Review Topical Sections

Microalgae selection and improvement as oil crops: GM vs non-GM strain engineering

  • Received: 26 December 2016 Accepted: 20 February 2017 Published: 27 February 2017
  • Despite being established as a sustainable feedstock for biofuel production with tremendous potential, the microalgae biofuel industry still struggles to make large-scale production economically viable. An overriding aspect in microalgae oil production is strain selection, as it affects nearly all stages of production. This chapter presents the key traits that microalgae should possess for successful lipid production, as well as suitable isolation and selection strategies. It highlights the various metabolic engineering methods that are currently available for the biological improvement of microalgae strains, comparing GM vs non-GM approaches.

    Citation: David K. Y. Lim, Peer M. Schenk. Microalgae selection and improvement as oil crops: GM vs non-GM strain engineering[J]. AIMS Bioengineering, 2017, 4(1): 151-161. doi: 10.3934/bioeng.2017.1.151

    Related Papers:

  • Despite being established as a sustainable feedstock for biofuel production with tremendous potential, the microalgae biofuel industry still struggles to make large-scale production economically viable. An overriding aspect in microalgae oil production is strain selection, as it affects nearly all stages of production. This chapter presents the key traits that microalgae should possess for successful lipid production, as well as suitable isolation and selection strategies. It highlights the various metabolic engineering methods that are currently available for the biological improvement of microalgae strains, comparing GM vs non-GM approaches.


    加载中
    [1] Schenk PM, Thomas-Hall SR, Stephens E, et al. (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1: 20-43. doi: 10.1007/s12155-008-9008-8
    [2] Singh B, Guildhe A, Rawat I, et al. (2014) Towards a sustainable approach for development of biodiesel from plant and microalgae. Renew Sust Energ Rev 29: 216-245. doi: 10.1016/j.rser.2013.08.067
    [3] Razeghifard R (2013) Algal biofuels. Photosynth Res 117: 207-219. doi: 10.1007/s11120-013-9828-z
    [4] Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26: 126-131. doi: 10.1016/j.tibtech.2007.12.002
    [5] Dermirbas A, Dermirbas MF (2011) Importance of algae oil as a source of biodiesel. Energ Convers Manag e 52: 163-170. doi: 10.1016/j.enconman.2010.06.055
    [6] Duong VT, Li Y, Nowak E, et al. (2012) Microalgae isolation and selection for prospective biodiesel production. Energies 5: 1835-1849. doi: 10.3390/en5061835
    [7] Davey HM, Kell DB (1996) Flow cytometry and cell sorting of heterogenous microbial populations: the importance of single-cel analyses. Microbiol Res 60: 641-696.
    [8] Mutanda T, Ramesh D, Karthukeyan S, et al. (2011) Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol 102: 57-70.
    [9] Sieracki M, Poulton N, Crosbie N (2005) Automated isolation techniques for microalgae. Algal Cult Tech, 101-106.
    [10] Mendoza H, De La JA, Presmanes KF, et al. (2008) Characterization of dunaliella salina strains by flow cytometry: a new approach to select carotenoid hyperproducing strains. Electron J Biotech nol 11: 5-6.
    [11] Larkum AWD, Ross IL, Kruse O, et al. (2012) Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol 30: 198-205. doi: 10.1016/j.tibtech.2011.11.003
    [12] Sharma KS, Schuhmann H, Schenk PM (2012) High lipid induction in microalage for biodiesel production. Energies 5: 1532-1553. doi: 10.3390/en5051532
    [13] Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14: 217-232. doi: 10.1016/j.rser.2009.07.020
    [14] Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25: 294-306. doi: 10.1016/j.biotechadv.2007.02.001
    [15] Huerlimann R, De Nys R, Heimann K (2010) Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production. Biotechnol Bioeng 107: 245-257. doi: 10.1002/bit.22809
    [16] Lim DKY, Garg S, Timmins M, et al. (2012) Isolation and evaluation of oil-producing microalgae from subtropical coastal and brackish waters. Plos One 7: e40751-e40763. doi: 10.1371/journal.pone.0040751
    [17] Rodolfi L, Zittelli GC, Bassi N, et al. (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102: 100-112. doi: 10.1002/bit.22033
    [18] Mendoza H, De La JA, Presmanes KF, et al. (2012) Quick estimation of intraspeciific variation of fatty acid composition in Dunaliella salina using flow cytometry and nile red. J Adminppl Phycol 24: 1237-1243. doi: 10.1007/s10811-011-9768-y
    [19] Nascimento IA, Marques SSI, Cabanelas ITD, et al. (2012) Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. Bioenerg Res 6: 1-13.
    [20] Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29: 686-702.
    [21] Sharma KS, Garg S, Li Y, et al. (2013) Critical analysis of current microalgae dewatering techniques. Biofuels 4: 397-404. doi: 10.4155/bfs.13.25
    [22] Chen W, Zhang C, Song L, et al. (2009) A high throughput nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Meth 77: 41-71. doi: 10.1016/j.mimet.2009.01.001
    [23] Montero MF, Aristizabal M, Reina GG (2011) Isolation of high-lipid content strains of the marine microala tetraselmis suecica for biodiesel prodction by flow cytometry and single-cell sorting. J App l Phycol 23: 1053-1057.
    [24] Anandarajah K, Mahendraperumal G, Sommerfeld M, et al. (2012) Characterization of microalga Nannochloropsis sp. mutants for improved production of biofuels. Appl Energ 96: 371-377.
    [25] Vigeolas H, Duby F, Kaymak E, et al. (2012) Isolation and partial characterization of mutants with elecated lipid content in Chlorella sorokiana and Scenedesmus obliquus. J Biotechnol 162: 3-12. doi: 10.1016/j.jbiotec.2012.03.017
    [26] Alonso DL, Castillo CIS, Grima EM, et al. (1996) First insights into improvement of eicosapentaenoic acid content in Phaeodactylum tricornutum (bacillariophyceae) by induced mutagenesis. J Phycol 32: 553-558.
    [27] Chaturvedi R, Fujita Y (2006) Isolation of enhanced eicosapentanoic acid producing mutant of Nannochloropsis oculata ST-6 using ethyl methane sulfonate induced mutagenesis techniques and their characterization at mRNA transcript level. Phycol Res 54: 208-219. doi: 10.1111/j.1440-1835.2006.00428.x
    [28] Chaturvedi R, Uppalapati SR, Alamsjah MA, et al. (2004) Isolation of quizalofop-resistant mutants of Nannochloropsis oculata (eustigmatophyceae) with high eicosapentanoic acid following N-methyl-N-nitrosourea-induced mutagenesis. J Appl Phycol 16: 135-144. doi: 10.1023/B:JAPH.0000044826.70360.8e
    [29] Meireles LA, Guesdes AC, Malcata FX (2003) Increase of the yields of eicosapentanoic and docosahexanoic acids by the microalga Pavlova lutheri following random mutagenesis. Biotechnol Bioeng 81: 50-55. doi: 10.1002/bit.10451
    [30] Nymark M, Sharma AK, Sparstad T, et al. (2016) A CRISPR/Cas9 system adapted for gene editing in marine algae. Sci Rep 6: 24951-24956. doi: 10.1038/srep24951
    [31] Schuhmann H, Lim DKY, Schenk PM (2012) Perspectives on metabolic engineering for increased lipid contents in microalgae. Biofuels 3: 71-86. doi: 10.4155/bfs.11.147
    [32] Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, et al. (2011) Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genomics 12: 148-164. doi: 10.1186/1471-2164-12-148
    [33] Lei A, Chen H, Shenhu Z, et al. (2012) Expression of fatty acid synthesis genes and fatty acid accumulation in Haematococcus pluvialis under different stressors. Biotechnol Biofuels 5: 18-28. doi: 10.1186/1754-6834-5-18
    [34] Valenzuela J, Mazurie A, Carlson RP, et al. (2012) Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum. Biotechnol Biofuels 5: 40-56. doi: 10.1186/1754-6834-5-40
    [35] Rismani-Yazdi H, Haznedaroglu BZ, Hsin C, et al. (2012) Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnol Biofuels 5: 1-16. doi: 10.1186/1754-6834-5-1
    [36] Guarnieri MT, Nag A, Smolinski SL, et al. (2011) Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga. Plos One 6: e25851-e25863. doi: 10.1371/journal.pone.0025851
    [37] Lv H, Qu G, Qi X, et al. (2013) Transcriptome analysis of Chlamydomonas reinhardtii during the process of lipid accumulation. Genomics 101: 229-237. doi: 10.1016/j.ygeno.2013.01.004
    [38] Miller R, Wu G, Deshpande RR, et al. (2010) Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol 154: 1737-1752. doi: 10.1104/pp.110.165159
    [39] Dunhay TG, Jarvis EE, Dais SS, et al. (1996) Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol 58: 223-231.
    [40] Deng X, Cai J, Fei X (2013) Effect of the expression and knockdown of citrate synthase gene on carbon flux during triacylglycerol biosynthesis by green algae Chlamydomonas reinhardtii. BMC Genomics 14: 38-48. doi: 10.1186/1471-2164-14-38
    [41] Niu Y, Zhang M, Li D, et al. (2013) Effect of the expression and knockdown of citrate synthase gene on carbon flux during triacylglycerol biosynthesis by green algae Chlamydomonas reinhardtii. Mar Drugs 11: 4558-4569. doi: 10.3390/md11114558
    [42] Mussgnug JH, Thomas-Hall SR, Rupprecht J, et al. (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5: 802-814. doi: 10.1111/j.1467-7652.2007.00285.x
    [43] Beckmann J, Lehr F, Finazzi G, et al. (2009) Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J Biotechnol 142: 70-77. doi: 10.1016/j.jbiotec.2009.02.015
    [44] Bougaran G, Rouxel C, Dubois N, et al. (2012) Enhancement of neutral lipid productivity in the microalga Isochrysis affinis galbana (T-Iso) by a mutation-selection procedure. Biotechnol Bioeng 11: 2737-2745.
    [45] Doan YTT, Obbard JP (2011) Enhanced intracellular lipid in Nannochloropsis sp. via random mutagenesis and flow cytometric cell sorting. Glob Change Biol Bioener g 3: 264-270.
    [46] Kamath BE, Vidhyavathi R, Sarada R, et al. (2008) Enhancement of carotenoids by mutation and stress induced carotenogenic genes in Haematococcus pluvialis mutants. Bioresour Technol 99: 8867-8673.
    [47] Lian M, Huang H, Ren L, et al. (2010) Increase of docosahexaenoic acid production by Schizochytrium sp. through mutagenesis and enzyme assay. Appl Microbiol Biot 162: 935-941.
    [48] Lim D, Schuhmann H, Sharma K, et al. (2015) Isolation of high-lipid Tetraselmis suecica strains following repeated UV-C mutagenesis, FACS, and high-throughput growth selection. Bio energ Res 8: 750-759.
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5791) PDF downloads(1212) Cited by(20)

Article outline

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog