 |
[108] | da Fonseca PC, Kong EH, Zhang Z, et al. (2011) Structures of APC/C(Cdh1) with substrates identify Cdh1 and Apc10 as the D-box co-receptor. Nature 470: 274-278. doi: 10.1038/nature09625 |
[109] | Izawa D, Pines J (2011) How APC/C-Cdc20 changes its substrate specificity in mitosis. Nat Cell Biol 13: 223-233. doi: 10.1038/ncb2165 |
[110] | Schwab M, Neutzner M, Mocker D, et al. (2001) Yeast Hct1 recognizes the mitotic cyclin Clb2 and other substrates of the ubiquitin ligase APC. Embo J 20: 5165-5175. doi: 10.1093/emboj/20.18.5165 |
[111] | Vodermaier HC, Gieffers C, Maurer-Stroh S, et al. (2003) TPR subunits of the anaphase-promoting complex mediate binding to the activator protein CDH1. Curr Biol 13: 1459-1468. doi: 10.1016/S0960-9822(03)00581-5 |
[112] | Luo X, Tang Z, Rizo J, et al. (2002) The Mad2 spindle checkpoint protein undergoes similar major conformational changes upon binding to either Mad1 or Cdc20. Mol Cell 9: 59-71. doi: 10.1016/S1097-2765(01)00435-X |
[113] | Izawa D, Pines J (2012) Mad2 and the APC/C compete for the same site on Cdc20 to ensure proper chromosome segregation. J Cell Biol 199: 27-37. doi: 10.1083/jcb.201205170 |
[114] | Mondal G, Baral RN, Roychoudhury S (2006) A new Mad2-interacting domain of Cdc20 is critical for the function of Mad2-Cdc20 complex in the spindle assembly checkpoint. Biochem J 396: 243-253. doi: 10.1042/BJ20051914 |
[115] | Aravind L, Koonin EV (1998) The HORMA domain: a common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair. Trends Biochem Sci 23: 284-286. |
[116] | Luo X, Tang Z, Xia G, et al. (2004) The Mad2 spindle checkpoint protein has two distinct natively folded states. Nat Struct Mol Biol 11: 338-345. doi: 10.1038/nsmb748 |
[117] | Sironi L, Mapelli M, Knapp S, et al. (2002) Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a 'safety belt' binding mechanism for the spindle checkpoint. Embo J 21: 2496-2506. doi: 10.1093/emboj/21.10.2496 |
[118] | Sironi L, Melixetian M, Faretta M, et al. (2001) Mad2 binding to Mad1 and Cdc20, rather than oligomerization, is required for the spindle checkpoint. Embo J 20: 6371-6382. doi: 10.1093/emboj/20.22.6371 |
[119] | Luo X, Fang G, Coldiron M, et al. (2000) Structure of the Mad2 spindle assembly checkpoint protein and its interaction with Cdc20. Nat Struct Biol 7: 224-229. doi: 10.1038/73338 |
[120] | Orth M, Mayer B, Rehm K, et al. (2011) Shugoshin is a Mad1/Cdc20-like interactor of Mad2. Embo J 30: 2868-2880. doi: 10.1038/emboj.2011.187 |
[121] | Lee SH, McCormick F, Saya H (2010) Mad2 inhibits the mitotic kinesin MKlp2. J Cell Biol 191: 1069-1077. doi: 10.1083/jcb.201003095 |
[122] | Schibler A, Koutelou E, Tomida J, et al. (2016) Histone H3K4 methylation regulates deactivation of the spindle assembly checkpoint through direct binding of Mad2. Genes Dev 30: 1187-1197. |
[123] | Mapelli M, Massimiliano L, Santaguida S, et al. (2007) The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint. Cell 131: 730-743. doi: 10.1016/j.cell.2007.08.049 |
[124] | Yang M, Li B, Tomchick DR, et al. (2007) p31comet blocks Mad2 activation through structural mimicry. Cell 131: 744-755. doi: 10.1016/j.cell.2007.08.048 |
[125] | Yang M, Li B, Liu CJ, et al. (2008) Insights into mad2 regulation in the spindle checkpoint revealed by the crystal structure of the symmetric mad2 dimer. PLoS Biol 6: e50. doi: 10.1371/journal.pbio.0060050 |
[126] | Skinner JJ, Wood S, Shorter J, et al. (2008) The Mad2 partial unfolding model: regulating mitosis through Mad2 conformational switching. J Cell Biol 183: 761-768. doi: 10.1083/jcb.200808122 |
[127] | De Antoni A, Pearson CG, Cimini D, et al. (2005) The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint. Curr Biol 15: 214-225. doi: 10.1016/j.cub.2005.01.038 |
[128] | Campbell MS, Chan GK, Yen TJ (2001) Mitotic checkpoint proteins HsMAD1 and HsMAD2 are associated with nuclear pore complexes in interphase. J Cell Sci 114: 953-963. |
[129] | Chen RH, Brady DM, Smith D, et al. (1999) The spindle checkpoint of budding yeast depends on a tight complex between the Mad1 and Mad2 proteins. Mol Biol Cell 10: 2607-2618. doi: 10.1091/mbc.10.8.2607 |
[130] | Martin-Lluesma S, Stucke VM, Nigg EA (2002) Role of hec1 in spindle checkpoint signaling and kinetochore recruitment of mad1/mad2. Science 297: 2267-2270. doi: 10.1126/science.1075596 |
[131] | Hewitt L, Tighe A, Santaguida S, et al. (2010) Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1-C-Mad2 core complex. J Cell Biol 190: 25-34. doi: 10.1083/jcb.201002133 |
[132] | Tipton AR, Ji W, Sturt-Gillespie B, et al. (2013) Monopolar Spindle 1 (MPS1) Kinase Promotes Production of Closed MAD2 (C-MAD2) Conformer and Assembly of the Mitotic Checkpoint Complex. J Biol Chem 288: 35149-35158. doi: 10.1074/jbc.M113.522375 |
[133] | Liu ST, Chan GK, Hittle JC, et al. (2003) Human MPS1 Kinase Is Required for Mitotic Arrest Induced by the Loss of CENP-E from Kinetochores. Mol Biol Cell 14: 1638-1651. doi: 10.1091/mbc.02-05-0074 |
[134] | Liu ST, Hittle JC, Jablonski SA, et al. (2003) Human CENP-I specifies localization of CENP-F, MAD1 and MAD2 to kinetochores and is essential for mitosis. Nat Cell Biol 5: 341-345. doi: 10.1038/ncb953 |
[135] | Liu ST, Rattner JB, Jablonski SA, et al. (2006) Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J Cell Biol 175: 41-53. doi: 10.1083/jcb.200606020 |
[136] | Tipton AR, Tipton M, Yen T, et al. (2011) Closed MAD2 (C-MAD2) is selectively incorporated into the mitotic checkpoint complex (MCC). Cell Cycle 10: 3740-3750. doi: 10.4161/cc.10.21.17919 |
[137] | Tang Z, Bharadwaj R, Li B, et al. (2001) Mad2-Independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev Cell 1: 227-237. doi: 10.1016/S1534-5807(01)00019-3 |
[138] | Fang G (2002) Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol Biol Cell 13: 755-766. doi: 10.1091/mbc.01-09-0437 |
[139] | Kulukian A, Han JS, Cleveland DW (2009) Unattached kinetochores catalyze production of an anaphase inhibitor that requires a Mad2 template to prime Cdc20 for BubR1 binding. Dev Cell 16: 105-117. doi: 10.1016/j.devcel.2008.11.005 |
[140] | Han JS, Holland AJ, Fachinetti D, et al. (2013) Catalytic Assembly of the Mitotic Checkpoint Inhibitor BubR1-Cdc20 by a Mad2-Induced Functional Switch in Cdc20. Mol Cell 51: 92-104. doi: 10.1016/j.molcel.2013.05.019 |
[141] | Westhorpe FG, Tighe A, Lara-Gonzalez P, et al. (2011) p31comet-mediated extraction of Mad2 from the MCC promotes efficient mitotic exit. J Cell Sci 124: 3905-3916. doi: 10.1242/jcs.093286 |
[142] | Miller JJ, Summers MK, Hansen DV, et al. (2006) Emi1 stably binds and inhibits the anaphase-promoting complex/cyclosome as a pseudosubstrate inhibitor. Genes Dev 20: 2410-2420. doi: 10.1101/gad.1454006 |
[143] | Eytan E, Braunstein I, Ganoth D, et al. (2008) Two different mitotic checkpoint inhibitors of the anaphase-promoting complex/cyclosome antagonize the action of the activator Cdc20. Proc Natl Acad Sci U S A 105: 9181-9185. doi: 10.1073/pnas.0804069105 |
[144] | Poddar A, Stukenberg PT, Burke DJ (2005) Two complexes of spindle checkpoint proteins containing Cdc20 and Mad2 assemble during mitosis independently of the kinetochore in Saccharomyces cerevisiae. Eukaryot Cell 4: 867-878. doi: 10.1128/EC.4.5.867-878.2005 |
[145] | Weinstein J (1997) Cell cycle-regulated expression, phosphorylation, and degradation of p55Cdc. A mammalian homolog of CDC20/Fizzy/slp1. J Biol Chem 272: 28501-28511. |
[146] | Wolthuis R, Clay-Farrace L, van Zon W, et al. (2008) Cdc20 and Cks direct the spindle checkpoint-independent destruction of cyclin A. Mol Cell 30: 290-302. doi: 10.1016/j.molcel.2008.02.027 |
[147] | Malureanu LA, Jeganathan KB, Hamada M, et al. (2009) BubR1 N terminus acts as a soluble inhibitor of cyclin B degradation by APC/C(Cdc20) in interphase. Dev Cell 16: 118-131. doi: 10.1016/j.devcel.2008.11.004 |
[148] | Ma HT, Poon RY (2011) Orderly inactivation of the key checkpoint protein mitotic arrest deficient 2 (MAD2) during mitotic progression. J Biol Chem 286: 13052-13059. doi: 10.1074/jbc.M110.201897 |
[149] | Michel LS, Liberal V, Chatterjee A, et al. (2001) MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409: 355-359. doi: 10.1038/35053094 |
[150] | Hernando E, Nahle Z, Juan G, et al. (2004) Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 430: 797-802. doi: 10.1038/nature02820 |
[151] | Schvartzman JM, Duijf PH, Sotillo R, et al. (2011) Mad2 is a critical mediator of the chromosome instability observed upon Rb and p53 pathway inhibition. Cancer Cell 19: 701-714. doi: 10.1016/j.ccr.2011.04.017 |
[152] | Herzog F, Primorac I, Dube P, et al. (2009) Structure of the anaphase-promoting complex/cyclosome interacting with a mitotic checkpoint complex. Science 323: 1477-1481. doi: 10.1126/science.1163300 |
[153] | Kramer ER, Scheuringer N, Podtelejnikov AV, et al. (2000) Mitotic regulation of the APC activator proteins CDC20 and CDH1. Mol Biol Cell 11: 1555-1569. doi: 10.1091/mbc.11.5.1555 |
[154] | Simonetta M, Manzoni R, Mosca R, et al. (2009) The influence of catalysis on mad2 activation dynamics. PLoS Biol 7: e10. |
[155] | Nilsson J, Yekezare M, Minshull J, et al. (2008) The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction. Nat Cell Biol 10: 1411-1420. doi: 10.1038/ncb1799 |
[156] | Kallio M, Weinstein J, Daum JR, et al. (1998) Mammalian p55CDC mediates association of the spindle checkpoint protein Mad2 with the cyclosome/anaphase-promoting complex, and is involved in regulating anaphase onset and late mitotic events. J Cell Biol 141: 1393-1406. doi: 10.1083/jcb.141.6.1393 |
[157] | Diaz-Martinez LA, Yu H (2007) Running on a treadmill: dynamic inhibition of APC/C by the spindle checkpoint. Cell Div 2: 23. doi: 10.1186/1747-1028-2-23 |
[158] | Fava LL, Kaulich M, Nigg EA, et al. (2011) Probing the in vivo function of Mad1:C-Mad2 in the spindle assembly checkpoint. Embo J 30: 3322-3336. doi: 10.1038/emboj.2011.239 |
[159] | Sedgwick GG, Larsen MS, Lischetti T, et al. (2016) Conformation-specific anti-Mad2 monoclonal antibodies for the dissection of checkpoint signaling. MAbs 8: 689-697. doi: 10.1080/19420862.2016.1160988 |
[160] | Davenport J, Harris LD, Goorha R (2006) Spindle checkpoint function requires Mad2-dependent Cdc20 binding to the Mad3 homology domain of BubR1. Exp Cell Res 312: 1831-1842. doi: 10.1016/j.yexcr.2006.02.018 |
[161] | Murray AW, Kirschner MW (1989) Dominoes and clocks: the union of two views of the cell cycle. Science 246: 614-621. doi: 10.1126/science.2683077 |
[162] | Meraldi P, Draviam VM, Sorger PK (2004) Timing and checkpoints in the regulation of mitotic progression. Dev Cell 7: 45-60. doi: 10.1016/j.devcel.2004.06.006 |
[163] | Waters JC, Chen RH, Murray AW, et al. (1998) Localization of Mad2 to kinetochores depends on microtubule attachment, not tension. J Cell Biol 141: 1181-1191. doi: 10.1083/jcb.141.5.1181 |
[164] | Hauf S, Cole RW, LaTerra S, et al. (2003) The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 161: 281-294. doi: 10.1083/jcb.200208092 |
[165] | Canman JC, Sharma N, Straight A, et al. (2002) Anaphase onset does not require the microtubule-dependent depletion of kinetochore and centromere-binding proteins. J Cell Sci 115: 3787-3795. doi: 10.1242/jcs.00057 |
[166] | Ma HT, Chan YY, Chen X, et al. (2012) Depletion of p31comet protein promotes sensitivity to antimitotic drugs. J Biol Chem 287: 21561-21569. doi: 10.1074/jbc.M112.364356 |
[167] | Brown NG, VanderLinden R, Watson ER, et al. (2016) Dual RING E3 Architectures Regulate Multiubiquitination and Ubiquitin Chain Elongation by APC/C. Cell 165: 1440-1453. doi: 10.1016/j.cell.2016.05.037 |
[168] | Brown NG, Watson ER, Weissmann F, et al. (2014) Mechanism of polyubiquitination by human anaphase-promoting complex: RING repurposing for ubiquitin chain assembly. Mol Cell 56: 246-260. doi: 10.1016/j.molcel.2014.09.009 |
[169] | Primorac I, Musacchio A (2013) Panta rhei: the APC/C at steady state. J Cell Biol 201: 177-189. doi: 10.1083/jcb.201301130 |
[170] | Jin L, Williamson A, Banerjee S, et al. (2008) Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133: 653-665. doi: 10.1016/j.cell.2008.04.012 |
[171] | Williamson A, Wickliffe KE, Mellone BG, et al. (2009) Identification of a physiological E2 module for the human anaphase-promoting complex. Proc Natl Acad Sci U S A 106: 18213-18218. doi: 10.1073/pnas.0907887106 |
[172] | Dimova NV, Hathaway NA, Lee BH, et al. (2012) APC/C-mediated multiple monoubiquitylation provides an alternative degradation signal for cyclin B1. Nat Cell Biol 14: 168-176. doi: 10.1038/ncb2425 |
[173] | Meyer HJ, Rape M (2014) Enhanced protein degradation by branched ubiquitin chains. Cell 157: 910-921. doi: 10.1016/j.cell.2014.03.037 |
[174] | Tang Z, Li B, Bharadwaj R, et al. (2001) APC2 Cullin protein and APC11 RING protein comprise the minimal ubiquitin ligase module of the anaphase-promoting complex. Mol Biol Cell 12: 3839-3851. doi: 10.1091/mbc.12.12.3839 |
[175] | Brown NG, VanderLinden R, Watson ER, et al. (2015) RING E3 mechanism for ubiquitin ligation to a disordered substrate visualized for human anaphase-promoting complex. Proc Natl Acad Sci U S A 112: 5272-5279. doi: 10.1073/pnas.1504161112 |
[176] | Fang G, Yu H, Kirschner MW (1998) Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and G1. Mol Cell 2: 163-171. doi: 10.1016/S1097-2765(00)80126-4 |
[177] | Chang L, Zhang Z, Yang J, et al. (2015) Atomic structure of the APC/C and its mechanism of protein ubiquitination. Nature 522: 450-454. doi: 10.1038/nature14471 |
[178] | Kelly A, Wickliffe KE, Song L, et al. (2014) Ubiquitin chain elongation requires E3-dependent tracking of the emerging conjugate. Mol Cell 56: 232-245. doi: 10.1016/j.molcel.2014.09.010 |
[179] | Braunstein I, Miniowitz S, Moshe Y, et al. (2007) Inhibitory factors associated with anaphase-promoting complex/cylosome in mitotic checkpoint. Proc Natl Acad Sci U S A 104: 4870-4875. doi: 10.1073/pnas.0700523104 |
[180] | Miniowitz-Shemtov S, Teichner A, Sitry-Shevah D, et al. (2010) ATP is required for the release of the anaphase-promoting complex/cyclosome from inhibition by the mitotic checkpoint. Proc Natl Acad Sci U S A 107: 5351-5356. doi: 10.1073/pnas.1001875107 |
[181] | Pan J, Chen RH (2004) Spindle checkpoint regulates Cdc20p stability in Saccharomyces cerevisiae. Genes Dev 18: 1439-1451. doi: 10.1101/gad.1184204 |
[182] | Foe IT, Foster SA, Cheung SK, et al. (2011) Ubiquitination of Cdc20 by the APC occurs through an intramolecular mechanism. Curr Biol 21: 1870-1877. doi: 10.1016/j.cub.2011.09.051 |
[183] | Ge S, Skaar JR, Pagano M (2009) APC/C- and Mad2-mediated degradation of Cdc20 during spindle checkpoint activation. Cell Cycle 8: 167-171. doi: 10.4161/cc.8.1.7606 |
[184] | Jia L, Li B, Warrington RT, et al. (2011) Defining pathways of spindle checkpoint silencing: functional redundancy between Cdc20 ubiquitination and p31(comet). Mol Biol Cell 22: 4227-4235. doi: 10.1091/mbc.E11-05-0389 |
[185] | Varetti G, Guida C, Santaguida S, et al. (2011) Homeostatic control of mitotic arrest. Mol Cell 44: 710-720. doi: 10.1016/j.molcel.2011.11.014 |
[186] | King EM, van der Sar SJ, Hardwick KG (2007) Mad3 KEN boxes mediate both Cdc20 and Mad3 turnover, and are critical for the spindle checkpoint. PLoS ONE 2: e342. doi: 10.1371/journal.pone.0000342 |
[187] | Zhang Y, Foreman O, Wigle DA, et al. (2012) USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis. J Clin Invest 122: 4362-4374. doi: 10.1172/JCI63084 |
[188] | Zhang Y, van Deursen J, Galardy PJ (2011) Overexpression of ubiquitin specific protease 44 (USP44) induces chromosomal instability and is frequently observed in human T-cell leukemia. PLoS One 6: e23389. doi: 10.1371/journal.pone.0023389 |
[189] | Kim S, Yu H (2011) Mutual regulation between the spindle checkpoint and APC/C. Semin Cell Dev Biol 22: 551-558. doi: 10.1016/j.semcdb.2011.03.008 |
[190] | Zeng X, Sigoillot F, Gaur S, et al. (2010) Pharmacologic inhibition of the anaphase-promoting complex induces a spindle checkpoint-dependent mitotic arrest in the absence of spindle damage. Cancer Cell 18: 382-395. doi: 10.1016/j.ccr.2010.08.010 |
[191] | Bezler A, Gonczy P (2010) Mutual antagonism between the anaphase promoting complex and the spindle assembly checkpoint contributes to mitotic timing in Caenorhabditis elegans. Genetics 186: 1271-1283. doi: 10.1534/genetics.110.123133 |
[192] | Chesnel F, Bazile F, Pascal A, et al. (2006) Cyclin B dissociation from CDK1 precedes its degradation upon MPF inactivation in mitotic extracts of Xenopus laevis embryos. Cell Cycle 5: 1687-1698. doi: 10.4161/cc.5.15.3123 |
[193] | Holt LJ, Krutchinsky AN, Morgan DO (2008) Positive feedback sharpens the anaphase switch. Nature 454: 353-357. doi: 10.1038/nature07050 |
[194] | Ye Q, Rosenberg SC, Moeller A, et al. (2015) TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching. Elife 4. |
[195] | Vader G (2015) Pch2(TRIP13): controlling cell division through regulation of HORMA domains. Chromosoma 124: 333-339. doi: 10.1007/s00412-015-0516-y |
[196] | Musacchio A (2015) Closing the Mad2 cycle. Elife 4. |
[197] | Verdugo A, Vinod PK, Tyson JJ, et al. (2013) Molecular mechanisms creating bistable switches at cell cycle transitions. Open Biol 3: 120179. doi: 10.1098/rsob.120179 |
[198] | Hauf S (2013) The spindle assembly checkpoint: progress and persistent puzzles. Biochem Soc Trans 41: 1755-1760. doi: 10.1042/BST20130240 |
[199] | Hagan RS, Manak MS, Buch HK, et al. (2011) p31(comet) acts to ensure timely spindle checkpoint silencing subsequent to kinetochore attachment. Mol Biol Cell 22: 4236-4246. doi: 10.1091/mbc.E11-03-0216 |
[200] | Teichner A, Eytan E, Sitry-Shevah D, et al. (2011) p31comet promotes disassembly of the mitotic checkpoint complex in an ATP-dependent process. Proc Natl Acad Sci U S A 108: 3187-3192. doi: 10.1073/pnas.1100023108 |
[201] | Miniowitz-Shemtov S, Eytan E, Ganoth D, et al. (2012) Role of phosphorylation of Cdc20 in p31(comet)-stimulated disassembly of the mitotic checkpoint complex. Proc Natl Acad Sci U S A 109: 8056-8060. doi: 10.1073/pnas.1204081109 |
[202] | Carter SL, Eklund AC, Kohane IS, et al. (2006) A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 38: 1043-1048. doi: 10.1038/ng1861 |
[203] | Martin KJ, Patrick DR, Bissell MJ, et al. (2008) Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets. PLoS ONE 3: e2994. doi: 10.1371/journal.pone.0002994 |
[204] | Rhodes DR, Yu J, Shanker K, et al. (2004) Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci U S A 101: 9309-9314. doi: 10.1073/pnas.0401994101 |
[205] | Neuwald AF, Aravind L, Spouge JL, et al. (1999) AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9: 27-43. |
[206] | Ma HT, Poon RY (2016) TRIP13 Regulates Both the Activation and Inactivation of the Spindle-Assembly Checkpoint. Cell Rep 14: 1086-1099. doi: 10.1016/j.celrep.2016.01.001 |
[207] | Nelson CR, Hwang T, Chen PH, et al. (2015) TRIP13PCH-2 promotes Mad2 localization to unattached kinetochores in the spindle checkpoint response. J Cell Biol 211: 503-516. doi: 10.1083/jcb.201505114 |
[208] | Hardwick KG, Shah JV (2010) Spindle checkpoint silencing: ensuring rapid and concerted anaphase onset. F1000 Biol Rep 2: 55. |
[209] | Vanoosthuyse V, Hardwick KG (2009) Overcoming inhibition in the spindle checkpoint. Genes Dev 23: 2799-2805. doi: 10.1101/gad.1882109 |
[210] | Chan YW, Fava LL, Uldschmid A, et al. (2009) Mitotic control of kinetochore-associated dynein and spindle orientation by human Spindly. J Cell Biol 185: 859-874. doi: 10.1083/jcb.200812167 |
[211] | Gassmann R, Holland AJ, Varma D, et al. (2010) Removal of Spindly from microtubule-attached kinetochores controls spindle checkpoint silencing in human cells. Genes Dev 24: 957-971. doi: 10.1101/gad.1886810 |
[212] | Meadows JC, Shepperd LA, Vanoosthuyse V, et al. (2011) Spindle checkpoint silencing requires association of PP1 to both Spc7 and kinesin-8 motors. Dev Cell 20: 739-750. doi: 10.1016/j.devcel.2011.05.008 |
[213] | Porter IM, Schleicher K, Porter M, et al. (2013) Bod1 regulates protein phosphatase 2A at mitotic kinetochores. Nat Commun 4: 2677. |
[214] | Pinsky BA, Kotwaliwale CV, Tatsutani SY, et al. (2006) Glc7/protein phosphatase 1 regulatory subunits can oppose the Ipl1/aurora protein kinase by redistributing Glc7. Mol Cell Biol 26: 2648-2660. doi: 10.1128/MCB.26.7.2648-2660.2006 |
[215] | Vanoosthuyse V, Meadows JC, van der Sar SJ, et al. (2009) Bub3p facilitates spindle checkpoint silencing in fission yeast. Mol Biol Cell 20: 5096-5105. doi: 10.1091/mbc.E09-09-0762 |
[216] | Kim T, Moyle MW, Lara-Gonzalez P, et al. (2015) Kinetochore-localized BUB-1/BUB-3 complex promotes anaphase onset in C. elegans. J Cell Biol 209: 507-517. doi: 10.1083/jcb.201412035 |
[217] | Yang Y, Lacefield S (2016) Bub3 activation and inhibition of the APC/C. Cell Cycle 15: 1-2. doi: 10.1080/15384101.2015.1106746 |
[218] | Windecker H, Langegger M, Heinrich S, et al. (2009) Bub1 and Bub3 promote the conversion from monopolar to bipolar chromosome attachment independently of shugoshin. EMBO Rep 10: 1022-1028. doi: 10.1038/embor.2009.183 |
[219] | Yang Y, Tsuchiya D, Lacefield S (2015) Bub3 promotes Cdc20-dependent activation of the APC/C in S. cerevisiae. J Cell Biol 209: 519-527. doi: 10.1083/jcb.201412036 |
[220] | Han JS, Vitre B, Fachinetti D, et al. (2014) Bimodal activation of BubR1 by Bub3 sustains mitotic checkpoint signaling. Proc Natl Acad Sci U S A 111: E4185-4193. doi: 10.1073/pnas.1416277111 |
[221] | Kim S, Sun H, Ball HL, et al. (2010) Phosphorylation of the spindle checkpoint protein Mad2 regulates its conformational transition. Proc Natl Acad Sci U S A 107: 19772-19777. doi: 10.1073/pnas.1009000107 |
[222] | Wassmann K, Liberal V, Benezra R (2003) Mad2 phosphorylation regulates its association with Mad1 and the APC/C. Embo J 22: 797-806. doi: 10.1093/emboj/cdg071 |
[223] | Elowe S, Hummer S, Uldschmid A, et al. (2007) Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev 21: 2205-2219. doi: 10.1101/gad.436007 |
[224] | Matsumura S, Toyoshima F, Nishida E (2007) Polo-like kinase 1 facilitates chromosome alignment during prometaphase through BubR1. J Biol Chem 282: 15217-15227. doi: 10.1074/jbc.M611053200 |
[225] | Chan GK, Jablonski SA, Sudakin V, et al. (1999) Human BUBR1 is a mitotic checkpoint kinase that monitors CENP-E functions at kinetochores and binds the cyclosome/APC. J Cell Biol 146: 941-954. doi: 10.1083/jcb.146.5.941 |
[226] | Dou Z, von Schubert C, Korner R, et al. (2011) Quantitative mass spectrometry analysis reveals similar substrate consensus motif for human Mps1 kinase and Plk1. PLoS ONE 6: e18793. doi: 10.1371/journal.pone.0018793 |
[227] | Huang H, Hittle J, Zappacosta F, et al. (2008) Phosphorylation sites in BubR1 that regulate kinetochore attachment, tension, and mitotic exit. J Cell Biol 183: 667-680. doi: 10.1083/jcb.200805163 |
[228] | Mao Y, Desai A, Cleveland DW (2005) Microtubule capture by CENP-E silences BubR1-dependent mitotic checkpoint signaling. J Cell Biol 170: 873-880. doi: 10.1083/jcb.200505040 |
[229] | Elowe S (2011) Bub1 and BubR1: at the interface between chromosome attachment and the spindle checkpoint. Mol Cell Biol 31: 3085-3093. doi: 10.1128/MCB.05326-11 |
[230] | Bolanos-Garcia VM, Blundell TL (2011) BUB1 and BUBR1: multifaceted kinases of the cell cycle. Trends Biochem Sci 36: 141-150. doi: 10.1016/j.tibs.2010.08.004 |
[231] | Chung E, Chen RH (2003) Phosphorylation of Cdc20 is required for its inhibition by the spindle checkpoint. Nat Cell Biol 5: 748-753. doi: 10.1038/ncb1022 |
[232] | Kallio M, Mustalahti T, Yen TJ, et al. (1998) Immunolocalization of alpha-tubulin, gamma-tubulin, and CENP-E in male rat and male mouse meiotic divisions: pathway of meiosis I spindle formation in mammalian spermatocytes. Dev Biol 195: 29-37. doi: 10.1006/dbio.1997.8822 |
[233] | Wu H, Lan Z, Li W, et al. (2000) p55CDC/hCDC20 is associated with BUBR1 and may be a downstream target of the spindle checkpoint kinase. Oncogene 19: 4557-4562. doi: 10.1038/sj.onc.1203803 |
[234] | Zich J, Hardwick KG (2009) Getting down to the phosphorylated 'nuts and bolts' of spindle checkpoint signalling. Trends Biochem Sci. |
[235] | Hornbeck PV, Zhang B, Murray B, et al. (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43: D512-520. doi: 10.1093/nar/gku1267 |
[236] | Kim M, Murphy K, Liu F, et al. (2005) Caspase-mediated specific cleavage of BubR1 is a determinant of mitotic progression. Mol Cell Biol 25: 9232-9248. doi: 10.1128/MCB.25.21.9232-9248.2005 |
[237] | Baek KH, Shin HJ, Jeong SJ, et al. (2005) Caspases-dependent cleavage of mitotic checkpoint proteins in response to microtubule inhibitor. Oncol Res 15: 161-168. |
[238] | Choi E, Choe H, Min J, et al. (2009) BubR1 acetylation at prometaphase is required for modulating APC/C activity and timing of mitosis. Embo J 28: 2077-2089. doi: 10.1038/emboj.2009.123 |
[239] | Park I, Lee HO, Choi E, et al. (2013) Loss of BubR1 acetylation causes defects in spindle assembly checkpoint signaling and promotes tumor formation. J Cell Biol 202: 295-309. doi: 10.1083/jcb.201210099 |
[240] | Yang F, Hu L, Chen C, et al. (2012) BubR1 is modified by sumoylation during mitotic progression. J Biol Chem 287: 4875-4882. doi: 10.1074/jbc.M111.318261 |
[241] | Yang F, Huang Y, Dai W (2012) Sumoylated BubR1 plays an important role in chromosome segregation and mitotic timing. Cell Cycle 11: 797-806. doi: 10.4161/cc.11.4.19307 |
[242] | Doncic A, Ben-Jacob E, Barkai N (2005) Evaluating putative mechanisms of the mitotic spindle checkpoint. Proc Natl Acad Sci U S A 102: 6332-6337. doi: 10.1073/pnas.0409142102 |
[243] | Sear RP, Howard M (2006) Modeling dual pathways for the metazoan spindle assembly checkpoint. Proc Natl Acad Sci U S A 103: 16758-16763. doi: 10.1073/pnas.0603174103 |
[244] | Mistry HB, MacCallum DE, Jackson RC, et al. (2008) Modeling the temporal evolution of the spindle assembly checkpoint and role of Aurora B kinase. Proc Natl Acad Sci U S A 105: 20215-20220. doi: 10.1073/pnas.0810706106 |
[245] | Chen J, Liu J (2014) Spatial-temporal model for silencing of the mitotic spindle assembly checkpoint. Nat Commun 5: 4795. doi: 10.1038/ncomms5795 |
[246] | Chen J, Liu J (2016) Spindle Size Scaling Contributes to Robust Silencing of Mitotic Spindle Assembly Checkpoint. Biophys J 111: 1064-1077. doi: 10.1016/j.bpj.2016.07.039 |
[247] | Ibrahim B (2015) Toward a systems-level view of mitotic checkpoints. Prog Biophys Mol Biol 117: 217-224. doi: 10.1016/j.pbiomolbio.2015.02.005 |
[248] | Ibrahim B (2015) Spindle assembly checkpoint is sufficient for complete Cdc20 sequestering in mitotic control. Comput Struct Biotechnol J 13: 320-328. doi: 10.1016/j.csbj.2015.03.006 |
[249] | Ibrahim B, Dittrich P, Diekmann S, et al. (2008) Mad2 binding is not sufficient for complete Cdc20 sequestering in mitotic transition control (an in silico study). Biophys Chem 134: 93-100. doi: 10.1016/j.bpc.2008.01.007 |
[250] | Ibrahim B, Schmitt E, Dittrich P, et al. (2009) In silico study of kinetochore control, amplification, and inhibition effects in MCC assembly. Biosystems 95: 35-50. doi: 10.1016/j.biosystems.2008.06.007 |
[251] | Ciliberto A, Shah JV (2009) A quantitative systems view of the spindle assembly checkpoint. Embo J 28: 2162-2173. doi: 10.1038/emboj.2009.186 |
[252] | Burton JL, Solomon MJ (2007) Mad3p, a pseudosubstrate inhibitor of APCCdc20 in the spindle assembly checkpoint. Genes Dev 21: 655-667. doi: 10.1101/gad.1511107 |
[253] | D'Arcy S, Davies OR, Blundell TL, et al. (2010) Defining the molecular basis of BubR1 kinetochore interactions and APC/C-CDC20 inhibition. J Biol Chem 285: 14764-14776. doi: 10.1074/jbc.M109.082016 |
[254] | Bolanos-Garcia VM, Lischetti T, Matak-Vinkovic D, et al. (2011) Structure of a Blinkin-BUBR1 complex reveals an interaction crucial for kinetochore-mitotic checkpoint regulation via an unanticipated binding Site. Structure 19: 1691-1700. doi: 10.1016/j.str.2011.09.017 |
[255] | Krenn V, Wehenkel A, Li X, et al. (2012) Structural analysis reveals features of the spindle checkpoint kinase Bub1-kinetochore subunit Knl1 interaction. J Cell Biol 196: 451-467. doi: 10.1083/jcb.201110013 |
[256] | Harris L, Davenport J, Neale G, et al. (2005) The mitotic checkpoint gene BubR1 has two distinct functions in mitosis. Exp Cell Res 308: 85-100. doi: 10.1016/j.yexcr.2005.03.036 |
[257] | Zhang Y, Lees E (2001) Identification of an overlapping binding domain on Cdc20 for Mad2 and anaphase-promoting complex: model for spindle checkpoint regulation. Mol Cell Biol 21: 5190-5199. doi: 10.1128/MCB.21.15.5190-5199.2001 |
[258] | Sethi N, Monteagudo MC, Koshland D, et al. (1991) The CDC20 gene product of Saccharomyces cerevisiae, a beta-transducin homolog, is required for a subset of microtubule-dependent cellular processes. Mol Cell Biol 11: 5592-5602. doi: 10.1128/MCB.11.11.5592 |
[259] | Rosenberg SC, Corbett KD (2015) The multifaceted roles of the HORMA domain in cellular signaling. J Cell Biol 211: 745-755. doi: 10.1083/jcb.201509076 |
[260] | Mapelli M, Filipp FV, Rancati G, et al. (2006) Determinants of conformational dimerization of Mad2 and its inhibition by p31comet. Embo J 25: 1273-1284 doi: 10.1038/sj.emboj.7601033 |