Citation: Christoph Nick, Helmut F. Schlaak, Christiane Thielemann. Simulation and Measurement of Neuroelectrodes Characteristics with Integrated High Aspect Ratio Nano Structures[J]. AIMS Materials Science, 2015, 2(3): 189-202. doi: 10.3934/matersci.2015.3.189
[1] | Wilson B, Dorman M (2008) Cochlear implants: A remarkable past and a brilliant future. Hearing Res 242: 3-21. doi: 10.1016/j.heares.2008.06.005 |
[2] | Zrenner E (2013) Fighting Blindness with Microelectronics. Sci Transl Med 5(210): 210ps16. |
[3] | Perlmutter J, Mink J (2006) Deep brain stimulation. Annu Rev Neurosci 29: 229-257. doi: 10.1146/annurev.neuro.29.051605.112824 |
[4] | Priori A, Foffani G, Rossi L, et al. (2012) Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Exp Neurol 245: 77-86. |
[5] | Gallentine W, Mikati M (2009) Intraoperative electrocorticography and cortical stimulation in children. J Clin Neurophysiol 26: 95-108. doi: 10.1097/WNP.0b013e3181a0339d |
[6] | Keefer E, Botterman B, Romero M, et al. (2008) Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol 3: 434-439. doi: 10.1038/nnano.2008.174 |
[7] | Ben-Jacob E, Hanein Y (2008) Carbon nanotube micro-electrodes for neuronal interfacing. J Mater Chem 18: 5181-5186. doi: 10.1039/b805878b |
[8] | Nick C, Joshi R, Schneider J, et al. (2012) Three-dimensional carbon nanotube electrodes for extracellular recording of cardiac myocytes. Biointerphases 7: 58-64. |
[9] | Brüggemann D, Wolfrum B, Maybeck V, et al. (2011) Nanostructured gold microelectrodes for extracellular recording from electrogenic cells. Nanotechnology 22: 265104. doi: 10.1088/0957-4484/22/26/265104 |
[10] | Nick C, Quednau S, Sarwar R, et al. (2014) High Aspect Ratio Gold Nanopillars on Microelectrodes for Neural Interfaces. Microsyst Technol 20: 1849-1857. doi: 10.1007/s00542-013-1958-x |
[11] | Kim D, Abidian M, Martin D (2004) Conducting Polymers Grown in Hydrogel Scaffolds Coated on Neural Prosthetic Devices. J Biomed Mater Res A 71: 577-585. |
[12] | Poppendieck W, Hoffmann K-P (2009) In 4th European Conference of the International Federation for Medical and Biological Engineering Springer: 2409-2412. |
[13] | Potter S, DeMarse T (2001) A new approach to neural cell culture for long-term studies. J Neurosci Methods 110: 17-24. doi: 10.1016/S0165-0270(01)00412-5 |
[14] | Potter S (2001) Distributed processing in cultured neuronal networks In M.A.L. Nicoleleis, (ed.), Advances in Neural Population Coding (Progress in Brain Research), 130: 49-62. doi: 10.1016/S0079-6123(01)30005-5 |
[15] | Hoogerwerf A, Wise K (1994) A Three-Dimensional Microelectrode Array for Chronic Neural Recording. IEEE Trans Biomed Eng 41: 1136-1146. doi: 10.1109/10.335862 |
[16] | Nordhausen C, Maynard E, Normann R (1996) Single unit recording capabilities of a 100 microelectrode array. Brain Res 726: 129-140. doi: 10.1016/0006-8993(96)00321-6 |
[17] | Gabay T, Ben-David M, Kalifa I, et al. (2007) Electro-chemical and biological properties of carbon nanotube based multi-electrode arrays. Nanotechnology 18: 035201-035206. doi: 10.1088/0957-4484/18/3/035201 |
[18] | Fuchsberger K, Le Goff A, Gerwig R, et al. (2010) Integration of Carbon Nanotubes in Microelectrode Arrays by Microcontact Printing and Electropolymerization for Neurostimulation and Biosensing Applications. In 7th Meeting on Substrate-Integrated Microelectrodes, Reutlingen, Germany; 267-268. |
[19] | Gabriel G, Gomez-Martinez R, Villa R (2008) Single walled carbon nanotubes deposited on surface electrodes to improve interface impedance. Physiol Meas 29: 203-212. doi: 10.1088/0967-3334/29/6/S18 |
[20] | Nick C, Thielemann C (2014) Are Carbon Nanotube Microelectrodes Manufactured from Dispersion Stable Enough for Neural Interfaces? Bio Nano Sci 4: 216-225. |
[21] | Bauer L, Birenbaum N, Meyer G (2004) Biological applications of high aspect ratio nanoparticles. J Mater Chem 14: 517-526. doi: 10.1039/b312655b |
[22] | Wang H-W, Shieh C-F, Chen H-Y, et al. (2006) Standing [111] gold nanotube to nanorod arrays via template growth. Nanotechnology 17: 2689-2694. doi: 10.1088/0957-4484/17/10/041 |
[23] | Pancrazio J, Whelan J, Borkholder D, et al. (1999) Development and application of cell-based biosensors. Ann Biomed Eng 27: 697-711. doi: 10.1114/1.225 |
[24] | Joye N, Schmid A, Leblebici Y (2008) An electrical model of the cell-electrode interface for high-density microelectrode arrays. In Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society: 559-562. |
[25] | Sessler F, Hsu F, Felder T, et al. (1998) Effects of ethanol on rat so mato sensory cortical neurons. Brain Res 804: 266-274. doi: 10.1016/S0006-8993(98)00680-5 |
[26] | Massobrio P, Massobrio G, Martinoia S (2007) Multi-program approach for simulating recorded extracellular signals generated by neurons coupled to microelectrode arrays. Neurocomputing 70: 2467-2476. doi: 10.1016/j.neucom.2006.09.008 |
[27] | Gabay T (2009) Carbon Nanotube Microelectrode Arrays for Neuronal Patterning and Recording (PhD thesis) Tel-Aviv University. |
[28] | Bauerdick S, Burkhardt C, Kern D, et al. (2003) Substrate-Integrated Microelectodes with Improved Charge Transfer Capacity by 3-Dimensional Micro-Fabrication. Biomed Microdevices 5: 93-99. doi: 10.1023/A:1024526626016 |
[29] | Sorkin R, Gabay T, Blinder P, et al. (2006) Compact self-wiring in cultured neural networks. J Neural Eng 3: 95-101. doi: 10.1088/1741-2560/3/2/003 |
[30] | Sorkin R, Greenbaum A, David-Pur M, et al. (2009) Process entanglement as a neuronal anchorage mechanism to rough surfaces. Nanotechnology 20: 015101. doi: 10.1088/0957-4484/20/1/015101 |
[31] | CNT Expertise Centre (2009) Available from: http://www.nanocyl.com/en/CNT-Expertise-Centre/Carbon-Nanotubes. |