Citation: Mica Grujicic, Jennifer S. Snipes, S. Ramaswami. Polyurea/Fused-silica interfacial decohesion induced by impinging tensile stress-waves[J]. AIMS Materials Science, 2016, 3(2): 486-507. doi: 10.3934/matersci.2016.2.486
[1] | Grujicic M, Ramaswami S, Snipes JS, et al. (2014) Multi-scale computation-based design of nano-segregated polyurea for maximum shockwave-mitigation performance. AIMS Mater Sci 1: 15–27. doi: 10.3934/matersci.2014.1.15 |
[2] | Grujicic M, Bell WC, Pandurangan B, et al. (2010) Blast-wave impact-mitigation capability of polyurea when used as helmet suspension pad material. Mater Des 31: 4050–4065. doi: 10.1016/j.matdes.2010.05.002 |
[3] | Grujicic M, Snipes JS, Galgalikar R, et al. (2014) Material-model based determination of the shock-Hugoniot relations in nanosegregated polyurea. J Mater Eng Perform 23: 357–371. doi: 10.1007/s11665-013-0769-7 |
[4] | Grujicic M, He T, Pandurangan B, et al. (2012) Experimental characterization and material-model development for microphase-segregated polyurea : an overview J Mater Eng Perform 21: 2–16. |
[5] | Grujicic M, Pandurangan B, King AE, et al. (2011) Multi-length scale modeling and analysis of microstructure evolution and mechanical properties in polyurea. J Mater Sci 46: 1767–1779. doi: 10.1007/s10853-010-4998-y |
[6] | Castagna AM, Pangon A, Choi T, et al. (2012) The role of soft segment molecular weight on microphase separation and dynamics of bulk polymerized polyureas. Macromol 45: 8438–8444. doi: 10.1021/ma3016568 |
[7] | Bogoslovov RB, Roland CM, Gamache RM (2007) Impact-induced glass-transition in elastomeric coatings. App Phys Let 90: 221910. doi: 10.1063/1.2745212 |
[8] | Grujicic M, Pandurangan B, He T, et al. (2010) Computational investigation of impact energy absorption capability of polyurea coatings via deformation-induced glass transition. Mater Sci Eng A 527: 7741–7751. doi: 10.1016/j.msea.2010.08.042 |
[9] | Grujicic M, Bell WC, Pandurangan B, et al. (2011) Fluid/structure interaction computational investigation of the blast-wave mitigation efficacy of the advanced combat helmet. J Mater Eng Perform 20: 877–893. |
[10] | Grujicic A, LaBerge M, Grujicic M, et al. (2012) Potential improvements in shockwave-mitigation efficacy of a polyurea-augmented advanced combat helmet: a computational investigation. J Mater Eng Perform 21: 1562–1579. doi: 10.1007/s11665-011-0065-3 |
[11] | Grujicic M, d’Entremont BP, Pandurangan B, et al. (2012) Concept-level analysis and design of polyurea for enhanced blast-mitigation performance. J Mater Eng Perform 21: 2024–2037. doi: 10.1007/s11665-011-0117-8 |
[12] | Grujicic M, d’Entremont BP, Pandurangan B, et al. (2012) A study of the blast-induced brain white-matter damage and the associated diffuse axonal injury. Multidisc Model Mater Struc 8: 213–245. doi: 10.1108/15736101211251220 |
[13] | Grujicic M, Pandurangan B, Bell WC, et al. (2011) Molecular-level simulations of shockwave generation and propagation in polyurea. Mater Sci Eng A 528: 3799–3808. doi: 10.1016/j.msea.2011.01.081 |
[14] | Grujicic M, Yavari R, Snipes JS, et al. (2012) Molecular-Level computational investigation of shockwave mitigation capability of polyurea. J Mater Sci 47: 8197–8215. doi: 10.1007/s10853-012-6716-4 |
[15] | Grujicic M, Snipes JS, Ramaswami S (2015) Meso-scale computational investigation of polyurea microstructure and its role in shockwave attenuation/dispersion. AIMS Mater Sci 2: 163–188. doi: 10.3934/matersci.2015.3.163 |
[16] | Grujicic M, Snipes JS, Ramaswami S, et al. (2014) Meso-scale computational investigation of shock-wave attenuation by trailing release-wave in different grades of polyurea. J Mater Eng Perform 23: 49–64. doi: 10.1007/s11665-013-0760-3 |
[17] | Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to Ceramics, 2nd Ed., New York: John Wiley & Sons, 91–124. |
[18] | Grujicic M, Bell WC, Pandurangan B, et al. (2011) The effect of high-pressure densification on ballistic-penetration resistance of a soda-lime glass. J Mater: Des and Appl 225: 298–315. |
[19] | Grujicic M, Bell WC, Glomski PS, et al. (2011) Multi-length scale modeling of high-pressure induced phase transformations in soda-lime glass. J Mater Eng Perform 20: 1144–1156. doi: 10.1007/s11665-010-9774-2 |
[20] | Grujicic M, Bell WC, Pandurangan B, et al. (2012) Molecular-level simulations of shock generation and propagation in soda-lime glass. J Mater Eng Perform 21: 1580–1590. doi: 10.1007/s11665-011-0064-4 |
[21] | Grujicic M, Pandurangan B, Zhang Z, et al. (2012) Molecular-level analysis of shock-wave physics and derivation of the Hugoniot relations for fused silica. J Mater Eng Perform 21: 823–836. |
[22] | van Duin ACT, Dasgupta S, Lorant F, et al. (2001) ReaxFF: A reactive force field for hydrocarbons J Phys Chem A 105: 9396–9409. |
[23] | IUPAC Gold Book, “bond order,” http://goldbook.iupac.org/B00707.html, accessed November 22, 2013. |
[24] | Chen H-P, Kalia RK, Kaxiras E, et al. (2010) Embrittlement of metal by solute segregation-induced amorphization. Phys Rev Lett 104: 155502. doi: 10.1103/PhysRevLett.104.155502 |
[25] | Materials Visualizer Datasheet. Accelrys, Inc. (2014) Available from: http://accelrys.com/products/datasheets/materials-visualizer.pdf. |
[26] | Amorphous Cell Datasheet. Accelrys, Inc. (2014) Available from: http://accelrys.com/products/datasheets/amorphous-cell.pdf. |
[27] | Liu L, Liu Y, Zybin SV, et al. (2011) ReaxFF-lg: Correction of the ReaxFF reactive force field for London dispersion, with applications to the equations of state for energetic materials. J Phys Chem A 115: 11016–11022. doi: 10.1021/jp201599t |
[28] | Discover Datasheet. Accelrys, Inc. (2014) Available from: http://accelrys.com/products/datasheets/discover.pdf. |
[29] | Grujicic M, Yavari R, Snipes JS, et al. (2014) All-atom molecular-level computational simulations of planar longitudinal shockwave interactions with polyurea, soda-lime glass and polyurea/glass interfaces. Multidisc Model Mater Struct 10: 474–510. doi: 10.1108/MMMS-11-2013-0070 |
[30] | Grujicic M, Ramaswami S, Snipes JS, et al. (2013) Axial-compressive behavior, including kink-band formation and propagation, of single p-phenylene terephthalamide (PPTA) fibers. Adv Mater Sci Eng 2013: Article ID 329549. doi: 10.1155/2013/329549. |
[31] | Grujicic M, Yavari R, Snipes JS, et al. (2014) All-atom molecular-level computational analyses of polyurea/fused-silica interfacial decohesion caused by impinging tensile stress-waves. Inter J Struc Integ 5: 339–367. doi: 10.1108/IJSI-01-2014-0001 |