Gallium oxide (Ga2O3) powder was prepared by mixing hydrogen peroxide (30% H2O2) with pure gallium metal (99.999%) inside a hydrothermal cell. The resulting white powder was subjected to different characterization techniques. X-ray diffraction (XRD) revealed the presence of multiple crystalline phases of gallium oxide, including monoclinic β-Ga2O3, and rhombohedral α-Ga2O3, as well as gallium suboxide Ga2O. X-ray photoelectron spectroscopy (XPS) divulged Ga3+ as the dominant oxidation state of gallium in Ga2O3. However, a lower oxidation state, Ga1+, was also detected. Scanning electron microscopy (SEM) images showed a high degree of morphological diversity with a wide variety in shape and size of powder particles. Porosity measurements were performed to determine the total surface area, pore diameter, and pore volume of Ga2O3 powder. The values were found to be 50 m2 g−1, 2.6 nm, and 0.07 cm3 g−1, respectively. Fascinatingly, gallium oxide powder was directly used to fabricate a symmetrical supercapacitor without any binder. Cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD) measurements were performed to examine the electrochemical energy storage capabilities of Ga2O3 powder using 1M KOH as electrolyte. The fabricated supercapacitor demonstrated a maximum specific capacitance of 1176 F g−1, at a current density of 2 A g−1, an energy density of 104.5 Wh kg−1, and a high-power density of 1.6 kW kg−1. Additionally, following 5000 charge-discharge cycles, the supercapacitor demonstrated outstanding capacitance retention stability of 91.18%. The obtained energy density of 104.5 Wh kg−1 is among the highest reported for metal oxide-based supercapacitors. The presence of multiple crystalline phases in the gallium oxide powder likely contributed significantly to the remarkable results observed in this study.
Citation: Jamal Alnofiay, Ahmed Al-Shahrie, Elsayed Shalaan. Green synthesis of high-performance gallium oxide supercapacitor: A path to outstanding energy density[J]. AIMS Materials Science, 2024, 11(6): 1065-1082. doi: 10.3934/matersci.2024051
[1] | Siting Yu, Jingjing Peng, Zengao Tang, Zhenyun Peng . Iterative methods to solve the constrained Sylvester equation. AIMS Mathematics, 2023, 8(9): 21531-21553. doi: 10.3934/math.20231097 |
[2] | Nunthakarn Boonruangkan, Pattrawut Chansangiam . Convergence analysis of a gradient iterative algorithm with optimal convergence factor for a generalized Sylvester-transpose matrix equation. AIMS Mathematics, 2021, 6(8): 8477-8496. doi: 10.3934/math.2021492 |
[3] | Jin-Song Xiong . Generalized accelerated AOR splitting iterative method for generalized saddle point problems. AIMS Mathematics, 2022, 7(5): 7625-7641. doi: 10.3934/math.2022428 |
[4] | Jiaxin Lan, Jingpin Huang, Yun Wang . An E-extra iteration method for solving reduced biquaternion matrix equation AX+XB=C. AIMS Mathematics, 2024, 9(7): 17578-17589. doi: 10.3934/math.2024854 |
[5] | Kanjanaporn Tansri, Pattrawut Chansangiam . Gradient-descent iterative algorithm for solving exact and weighted least-squares solutions of rectangular linear systems. AIMS Mathematics, 2023, 8(5): 11781-11798. doi: 10.3934/math.2023596 |
[6] | Yinlan Chen, Min Zeng, Ranran Fan, Yongxin Yuan . The solutions of two classes of dual matrix equations. AIMS Mathematics, 2023, 8(10): 23016-23031. doi: 10.3934/math.20231171 |
[7] | Wenxiu Guo, Xiaoping Lu, Hua Zheng . A two-step iteration method for solving vertical nonlinear complementarity problems. AIMS Mathematics, 2024, 9(6): 14358-14375. doi: 10.3934/math.2024698 |
[8] | Wen-Ning Sun, Mei Qin . On maximum residual block Kaczmarz method for solving large consistent linear systems. AIMS Mathematics, 2024, 9(12): 33843-33860. doi: 10.3934/math.20241614 |
[9] | Kanjanaporn Tansri, Sarawanee Choomklang, Pattrawut Chansangiam . Conjugate gradient algorithm for consistent generalized Sylvester-transpose matrix equations. AIMS Mathematics, 2022, 7(4): 5386-5407. doi: 10.3934/math.2022299 |
[10] | Yang Cao, Quan Shi, Sen-Lai Zhu . A relaxed generalized Newton iteration method for generalized absolute value equations. AIMS Mathematics, 2021, 6(2): 1258-1275. doi: 10.3934/math.2021078 |
Gallium oxide (Ga2O3) powder was prepared by mixing hydrogen peroxide (30% H2O2) with pure gallium metal (99.999%) inside a hydrothermal cell. The resulting white powder was subjected to different characterization techniques. X-ray diffraction (XRD) revealed the presence of multiple crystalline phases of gallium oxide, including monoclinic β-Ga2O3, and rhombohedral α-Ga2O3, as well as gallium suboxide Ga2O. X-ray photoelectron spectroscopy (XPS) divulged Ga3+ as the dominant oxidation state of gallium in Ga2O3. However, a lower oxidation state, Ga1+, was also detected. Scanning electron microscopy (SEM) images showed a high degree of morphological diversity with a wide variety in shape and size of powder particles. Porosity measurements were performed to determine the total surface area, pore diameter, and pore volume of Ga2O3 powder. The values were found to be 50 m2 g−1, 2.6 nm, and 0.07 cm3 g−1, respectively. Fascinatingly, gallium oxide powder was directly used to fabricate a symmetrical supercapacitor without any binder. Cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD) measurements were performed to examine the electrochemical energy storage capabilities of Ga2O3 powder using 1M KOH as electrolyte. The fabricated supercapacitor demonstrated a maximum specific capacitance of 1176 F g−1, at a current density of 2 A g−1, an energy density of 104.5 Wh kg−1, and a high-power density of 1.6 kW kg−1. Additionally, following 5000 charge-discharge cycles, the supercapacitor demonstrated outstanding capacitance retention stability of 91.18%. The obtained energy density of 104.5 Wh kg−1 is among the highest reported for metal oxide-based supercapacitors. The presence of multiple crystalline phases in the gallium oxide powder likely contributed significantly to the remarkable results observed in this study.
Fractional calculus deals with the equations which involve integrals and derivatives of fractional orders. The history of fractional calculus begins from the history of calculus. The role of fractional integral operators is very vital in the applications of this subject in other fields. Several well known phenomenas and their solutions are presented in fractional calculus which can not be studied in ordinary calculus. Inequalities are useful tools in mathematical modelling of real world problems, they also appear as constraints to initial/boundary value problems. Fractional integral/derivative inequalities are of great importance in the study of fractional differential models and fractional dynamical systems. In recent years study of fractional integral/derivative inequalities accelerate very fastly. Many well known classical inequalities have been generalized by using classical and newly defined integral operators in fractional calculus. For some recent work on fractional integral inequalities we refer the readers to [1,2,3,4,5,6] and references therein.
Our goal in this paper is to apply generalize Riemann-Liouville fractional integrals using a monotonically increasing function. The Hadamard inequalities are proved for these integral operators using strongly (α,m)-convex functions. Also error bounds of well known Hadamard inequalities are obtained by using two fractional integral identities. In connection with the results of this paper, we give generalizations and refinements of some well known results added recently in the literature of mathematical inequalities.
Next, we like to give some definitions and established results which are necessary and directly associated with the findings of this paper.
Definition 1. [7] A function f:[0,+∞)→R is said to be strongly (α,m)-convex function with modulus c≥0, where (α,m)∈[0,1]2, if
f(xt+m(1−t)y)≤tαf(x)+m(1−tα)f(y)−cmtα(1−tα)|y−x|2, | (1.1) |
holds ∀x,y∈[0,+∞) and t∈[0,1].
The well-known Hadamard inequality is a very nice geometrical interpretation of convex functions defined on the real line, it is stated as follows:
Theorem 1. The following inequality holds:
f(x+y2)≤1y−x∫yxf(v)dv≤f(x)+f(y)2, | (1.2) |
for convex function f:I→R, where I is an interval and x,y∈I, x<y.
The definition of Riemann-Liouville fractional integrals is given as follows:
Definition 2. Let f∈L1[a,b]. Then left-sided and right-sided Riemann-Liouville fractional integrals of a function f of order μ where ℜ(μ)>0 are defined by
Iμa+f(x)=1Γ(μ)∫xa(x−t)μ−1f(t)dt,x>a, | (1.3) |
and
Iμb−f(x)=1Γ(μ)∫bx(t−x)μ−1f(t)dt,x<b. | (1.4) |
The following theorems provide two Riemann-Liouville fractional versions of the Hadamard inequality for convex functions.
Theorem 2. [8] Let f:[a,b]→R be a positive function with 0≤a<b and f∈L1[a,b]. If f is a convex function on [a,b], then the following fractional integral inequality holds:
f(a+b2)≤Γ(μ+1)2(b−a)μ[Iμa+f(b)+Iμb−f(a)]≤f(a)+f(b)2, | (1.5) |
with μ>0.
Theorem 3. [9] Under the assumption of Theorem 2, the following fractional integral inequality holds:
f(a+b2)≤2μ−1Γ(μ+1)(b−a)μ[Iμ(a+b2)+f(b)+Iμ(a+b2)−f(a)]≤f(a)+f(b)2, | (1.6) |
with μ>0.
Theorem 4. [8] Let f:[a,b]→R be a differentiable mapping on (a,b) with a<b. If |f′| is convex on [a,b], then the following fractional integral inequality holds:
|f(a)+f(b)2−Γ(μ+1)2(b−a)μ[Iμa+f(b)+Iμb−f(a)]|≤b−a2(μ+1)(1−12μ)[|f′(a)|+|f′(b)|]. | (1.7) |
The k-analogue of Riemann-Liouville fractional integrals is defined as follows:
Definition 3. [10] Let f∈L1[a,b]. Then k-fractional Riemann-Liouville integrals of order μ where ℜ(μ)>0, k>0, are defined by
kIμa+f(x)=1kΓk(μ)∫xa(x−t)μk−1f(t)dt,x>a, | (1.8) |
and
kIμb−f(x)=1kΓk(μ)∫bx(t−x)μk−1f(t)dt,x<b, | (1.9) |
where Γk(.) is defined as [11]
Γk(μ)=∫∞0tμ−1e−tkkdt. |
The k-fractional versions of Hadamard type inequalities (1.5)–(1.7) are given in the following theorems.
Theorem 5. [12] Let f:[a,b]→R be a positive function with 0≤a<b. If f is a convex function on [a,b], then the following inequalities for k-fractional integrals hold:
f(a+b2)≤Γk(μ+k)2(b−a)μk[kIμa+f(b)+kIμb−f(a)]≤f(a)+f(b)2. | (1.10) |
Theorem 6. [13] Under the assumption of Theorem 5, the following fractional integral inequality holds:
f(a+b2)≤2μk−1Γk(μ+k)(b−a)μk[kIμ(a+b2)+f(b)+kIμ(a+b2)−f(a)]≤f(a)+f(b)2. | (1.11) |
Theorem 7. [12] Let f:[a,b]→R be a differentiable mapping on (a,b) with 0≤a<b. If |f′| is convex on [a,b], then the following inequality for k-fractional integrals holds:
|f(a)+f(b)2−Γk(μ+k)2(b−a)μk[kIμa+f(b)+kIμb−f(a)]|≤b−a2(μk+1)(1−12μk)[|f′(a)|+|f′(b)|]. | (1.12) |
In the following, we give the definition of generalized Riemann-Liouville fractional integrals by a monotonically increasing function.
Definition 4. [14] Let f∈L1[a,b]. Also let ψ be an increasing and positive monotone function on (a,b], having a continuous derivative ψ′ on (a,b). The left-sided and right-sided fractional integrals of a function f with respect to another function ψ on [a,b] of order μ where ℜ(μ)>0 are defined by
Iμ,ψa+f(x)=1Γ(μ)∫xaψ′(t)(ψ(x)−ψ(t))μ−1f(t)dt,x>a, | (1.13) |
and
Iμ,ψb−f(x)=1Γ(μ)∫bxψ′(t)(ψ(t)−ψ(x))μ−1f(t)dt,x<b. | (1.14) |
The k-analogue of generalized Riemann-Liouville fractional integrals is defined as follows:
Definition 5 [4] Let f∈L1[a,b]. Also let ψ be an increasing and positive monotone function on (a,b], having a continuous derivative ψ′ on (a,b). The left-sided and right-sided fractional integrals of a function f with respect to another function ψ on [a,b] of order μ where ℜ(μ)>0, k>0, are defined by
kIμ,ψa+f(x)=1kΓk(μ)∫xaψ′(t)(ψ(x)−ψ(t))μk−1f(t)dt,x>a, | (1.15) |
and
kIμ,ψb−f(x)=1kΓk(μ)∫bxψ′(t)(ψ(t)−ψ(x))μk−1f(t)dt,x<b. | (1.16) |
For more details of above defined fractional integrals, we refer the readers to see [15,16].
Rest of the paper is organized as follows: In Section 2, we find Hadamard type inequalities for generalized Riemann-Liouville fractional integrals with the help of strongly (α,m)-convex functions. The consequences of these inequalities are listed in remarks. Also some new fractional integral inequalities for convex functions, strongly convex functions and strongly m-convex functions are deduced in the form of corollaries. In Section 3, the error bounds of Hadamard type fractional inequalities are established via two fractional integral identities.
Theorem 8. Let f:[a,b]→R be a positive function with 0≤a<mb and f∈L1[a,b]. Also suppose that f is strongly (α,m)-convex function on [a,b] with modulus c≥0, ψ is positive strictly increasing function having continuous derivative ψ′ on (a,b). If [a,b]⊂Range(ψ), k>0 and (α,m)∈(0,1]2, then the following k-fractional integral inequality holds:
f(a+mb2)+cm(2α−1)22α(μ+k)(μ+2k)[μ(μ+k)(b−a)2+2k2(am−mb)2+2μk(b−a)(am−mb)]≤Γk(μ+k)2α(mb−a)μk[kIμ,ψψ−1(a)+(f∘ψ)(ψ−1(mb))+(2α−1)mμk+1kIμ,ψψ−1(b)−(f∘ψ)(ψ−1(am))]≤[f(a)+m(2α−1)f(b)]μ2α(μ+kα)+mkαμ(f(b)+m(2α−1)f(am2))2α(μ2+μαk)−cmkαμ[(b−a)2+m(2α−1)(b−am2)2]2α(μ+αk)(μ+2αk), | (2.1) |
with μ>0.
Proof. Since f is strongly (α,m)-convex function, for x,y∈[a,b] we have
f(x+my2)≤f(x)+m(2α−1)f(y)2α−cm(2α−1)|y−x|222α. | (2.2) |
By setting x=at+m(1−t)b, y=am(1−t)+bt and integrating the resulting inequality after multiplying with tμk−1, we get
kμf(a+mb2)≤12α[∫10f(at+m(1−t)b)tμk−1dt+m(2α−1)∫10f(am(1−t)+bt)tμk−1dt]−cm(2α−1)22αμ(μ+k)(μ+2k)[μk(μ+k)(b−a)2+2k3(am−mb)2+2k2μ(b−a)(am−mb)]. | (2.3) |
Now, let u∈[a,b] such that ψ(u)=at+m(1−t)b, that is, t=mb−ψ(u)mb−a and let v∈[a,b] such that ψ(v)=am(1−t)+bt, that is, t=ψ(v)−amb−am in (2.3), then multiplying μk after applying Definition 5, we get the following inequality:
f(a+mb2)≤Γk(μ+k)2α(mb−a)μk[kIμ,ψψ−1(a)+(f∘ψ)(ψ−1(mb))+mμk+1(2α−1)kIμ,ψψ−1(b)−(f∘ψ)(ψ−1(am))]−cm(2α−1)22α(μ+k)(μ+2k)[μ(b−a)2+2k2(am−mb)2+2μk(b−a)(am−mb)]. | (2.4) |
Hence by rearranging the terms, the first inequality is established. On the other hand, f is strongly (α,m)-convex function, for t∈[0,1], we have the following inequality:
f(at+m(1−t)b)+m(2α−1)f(am(1−t)+bt)≤tα[f(a)+m(2α−1)f(b)]+m(1−tα)[f(b)+m(2α−1)f(am2)]−cmtα(1−tα)[(b−a)2+m(2α−1)(b−am2)2]. | (2.5) |
Multiplying inequality (2.5) with tμk−1 on both sides and then integrating over the interval [0,1], we get
∫10tμk−1f(ta+m(1−t)b)dt+m(2α−1)∫10tμk−1f(am(1−t)+tb)dt≤(f(a)+m(2α−1)f(b))(kμ+kα)+m(f(b)+m(2α−1)f(am2))k2αμ2+μαk−cmαk2[(b−a)2+m(2α−1)(b−am2)2](μ+αk)(μ+2αk). | (2.6) |
Again taking ψ(u)=at+m(1−t)b that is t=mb−ψ(u)mb−a and ψ(v)=am(1−t)+bt that is t=ψ(v)−amb−am in (2.6), then by applying Definition 5, the second inequality can be obtained.
Remark 1. Under the assumption of Theorem 8, by fixing parameters one can achieve the following outcomes:
(i) If α=m=1 in (2.1), then the inequality stated in [17,Theorem 9] can be obtained.
(ii) If α=m=1, ψ=I and c=0 in (2.1), then Theorem 5 can be obtained.
(iii) If α=k=m=1, ψ=I and c=0 in (2.1), then Theorem 2 can be obtained.
(iv) If α=k=m=1 and ψ=I in (2.1), then the inequality stated in [18,Theorem 2.1] can be obtained.
(v) If α=μ=k=m=1, ψ=I and c=0 in (2.1), then the Hadamard inequality can be obtained.
(vi) If α=m=1 and c=0 in (2.1), then the inequality stated in [19,Theorem 1] can be obtained.
(vii) If α=m=k=1 and c=0 in (2.1), then the inequality stated in [20,Theorem 2.1] can be obtained.
(viii) If α=k=1 and ψ=I in (2.1), then the inequality stated in [21,Theorem 6] can be obtained.
(ix) If α=μ=m=k=1 and ψ=I in (2.1), then the inequality stated in [22,Theorem 6] can be obtained.
(x) If α=k=1, ψ=I and c=0 in (2.1), then the inequality stated in [23,Theorem 2.1] can be obtained.
(xi) If k=1 and ψ=I in (2.1), then the inequality stated in [24,Theorem 4] can be obtained.
Corollary 1. Under the assumption of Theorem 8 with c=0 in (2.1), the following fractional integral inequality holds:
f(a+mb2)≤Γk(μ+k)2α(mb−a)μk[kIμ,ψψ−1(a)+(f∘ψ)(ψ−1(mb))+(2α−1)mμk+1kIμ,ψψ−1(b)−(f∘ψ)(ψ−1(am))]≤[f(a)+m(2α−1)f(b)]μ2α(μ+kα)+mμαk(f(b)+m(2α−1)f(am2))2α(μ2+μαk). |
Corollary 2. Under the assumption of Theorem 8 with k=1 in (2.1), the following fractional integral inequality holds:
f(a+mb2)+cmμ(2α−1)22αμ(μ+1)(μ+2)[μ(μ+1)(b−a)2+2(am−mb)2+2μ(b−a)(am−mb)]≤Γ(μ+1)2α(mb−a)μ[Iμ,ψψ−1(a)+(f∘ψ)(ψ−1(mb))+(2α−1)mμ+1Iμ,ψψ−1(b)−(f∘ψ)(ψ−1(am))]≤[f(a)+m(2α−1)f(b)]μ2α(μ+α)+m(f(b)+m(2α−1)f(am2))αμ2α(μ2+μα)−cmαμ[(b−a)2+m(2α−1)(b−am2)2]2α(μ+α)(μ+2α). |
Corollary 3. Under the assumption of Theorem 8 with ψ=I in (2.1), the following fractional integral inequality holds:
f(a+mb2)+cm(2α−1)22α(μ+k)(μ+2k)[μ(μ+k)(b−a)2+2k2(am−mb)2+2μk(b−a)(am−mb)]≤Γk(μ+k)2α(mb−a)μk[kIμa+f(mb)+(2α−1)mμk+1kIμb−f(am)]≤[f(a)+m(2α−1)f(b)]μ2α(μ+kα)+mkαμ(f(b)+m(2α−1)f(am2))2α(μ2+μαk)−cmkαμ[(b−a)2+m(2α−1)(b−am2)2]2α(μ+αk)(μ+2αk). |
Theorem 9. Under the assumption of Theorem 8, the following k-fractional integral inequality holds:
f(a+mb2)+cmμ(2α−1)22α+2(μ+2k)[μ(μ+k)(b−a)2+(am−mb)2(μ2+5kμ+8k2)+2μ(μ+3k)(b−a)×(am−mb)]≤2μk−αΓk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1(2α−1)kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]≤μ[f(a)+m(2α−1)f(b)]22α(αk+μ)+m(2α(μ+αk)−μ)22α(μ+αk)(f(b)+m(2α−1)f(am2))−cmμ[2α(μ+2αk)−(μ+αk)]23α(μ+αk)(μ+2αk)((b−a)2+m(b−am2)2), | (2.7) |
with μ>0.
Proof. Let x=at2+m(2−t2)b, y=am(2−t2)+bt2 in (2.2) and integrating the resulting inequality over [0,1] after multiplying with tμk−1, we get
kμf(a+mb2)≤12α[∫10f(at2+m(2−t2)b)tμk−1dt+m(2α−1)∫10f(am(2−t2)+bt2)tμk−1dt]−cm(2α−1)22α+2(μ+2k)[μ(μ+k)(b−a)2k+k(am−mb)2(μ2+5kμ+8k2)+2μ(b−a)(am−mb)(μ+3k)k]. | (2.8) |
Let u∈[a,b], so that ψ(u)=at2+m(2−t2)b, that is, t=2(mb−ψ(u))mb−a and v∈[a,b], so that ψ(v)=am(2−t2)+bt2, that is, t=2(ψ(v)−am)b−am in (2.8), then by applying Definition 5, we get
f(a+mb2)≤2μkΓk(μ+k)2α(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1(2α−1)kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−cmμ(2α−1)22α4(μ+2k)[μ(μ+k)(b−a)2+(am−mb)2(μ2+5kμ+8k2)+2μ(b−a)(am−mb)(μ+3k)]. | (2.9) |
Hence by rearranging terms, the first inequality is established. Since f is strongly (α,m)-convex function with modulus c≥0, for t∈[0,1], we have following inequality
f(at2+m(2−t2)b)+m(2α−1)f(am(2−t2)+bt2)≤(t2)α[f(a)+m(2α−1)f(b)]+m(2α−tα2α)[f(b)+m(2α−1)f(am2)]−cmtα(2α−tα)[(b−a)2+m(b−am2)2]22α. | (2.10) |
Multiplying (2.10) with tμk−1 on both sides and integrating over [0,1], we get
∫10f(at2+m(2−t2)b)tμk−1dt+m(2α−1)∫10f(am(2−t2)+bt2)tμk−1dt≤k[f(a)+m(2α−1)f(b)]2α(αk+μ)+mk(2α(μ+αk)−μ)2αμ(μ+αk)(f(b)+m(2α−1)f(am2))−cmk(2α(μ+2αk)−(μ+αk))22α((b−a)2+m(b−am2)2). | (2.11) |
Again taking ψ(u)=at2+m(2−t2)b, that is, t=2(mb−ψ(v))mb−a and so that ψ(v)=am(2−t2)+bt2, that is, t=2(ψ(v)−am)b−am in (2.11), then by applying Definition 5, the second inequality can be obtained.
Remark 2. Under the assumption of Theorem 9, one can achieve the following outcomes:
(i) If α=m=1 in (2.7), then the inequality stated in [17,Theorem 10] can be obtained.
(ii) If α=m=k=1, ψ=I and c=0 in (2.7), then Theorem 3 can be obtained.
(iii) If α=μ=m=k=1, ψ=I and c=0 in (2.7), then Hadamard inequality can be obtained.
(iv) If α=m=1, ψ=I and c=0 in (2.7), then the inequality stated in [13,Theorem 2.1] can be obtained.
(v) If α=m=1 and c=0 in (2.7), then the inequality stated in [17,corrollary 5] can be obtained.
(vi) If α=k=1 and ψ=I in (2.7), then the inequality stated in [21,Theorem 7] can be obtained.
(vii) If k=1 and ψ=I in (2.7), then the inequality stated in [24,Theorem 5] can be obtained.
(viii) If α=m=k=1 and c=0 in (2.7), then the inequality stated in [25,Lemma 1] can be obtained.
Corollary 4. Under the assumption of Theorem 9 with c=0 in (2.7), the following fractional integral inequality holds:
f(a+mb2)≤2μk−αΓk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1(2α−1)kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]≤μ[f(a)+m(2α−1)f(b)]22α(αk+μ)+m(2α(μ+αk)−μ)22α(μ+αk)(f(b)+m(2α−1)f(am2)). |
Corollary 5. Under the assumption of Theorem 9 with k=1 in (2.7), the following fractional integral inequality holds:
f(a+mb2)+cmμ(2α−1)22α+2(μ+1)(μ+2)[μ(μ+1)(b−a)2+(am−mb)2(μ2+5μ+8)+2μ(μ+3)(b−a)(am−mb)]≤2μ−αΓ(μ+1)(mb−a)μ[Iμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμ+1(2α−1)Iμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]≤μ[f(a)+m(2α−1)f(b)]22α(α+μ)+m[2α(μ+α)−μ]22α(μ+α)(f(b)+m(2α−1)f(am2))−cmμ(2α(μ+2α)−(μ+α))23α(μ+α)(μ+2α)×[(b−a)2+m(b−am2)2]. |
Corollary 6. Under the assumption of Theorem 9 with ψ=I in (2.7), the following fractional integral inequality holds:
f(a+mb2)+cmμ(2α−1)22α+2(μ+2k)[μ(μ+k)(b−a)2+(am−mb)2(μ2+5kμ+8k2)+2μ(b−a)(μ+3k)(am−mb)]≤2μk−αΓk(μ+k)(mb−a)μk[kIμ(a+mb2)+f(mb))+mμk+1(2α−1)kIμ(a+mb2m)−f(am)]≤μ[f(a)+m(2α−1)f(b)]22α(αk+μ)+m(2α(μ+αk)−μ)22α(μ+αk)(f(b)+m(2α−1)f(am2))−cmμ[2α(μ+2αk)−(μ+αk)]23α(μ+αk)(μ+2αk)((b−a)2+m(b−am2)2). |
In this section, we find the error estimations of Hadamard type fractional inequalities for strongly (α,m)-convex functions by using (1.15) and (1.16) that gives the refinements of already proved estimations. The following lemma is useful to prove the next results.
Lemma 1. Let a<b and f:[a,b]→R be a differentiable mapping on (a,b). Also, suppose that f′∈L[a,b], ψ is positive strictly increasing function, having a continuous derivative ψ′ on (a,b). If [a,b]⊂Range(ψ), k>0, then the following identity holds for generalized fractional integral operators:
f(a)+f(b)2−Γk(μ+k)2(b−a)μk[kIμ,ψψ−1(a)+(f∘ψ)(ψ−1(b))+kIμ,ψψ−1(b)−(f∘ψ)(ψ−1(a)]=b−a2∫10[(1−t)μk−tμk]f′(ta+(1−t)b)dt. | (3.1) |
Proof. We cosider the right hand side of (3.1) as follows:
∫10((1−t)αk−tμk)f′(ta+(1−t)b)dt=∫10(1−t)μk−1f′(ta+(1−t)b)dt−∫10tμk−1f′(ta+(1−t)b)dt=I1−I2 | (3.2) |
Integrating by parts we get
I1=∫10(1−t)μk−1f′(ta+(1−t)b)dt=f(b)b−a−μk(b−a)∫10(1−t)μk−1f(ta+(1−t)b)dt |
We have v∈[a,b] such that ψ(v)=ta+(1−t)b, with this substitution one can have
I1=f(b)b−a−μk(b−a)∫ψ−1(b)ψ−1(a)(ψ(v)−ab−a)μk−1(f∘ψ(v))b−aψ′(v)dv=f(b)b−a−Γk(μ+k)(b−a)μk+1Iμ,ψψ−1(b)−(f∘ψ)(ψ−1(a)). | (3.3) |
Similarly one can get after a little computation
I2=−f(a)b−a+Γk(μ+k)(b−a)μk+1Iμ,ψψ−1(a)+(f∘ψ)(ψ−1(b)). | (3.4) |
Using (3.3) and (3.4) in (3.2), (3.1) can be obtained.
Remark 3. (i) If k=1 and ψ=I in (3.1), then the equality stated in [8,Lemma 2] can be obtained.
(ii) For μ=k=1 and ψ=I in (3.1), then the equality stated in [28,Lemma 2.1] can be obtained.
Theorem 10. Let f:[a,b]→R be a differentiable mapping on (a,b) with 0≤a<b. Also suppose that |f′| is strongly (α,m)-convex with modulus c≥0, ψ is positive strictly increasing function having continuous derivative ψ′ on (a,b). If [a,b]⊂Range(ψ), k>0 and (α,m)∈(0,1]2, then the following k-fractional integral inequality holds:
|f(a)+f(b)2−Γk(μ+k)2(b−a)μk[kIμ,ψψ−1(a)+(f∘ψ)(ψ−1(b))+kIμ,ψψ−1(b)−(f∘ψ)(ψ−1(a))]|≤b−a2[|f′(a)|(2B(12;α+1,μk+1)+1−(12)α+μkα+μk+1−B(α+1,μk+1))+m|f′(bm)|×(2(1−(12)μk)μk+1+(12)1+μk+αμk+1+α−2B(12;α+1,μk+1)−1−(12)1+μk+αμk+1+α+B(α+1,μk+1))−cm(bm−a)22(2B(12;α+1,μk+1)−2α4−α2˜F1(1+2α,−μk,2(1+α);12)+1−(12)μk+αμk+1+α−B(α+1,μk+1)−1−(12)μk+2αμk+1+2α+B(2α+1,μk+1))], | (3.5) |
with μ>0 and 2˜F1(1+2α,−μk,2(1+α);12) is regularized hypergeometric function.
Proof. By Lemma 1, it follows that
|f(a)+f(b)2−Γk(μ+k)2(b−a)μk[kIμ,ψψ−1(a)+(f∘ψ)(ψ−1(b))+kIμ,ψψ−1(b)−(f∘ψ)(ψ−1(b)]|≤b−a2∫10|(1−t)μk−tμk||f′(ta+(1−t)b|)dt. | (3.6) |
Since |f′| is strongly (α,m)-convex function on [a,b] and t∈[0,1], we have
|f′(ta+(1−t)b)|≤tα|f′(a)|+m(1−tα)|f′(bm)|−cmtα(1−tα)(bm−a)2. | (3.7) |
Therefore (3.6) implies the following inequality
|f(a)+f(b)2−Γk(μ+k)2(b−a)μk[kIμ,ψψ−1(a)+(f∘ψ)(ψ−1(b))+kIμ,ψψ−1(b)−(f∘ψ)(ψ−1(b)]|≤b−a2∫10|(1−t)μk−tμk|(tα|f′(a)|+m(1−tα)|f′(bm)|−cmtα(1−tα)(bm−a)2]dt≤b−a2[|f′(a)|(∫120tα((1−t)μk−tμk)dt+∫112tα(tμk−(1−t)μk)dt)+m|f′(bm)|(∫120(1−tα)((1−t)μk−tμk)dt+∫112(1−tα)(tμk−(1−t)μk)dt)−cm(bm−a)2(∫120tα(1−tα)((1−t)μk−tμk)dt+∫112tα(1−tα)(tμk−(1−t)μk)dt)]. | (3.8) |
In the following, we compute integrals appearing on the right side of the above inequality
∫120tα((1−t)μk−tμk)dt+∫112tα(tμk−(1−t)μk)dt=2B(12;α+1,μk+1)+1−(12)α+μkα+μk+1−B(α+1,μk+1). | (3.9) |
∫120(1−tα)((1−t)μk−tμk)dt+∫112(1−tα)(tμk−(1−t)μk)dt.=2(1−(12)μk)μk+1+(12)1+μk+αμk+1+α−2B(12;α+1,μk+1)−1−(12)1+μk+αμk+1+α+B(α+1,μk+1). | (3.10) |
∫112tα(1−tα)((1−t)μk−tμk)dt+∫112tα(1−tα)(tμk−(1−t)μk)dt=2B(12;α+1,μk+1)−(12)1+μk+αμk+1+α−2α4−α2˜F1(1+2α,−μk,2(1+α);12)+(12)1+μk+2αμk+1+2α+1−(12)1+μk+αμk+1+α−B(α+1,μk+1)−1−(12)1+μk+2αμk+1+2α+B(2α+1,μk+1). | (3.11) |
Using (3.9), (3.10) and (3.11) in (3.8), we get the required inequality (3.5).
Remark 4. Under the assumption of Theorem 10, one can achieve the following outcomes:
(i) If α=m=1 in (3.5), then the inequality stated in [17,Theorem 11] can be obtained.
(ii) If α=m=1 and c=0 in (3.5), then the inequality stated in [17,Corollary 10] can be obtained.
(iii) If α=m=1, ψ=I and c=0 in (3.5), then Theorem 7 can be obtained.
(iv) If α=m=k=1, ψ=I and c=0 in (3.5), then Theorem 4 can be obtained.
(v) If α=k=1 and ψ=I in (3.5), then the inequality stated in [21,Theorem 8] can be obtained.
(vi) If α=μ=m=k=1 and ψ=I in (3.5), then the inequality stated in [26,Corollary 6] can be obtained.
Corollary 7. Under the assumption of Theorem 10 with c=0 in (3.5), the following inequality holds:
|f(a)+f(b)2−Γk(μ+k)2(b−a)μk[kIμ,ψψ−1(a)+(f∘ψ)(ψ−1(b))+kIμ,ψψ−1(b)−(f∘ψ)(ψ−1(a))]|≤b−a2[|f′(a)|(2B(12;α+1,μk+1)+1−(12)α+μkα+μk+1−B(α+1,μk+1))+m|f′(bm)|×(2(1−(12)μk)μk+1+(12)1+μk+αμk+1+α−2B(12;α+1,μk+1)−1−(12)1+μk+αμk+1+α+B(α+1,μk+1))]. |
Corollary 8. Under the assumption of Theorem 10 with k=m=1 and c=0 in (3.5), the following inequality holds:
|f(a)+f(b)2−Γ(μ+1)2(b−a)μ[Iμ,ψψ−1(a)+(f∘ψ)(ψ−1(b))+Iμ,ψψ−1(b)−(f∘ψ)(ψ−1(a))]|≤b−a2[|f′(a)|(2B(12;α+1,μ+1)+1−(12)α+μα+μ+1−B(α+1,μ+1))+|f′(b)|×(2(1−(12)μ)μ+1+(12)1+μ+αμ+1+α−2B(12;α+1,μ+1)−1−(12)1+μ+αμ+1+α+B(α+1,μ+1))]. |
Corollary 9. Under the assumption of Theorem 10 with ψ=I in (3.5), the following inequality holds:
|f(a)+f(b)2−Γk(μ+k)2(b−a)μk[kIμa+f(b)+kIμb−f(a)]|≤b−a2[|f′(a)|(2B(12;α+1,μk+1)+1−(12)α+μkα+μk+1−B(α+1,μk+1))+m|f′(bm)|(2(1−(12)μk)μk+1+(12)1+μk+αμk+1+α−2B(12;α+1,μk+1)−1−(12)1+μk+αμk+1+α+B(α+1,μk+1))]−c(b−a)3(2B(12;α+1,μk+1)−2α4−α2˜F1(1+2α,−μk,2(1+α);12)+1−(12)μk+αμk+1+α−B(α+1,μk+1)−1−(12)μk+2αμk+1+2α+B(2α+1,μk+1))]. |
For next two results, we need the following lemma.
Lemma 2. [26] Let f:[a,b]→R be a differentiable mapping on (a,b) such that f′∈L[a,b], ψ is positive increasing function having continuous derivative ψ′ on (a,b). If [a,b]⊂Range(ψ), k>0 and m∈(0,1], then the following integral identity for fractional integral holds:
2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]=mb−a4[∫10tμkf′(at2+m(2−t2)b)dt−∫10tμkf′(am(2−t2)+bt2)dt]. | (3.12) |
Theorem 11. Let f:[a,b]→R be a differentiable mapping on (a,b) such that f′∈Ł[a,b]. Also suppose that |f′|q is strongly (α,m)-convex function on [a,b] for q≥1, ψ is an increasing and positive monotone function on (a,b], having a continuous derivative ψ′ on (a,b). If [a,b]⊂Range(ψ), k>0 and (α,m)∈(0,1]2, then the following k-fractional integral inequality holds:
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a22+1q(μk+1)(μk+2)1q[(21−αk|f′(a)|q(μk+1)(μk+2)αk+μ+k+21−αmk|f′(b)|q(μk+1)(μk+2)(2α(αk+μ+k)−(μ+k)(μ+k)(αk+μ+k))−21−2αcm(b−a)2(μk+1)(μk+2)×(2α(2αk+μ+k)−(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q+(21−αkm|f′(am2)|q(μk+1)(μk+2)(2α(αk+μ+k)−(μ+k)(μ+k)(αk+μ+k))+21−αk(μk+1)(μk+2)|f′(b)|qαk+μ+k−21−2αcm(μk+1)(μk+2)(b−am2)2(2α(2αk+μ+k)−(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q], | (3.13) |
with μ>0.
Proof. Applying Lemma 2 and strongly (α,m)-convexity of |f′|, (for q=1), we have
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a4[∫10|tμkf′(at2+m(2−t2)b)|dt+∫10|tμkf′(am(2−t2)+bt2)dt|]≤mb−a4[(|f′(a)|+|f′(b)|2α)∫10tμk+αdt+m(|f′(b)|+|f′(am2)|)2α∫10(2α−tα)tμkdt−cm((b−a)2+(b−am2)2)22α∫10tμk+α(2α−tα)dt]≤mb−a4[k[|f′(a)|+|f′(b)|]2α(μ+αk+k)+mk[2α(αk+μ+k)−(μ+k)](μ+k)(αk+μ+k)×(|f′(b)|+|f′(am2)|)−cmk[2α(2αk+μ+k)−(αk+μ+k)]22α(αk+μ+k)(2αk+μ+k)((b−a)2+(b−am2)2)]. |
Now for q>1, we proceed as follows: From Lemma 2 and using power mean inequality, we get
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a4(∫10tμkdt)1−1q[(∫10tμk|f′(at2+m(2−t2)b)|qdt)1q+(∫10tμk|f′(am(2−t2)+bt2)|qdt)1q]≤mb−a4(μk+1)1p[(|f′(a)|q2α∫10tα+μkdt+m|f′(b)|q2α∫10(2α−tα)tμkdt−cm(b−a)222α∫10(2α−tα)tμk+αdt)1q+(m|f′(am2)|2α∫10(2α−tα)tμkdt+|f′(b)|q2α∫10tα+μkdt−cm(b−am2)222α∫10(2α−tα)tμk+αdt)1q]≤mb−a4(μk+1)1p[(k|f′(a)|q2α(αk+μ+k)+mk|f′(b)|q[2α(αk+μ+k)−(μ+k)]2α(μ+k)(αk+μ+k)−cmk(b−a)2[2α(2αk+μ+k)−(αk+μ+k)]22α(kα+μ+k)(2αk+μ+k))1q+(mk|f′(am2)|q[2α(αk+μ+k)−(μ+k)]2α(μ+k)(αk+μ+k)+k|f′(b)|q2α(kα+μ+k)−cmk(b−am2)2[2α(2αk+μ+k)−(αk+μ+k)]22α(kα+μ+k)(2αk+μ+k))1q]≤mb−a22+1q(μk+1)(μk+2)1q[(2k|f′(a)|q(μk+1)(μk+2)2α(αk+μ+k)+21−αmk|f′(b)|q(μk+1)(μk+2)(2α(αk+μ+k)−(μ+k)(μ+k)(αk+μ+k))−21−2αcm(b−a)2(μk+1)(μk+2)(2α(2αk+μ+k)−(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q+(21−αkm|f′(am2)|q(μk+1)(μk+2)2α(αk+μ+k)−(μ+k)(μ+k)(αk+μ+k)+2k(μk+1)(μk+2)|f′(b)|q2α(αk+μ+k)−2cm(μk+1)(μk+2)(b−am2)222α2α(2αk+μ+k)−(αk+μ+k)(kα+μ+k)(2αk+μ+k))1q]. |
This completes the proof.
Remark 5. Under the assumption of Theorem 11, one can achieve the following outcomes:
(i) If α=m=1 in (3.13), then the inequality stated in [17,Theorem 12] can be obtained.
(ii) If α=k=1 and ψ=I in (3.13), then the inequality stated in [21,Theorem 10] can be obtained.
(iii) If α=k=1, ψ=I and c=0 in (3.13), then the inequality stated in [27,Theorem 2.4] can be obtained.
(iv) If α=m=1, ψ=I and c=0 in (3.13), then the inequality stated in [13,Theorem 3.1] can be obtained.
(v) If α=m=k=1, ψ=I and c=0 in (3.13), then the inequality stated in [9,Theorem 5] can be obtained.
(vi) If α=μ=k=m=q=1 and ψ=I in (3.13), then the inequality stated in [26,Corollary 8] can be obtained.
(vii) If α=μ=k=m=q=1, ψ=I and c=0 in (3.13), then the inequality stated in [28,Theorem 2.2] can be obtained.
Corollary 10. Under the assumption of Theorem 11 with c=0 in (3.13), the following inequality holds:
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a22+1q(μk+1)(μk+2)1q[(21−αk|f′(a)|q(μk+1)(μk+2)αk+μ+k+21−αmk|f′(b)|q(μk+1)(μk+2)(2α(αk+μ+k)−(μ+k)(μ+k)(αk+μ+k)))1q+(21−αkm|f′(am2)|q(μk+1)(μk+2)×(2α(αk+μ+k)−(μ+k)(μ+k)(αk+μ+k))+21−αk(μk+1)(μk+2)|f′(b)|qαk+μ+k)1q]. |
Corollary 11. Under the assumption of Theorem 11 with k=1 in (3.13), the following inequality holds:
|2μ−1Γ(μ+1)(mb−a)μ[Iμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμ+1Iμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a22+1q(μ+1)(μ+2)1q[(21−α|f′(a)|q(μ+1)(μ+2)α+μ+1+21−αm|f′(b)|q(μ+1)(μ+2)×(2α(α+μ+1)−(μ+1)(μ+1)(α+μ+1))−21−2αcm(b−a)2(μ+1)(μ+2)(2α(2α+μ+1)−(α+μ+1)(α+μ+1)(2α+μ+1)))1q+(21−αm|f′(am2)|q(μ+1)(μ+2)(2α(α+μ+1)−(μ+1)(μ+1)(α+μ+1))+21−α(μ+1)(μ+2)|f′(b)|qα+μ+1−21−2αcm(μ+1)(μ+2)(b−am2)2(2α(2α+μ+1)−(α+μ+1)(α+μ+1)(2α+μ+1)))1q]. |
Corollary 12. Under the assumption of Theorem 11 with ψ=I in (3.13), the following inequality holds:
|2μk−1Γk(μ+k)(mb−a)μk[kIμ(a+mb2)+f(mb)+mμk+1kIμ(a+mb2m)−f(am)]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a22+1q(μk+1)(μk+2)1q[(21−αk|f′(a)|q(μk+1)(μk+2)αk+μ+k+21−αmk|f′(b)|q(μk+1)(μk+2)×(2α(αk+μ+k)−(μ+k)(μ+k)(αk+μ+k))−21−2αcm(b−a)2(μk+1)(μk+2)(2α(2αk+μ+k)−(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q+(21−αkm|f′(am2)|q(μk+1)(μk+2)(2α(αk+μ+k)−(μ+k)(μ+k)(αk+μ+k))+21−αk(μk+1)(μk+2)|f′(b)|qαk+μ+k−21−2αcm(μk+1)(μk+2)(b−am2)2(2α(2αk+μ+k)−(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q]. |
Theorem 12. Let f:I→R be a differentiable mapping on (a,b) with a<b. Also suppose that |f′|q is strongly (α,m)-convex function for q>1, ψ is positive increasing function having continuous derivative ψ′ on (a,b). If [a,b]⊂Range(ψ), k>0 and (α,m)∈(0,1]2, then the following fractional integral inequality holds:
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a42−1p(μpk+1)1p[((|f′(a)|(22−αα+1)1q+|f′(b)|(2−αm[2α(1+α)−1]1+α)1q)q−22−2αcm(b−a)2(−1−α+2α(1+2α)(1+α)(1+2α)))1q+((|f′(am2)|(22−αm[2α(1+α)−1]1+α)1q+(22−αα+1)1q|f′(b)|)q−22−2αcm(b−am2)2(−1(1+α)+2α(1+2α)(1+α)(1+2α)))1q], | (3.14) |
with μ>0 and 1p+1q=1.
Proof. By applying Lemma 2 and using the property of modulus, we get
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a4[∫10|tμkf′(at2+m(2−t2)b)|dt+∫10|tμkf′(am(2−t2)+bt2)|dt]. |
Now applying Hölder's inequality for integrals, we get
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a4(μpk+1)1p[(∫10|f′(at2+m(2−t2)b)|qdt)1q+(∫10|f′(am(2−t2)+bt2)|qdt)1q]. |
Using strongly (α,m)-convexity of |f′|q, we get
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a4(μpk+1)1p[(|f′(a)|q2α∫10tαdt+m|f′(b)|q2α∫10(2α−tα)dt−cm(b−a)222α∫10tα(2α−tα)dt)1q+(m|f′(am2)|q2α∫10(2α−tα)dt+|f′(b)|q2α∫10tαdt−cm(b−am2)222α∫10tα(2α−tα)dt)1q]=mb−a4(μpk+1)1p[(|f′(a)|q2α(α+1)+m|f′(b)|q[2α(1+α)−1]2α(1+α)−cm(b−a)222α(−1(1+α)+2α(1+2α)(1+α)(1+2α)))1q+(m|f′(am2)|q[2α(1+α)−1]2α(1+α)+|f′(b)|q2α(α+1)−cm(b−am2)222α(−1−α+2α(1+2α)(1+α)(1+2α)))1q]≤mb−a42−1p(μpk+1)1p[(22−α|f′(a)|q(α+1)+22−αm|f′(b)|q[2α(1+α)−1]1+α−22−2αcm(b−a)2(−1−α+2α(1+2α)(1+α)(1+2α)))1q+(22−αm|f′(am2)|q[2α(1+α)−1](1+α)+22−α|f′(b)|qα+1−22−2αcm(b−am2)2(−1−α+2α(1+2α)(1+α)(1+2α)))1q]≤mb−a42−1p(μpk+1)1p[((|f′(a)|(22−αα+1)1q+|f′(b)|(22−αm[2α(1+α)−1]1+α)1q)q−22−2αcm(b−a)2(−1−α+2α(1+2α)(1+α)(1+2α)))1q+((|f′(am2)|×(22−αm[2α(1+α)−1]1+α)1q+(22−αα+1)1q|f′(b)|)q−22−2αcm(b−am2)2(−1(1+α)+2α(1+2α)(1+α)(1+2α)))1q]. |
Here, we have used the fact aq+bq≤(a+b)q, for q>1, a,b≥0. This completes the proof.
Remark 6. Under the assumption of Theorem 12, one can achieve the following outcomes:
(i) If α=m=1 in (3.14), then the inequality stated in [17,Theorem 13] can be obtained.
(ii) If α=k=1 and ψ=I in (3.14), then the inequality stated in [21,Theorem 10] can be obtained.
(iii) If α=k=1, ψ=I and c=0 in (3.14), then the inequality stated in [27,Theorem 2.7] can be obtained.
(iv) If α=m=1, ψ=I and c=0 in (3.14), then the inequality stated in [13,Theorem 2.7] can be obtained.
(v) If α=μ=k=m=1, ψ=I and c=0 in (3.14), then the inequality stated in [29,Theorem 2.4] can be obtained.
Corollary 13. Under the assumption of Theorem 12 with c=0 in 3.14, the following inequality holds:
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a42−1p(μpk+1)1p[|f′(a)|(22−αα+1)1q+|f′(b)|(22−αm[2α(1+α)−1]1+α)1q+(|f′(am2)|(22−αm[2α(1+α)−1]1+α)1q+(22−αα+1)1q|f′(b)|)]. |
Corollary 14. Under the assumption of Theorem 12 with k=1 in (3.14), the following inequality holds:
|2μ−1Γ(μ+1)(mb−a)μ[Iμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμ+1Iμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a42−1p(μp+1)1p[((|f′(a)|(22−αα+1)1q+|f′(b)|(2−αm[2α(1+α)−1]1+α)1q)q−22−2αcm(b−a)2(−1−α+2α(1+2α)(1+α)(1+2α)))1q+((|f′(am2)|(22−αm[2α(1+α)−1]1+α)1q+(22−αα+1)1q|f′(b)|)q−22−2αcm(b−am2)2(−1(1+α)+2α(1+2α)(1+α)(1+2α)))1q]. |
Corollary 15. Under the assumption of Theorem 12 with ψ=I in (3.14), the following inequality holds:
|2μk−1Γk(μ+k)(mb−a)μk[kIμ(a+mb2)+f(mb)+mμk+1kIμ(a+mb2m)−f(am)]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a42−1p(μpk+1)1p[((|f′(a)|(22−αα+1)1q+|f′(b)|(22−αm[2α(1+α)−1]1+α)1q)q−22−2αcm(b−a)2×(−1−α+2α(1+2α)(1+α)(1+2α)))1q+((|f′(am2)|(22−αm[2α(1+α)−1]1+α)1q+(22−αα+1)1q|f′(b)|)q−22−2αcm(b−am2)2(−1(1+α)+2α(1+2α)(1+α)(1+2α)))1q]. |
Some new versions of the Hadamard type inequalities are established for strongly (α,m)-convex functions via the generalized Riemann-Liouville fractional integrals. We have obtained new generalizations as well as proved estimations of such inequalities for strongly (α,m)-convex functions. We conclude that findings of this study give the refinements as well as generalization of several fractional inequalities for convex, strongly convex and strongly m-convex functions. The reader can further deduce inequalities for Riemann-Liouville fractional integrals.
Authors do not have conflict of interest.
[1] |
Yang YB, Zhu SM, Xu HF (2022) Study on capacitance properties of redox ion doped Zn-based electrode materials. Defect Diffus Forum 421: 143–148. https://doi.org/10.4028/p-u2pe4h doi: 10.4028/p-u2pe4h
![]() |
[2] |
Jayakumar S, Santhosh PC, Mohideen MM, et al. (2024) A comprehensive review of metal oxides (RuO2, Co3O4, MnO2 and NiO) for supercapacitor applications and global market trends. J Alloys Compd 976: 173170. https://doi.org/10.1016/j.jallcom.2023.173170 doi: 10.1016/j.jallcom.2023.173170
![]() |
[3] |
Majumdar D, Maiyalagan T, Jiang Z (2019) Recent progress in ruthenium oxide-based composites for supercapacitor applications. ChemElectroChem 6: 4343–4372. https://doi.org/10.1002/celc.201900668 doi: 10.1002/celc.201900668
![]() |
[4] | Sugimoto W (2014) Ruthenium oxides as supercapacitor electrodes, In: Kreysa G, Ota Ki, Savinell RF, Encyclopedia of Applied Electrochemistry, New York: Springer, 1813–1821. https://doi.org/10.1007/978-1-4419-6996-5_511 |
[5] |
Nisha B, Vidyalakshmi Y, Abdul Razack S (2020) Enhanced formation of ruthenium oxide nanoparticles through green synthesis for highly efficient supercapacitor applications. Adv Powder Technol 31: 1001–1006. http://dx.doi.org/10.1016/j.apt.2019.12.026 doi: 10.1016/j.apt.2019.12.026
![]() |
[6] |
Guo Y, Zhu Z, Chen Y, et al. (2020) High-performance supercapacitors of ruthenium-based nanohybrid compounds. J Alloys Compd 842: 155798. https://doi.org/10.1016/j.jallcom.2020.155798 doi: 10.1016/j.jallcom.2020.155798
![]() |
[7] | Kim IH, Kim KB (2001) Ruthenium oxide thin film electrodes for supercapacitors. Electrochem Solid-State Lett 4: A62. https://iopscience.iop.org/article/10.1149/1.1359956 |
[8] |
Zhang M, Dai X, Zhang C, et al. (2020) High specific capacitance of the electrodeposited MnO2 on porous foam Nickel soaked in alcohol and its dependence on precursor concentration. Materials 13: 181. https://doi.org/10.3390/ma13010181 doi: 10.3390/ma13010181
![]() |
[9] |
Brousse T, Bélanger D, Long JW (2015) To be or not to be pseudocapacitive? J Electrochem Soc 162: A5185. http://dx.doi.org/10.1149/2.0201505jes doi: 10.1149/2.0201505jes
![]() |
[10] |
Lang X, Hirata A, Fujita T, et al. (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6: 232–236. https://doi.org/10.1038/nnano.2011.13 doi: 10.1038/nnano.2011.13
![]() |
[11] |
Ryu I, Kim G, Yoon H, et al. (2016) Hierarchically nanostructured MnO2 electrodes for pseudocapacitor application. RSC Adv 6: 102814–102820. https://doi.org/10.1039/C6RA22841K doi: 10.1039/C6RA22841K
![]() |
[12] |
Liu Y, Liu S, Wang X, et al. (2023) One-step synthesis of self-standing porous Co-doped NiO electrodes for high-performance supercapacitors. J Alloys Compd 934: 167821. https://doi.org/10.1016/j.jallcom.2022.167821 doi: 10.1016/j.jallcom.2022.167821
![]() |
[13] |
Manibalan G, Govindaraj Y, Yesuraj J, et al. (2021) Facile synthesis of NiO@Ni(OH)2-α-MoO3 nanocomposite for enhanced solid-state symmetric supercapacitor application. J Colloid Interface Sci 585: 505–518. https://doi.org/10.1016/j.jcis.2020.10.032 doi: 10.1016/j.jcis.2020.10.032
![]() |
[14] |
Veeresh S, Ganesha H, Nagaraju YS, et al. (2023) Activated carbon incorporated graphene oxide with SnO2 and TiO2-Zn nanocomposite for supercapacitor application. J Alloys Compd 952: 169907. https://doi.org/10.1016/j.jallcom.2023.169907 doi: 10.1016/j.jallcom.2023.169907
![]() |
[15] |
Asen P, Haghighi M, Shahrokhian S, et al. (2019) One step synthesis of SnS2-SnO2 nano-heterostructured as an electrode material for supercapacitor applications. J Alloys Compd 782: 38–50. https://doi.org/10.1016/j.jallcom.2018.12.176 doi: 10.1016/j.jallcom.2018.12.176
![]() |
[16] |
Huang X, Zhang W, Tan Y, et al. (2016) Facile synthesis of rod-like Bi2O3 nanoparticles as an electrode material for pseudocapacitors. Ceram Int 42: 2099–2105. https://doi.org/10.1016/j.ceramint.2015.09.157 doi: 10.1016/j.ceramint.2015.09.157
![]() |
[17] |
Wu YL, Guo W, Lian XJ, et al. (2019) Self-assembled three-dimensional hierarchical CoMoO4 nanosheets on NiCo2O4 for high-performance supercapacitor. J Alloys Compd 793: 418–424. https://doi.org/10.1016/j.jallcom.2019.04.189 doi: 10.1016/j.jallcom.2019.04.189
![]() |
[18] |
Nandagopal T, Balaji G, Vadivel S (2023) Enhanced electrochemical performance of CoMoO4 nanorods/reduced graphene oxide (rGO) as asymmetric supercapacitor devices. J Energy Storage 68: 107710. https://doi.org/10.1016/j.est.2023.107710 doi: 10.1016/j.est.2023.107710
![]() |
[19] |
Gao Y, Tao J, Li J, et al. (2022) Construction of CoMoO4 nanorods wrapped by Ni–Co–S nanosheets for high-performance supercapacitor. J Alloys Compd 925: 166705. https://doi.org/10.1016/j.jallcom.2022.166705 doi: 10.1016/j.jallcom.2022.166705
![]() |
[20] |
Jiang S, Pang M, Pang M, et al. (2023) 3D emerging nanosheets comprising hierarchical CoMoO4/MnO2 composites for flexible all-solid-state asymmetric supercapacitors. Colloids Surf A 656: 130536. https://doi.org/10.1016/j.colsurfa.2022.130536 doi: 10.1016/j.colsurfa.2022.130536
![]() |
[21] |
Nasser R, Wang XL, Tiantian J, et al. (2022) Hydrothermal design of CoMoO4@CoWO4 core-shell heterostructure for flexible all-solid-state asymmetric supercapacitors. J Energy Storage 51: 104349. http://dx.doi.org/10.1016/j.est.2022.104349 doi: 10.1016/j.est.2022.104349
![]() |
[22] |
Nashim A, Mohanty R, Ray PK, et al. (2023) Gallium-based nascent electrode materials towards promising supercapacitor applications: A review. RSC Adv 13: 24536–24553. https://doi.org/10.1039/D3RA04537D doi: 10.1039/D3RA04537D
![]() |
[23] |
Roy R, Hill VG, Osborn EF (1952) Polymorphism of Ga2O3 and the system Ga2O3–H2O. J Am Chem Soc 74: 719–722. https://doi.org/10.1021/ja01123a039 doi: 10.1021/ja01123a039
![]() |
[24] |
Lyons JL (2019) Electronic properties of Ga2O3 polymorphs. ECS J Solid State Sci Technol 8: Q3226. http://dx.doi.org/10.1149/2.0331907jss doi: 10.1149/2.0331907jss
![]() |
[25] |
El-Sayed EI, Al-Ghamdi AA, Al-Heniti S, et al. (2011) Synthesis of ultrafine β-Ga2O3 nanopowder via hydrothermal approach: A strong UV "excimer-like" emission. Mater Lett 65: 317–321. https://doi.org/10.1016/j.matlet.2010.10.007 doi: 10.1016/j.matlet.2010.10.007
![]() |
[26] |
Yu J, Fu N, Zhao J, et al. (2019) High specific capacitance electrode material for supercapacitors based on resin-derived nitrogen-doped porous carbons. ACS Omega 4: 15904–15911. https://doi.org/10.1021/acsomega.9b01916 doi: 10.1021/acsomega.9b01916
![]() |
[27] |
Tornheim A, O'Hanlon DC (2020) What do coulombic efficiency and capacity retention truly measure? A deep dive into cyclable lithium inventory, limitation type, and redox side reactions. J Electrochem Soc 167: 110520. http://dx.doi.org/10.1149/1945-7111/ab9ee8 doi: 10.1149/1945-7111/ab9ee8
![]() |
[28] |
Pearton SJ, Yang J, Cary PHIV, et al. (2018) A review of Ga2O3 materials, processing, and devices. Appl Phys Rev 5: 011301. http://dx.doi.org/10.1063/1.5006941 doi: 10.1063/1.5006941
![]() |
[29] | Briggs D (1981) Handbook of X-ray photoelectron spectroscopy, In: Wanger CD, Riggs WM, Davis LE, et al. Physical Electronics Division, Minnesota: John Wiley & Sons. https://doi.org/10.1002/sia.740030412 |
[30] | Moulder JF, Stickle WF, Sobol WM, et al. (1992) Handbook of X-ray photoelectron spectroscopy. |
[31] |
Swallow JEN, Vorwerk C, Mazzolini P, et al. (2020) Influence of polymorphism on the electronic structure of Ga2O3. Chem Mater 32: 8460–8470. http://dx.doi.org/10.1021/acs.chemmater.0c02465 doi: 10.1021/acs.chemmater.0c02465
![]() |
[32] |
Makeswaran N, Battu AK, Swadipta R, et al. (2019) Spectroscopic characterization of the electronic structure, chemical bonding, and band gap in thermally annealed polycrystalline Ga2O3 thin films. ECS J Solid State Sci Technol 8: Q3249. http://dx.doi.org/10.1149/2.0461907jss doi: 10.1149/2.0461907jss
![]() |
[33] |
Vogt P, Bierwagen O (2016) Reaction kinetics and growth window for plasma-assisted molecular beam epitaxy of Ga2O3: Incorporation of Ga vs. Ga2O desorption. Appl Phys Lett 108: 072101. http://dx.doi.org/10.1063/1.4942002 doi: 10.1063/1.4942002
![]() |
[34] |
Azarov A, Park JH, Jeon DW, et al. (2023) High mobility of intrinsic defects in α-Ga2O3. Appl Phys Lett 122: 182104. http://dx.doi.org/10.1063/5.0149870 doi: 10.1063/5.0149870
![]() |
[35] | Pratiyush AS, Krishnamoorthy S, Muralidharan R, et al. (2019) 16—Advances in Ga2O3 solar-blind UV photodetectors, In: Pearton S, Ren F, Mastro M, Gallium Oxide, Amsterdam: Elsevier, 369–399. https://doi.org/10.1016/C2017-0-01768-8 |
[36] |
Lee YJ, Schweitz MA, Oh JM, et al. (2020) Influence of annealing atmosphere on the characteristics of Ga2O3/4H-SiC n-n heterojunction diodes. Materials 13: 434. https://doi.org/10.3390/ma13020434 doi: 10.3390/ma13020434
![]() |
[37] |
Zhang P, Li Y, Wang M, et al. (2023) Self-doped (N/O/S) nanoarchitectonics of hierarchically porous carbon from palm flower for high-performance supercapacitors. Diam Relat Mater 136: 109976. https://doi.org/10.1016/j.diamond.2023.109976 doi: 10.1016/j.diamond.2023.109976
![]() |
[38] |
Molahalli V, Bhat VS, Shetty A, et al. (2023) ZnO doped SnO2 nano flower decorated on graphene oxide/polypyrrole nanotubes for symmetric supercapacitor applications. J Energy Storage 69: 107953. https://doi.org/10.1016/j.est.2023.107953 doi: 10.1016/j.est.2023.107953
![]() |
[39] |
Fei F, Zhou H, Lin J, et al. (2023) Facile synthesis of nanostructured bismuth oxide on nickel foam with outstanding electrochemical behavior for supercapacitor application. Mater Today Commun 36: 106797. https://doi.org/10.1016/j.mtcomm.2023.106797 doi: 10.1016/j.mtcomm.2023.106797
![]() |
[40] |
Sudhakar K, Rajeswaran P, Kamatchi T, et al. (2023) Facile one-pot synthesis of porous NiCoP@reduced graphene oxide composite as active electrode material for high energy density asymmetric supercapacitor. Chem Phys Lett 826: 140635. https://doi.org/10.1016/j.cplett.2023.140635 doi: 10.1016/j.cplett.2023.140635
![]() |
[41] |
Gowdhaman A, Kumar SA, Elumalai D, et al. (2023) Ni-MOF derived NiO/Ni/r-GO nanocomposite as a novel electrode material for high-performance asymmetric supercapacitor. J Energy Storage 61: 106769. https://doi.org/10.1016/j.est.2023.106769 doi: 10.1016/j.est.2023.106769
![]() |
[42] |
Naveenkumar P, Maniyazagan M, Yesuraj J, et al. (2022) Electrodeposited MnS@Ni(OH)2 core-shell hybrids as an efficient electrode materials for symmetric supercapacitor applications. Electrochim Acta 412: 140138. https://doi.org/10.1016/j.electacta.2022.140138 doi: 10.1016/j.electacta.2022.140138
![]() |
[43] |
Dong L, Zhao W, Liu T, et al. (2022) In situ growth of Ni-Co-S nanosheet arrays on rGO decorated Ni foam toward high-performance supercapacitors. J Electroanal Chem 921: 116658. https://doi.org/10.1016/j.jelechem.2022.116658 doi: 10.1016/j.jelechem.2022.116658
![]() |
[44] |
Mane SA, Kashale AA, Kamble GP, et al. (2022) Facile synthesis of flower-like Bi2O3 as an efficient electrode for high performance asymmetric supercapacitor. J Alloys Compd 926: 166722. https://doi.org/10.1016/j.jallcom.2022.166722 doi: 10.1016/j.jallcom.2022.166722
![]() |
[45] |
Guo W, Lian X, Tian Y, et al. (2021) Facile fabrication 1D/2D/3D Co3O4 nanostructure in hydrothermal synthesis for enhanced supercapacitor performance. J Energy Storage 38: 102586. https://doi.org/10.1016/j.est.2021.102586 doi: 10.1016/j.est.2021.102586
![]() |
[46] |
Al-Harbi MY, Abdel-Daiem AM, Shalaan E (2023) Self-supporting electrodes obtained by electrochemical dealloying of Zr-based metallic glass alloys for energy storage applications. J Mater Sci Mater Electron 34: 1358. http://dx.doi.org/10.1007/s10854-023-10750-x doi: 10.1007/s10854-023-10750-x
![]() |
[47] |
Chang BY (2020) Conversion of a constant phase element to an equivalent capacitor. J Electrochem Sci Technol 11: 318–321. https://doi.org/10.33961/jecst.2020.00815 doi: 10.33961/jecst.2020.00815
![]() |
[48] |
Jorcin JB, Orazem ME, Pébère N, et al. (2006) CPE analysis by local electrochemical impedance spectroscopy. Electrochim Acta 51: 1473–1479. https://doi.org/10.1016/j.electacta.2005.02.128 doi: 10.1016/j.electacta.2005.02.128
![]() |
[49] |
Li X, Zhou L, Zhao S, et al. (2023) Reduced graphite oxide wrapped ZnO-SnO2 hollow nanospheres with as anodes for hybrid high energy density supercapacitors. Diam Relat Mater 136: 110076. https://doi.org/10.1016/j.diamond.2023.110076 doi: 10.1016/j.diamond.2023.110076
![]() |
[50] |
Suganya S, Alam MM, Kousi F, et al. (2023) Facile one-pot synthesis of ternary Ni-Mn-Zn oxide nanocomposites for high-performance hybrid supercapacitors. J Energy Storage 71: 108176. https://doi.org/10.1016/j.est.2023.108176 doi: 10.1016/j.est.2023.108176
![]() |