[1]
|
Sethi S, Murphy TF (2001) Bacterial infection in chronic obstructive pulmonary disease in 2000: a state-of-the-art review. Clin Microbiol Rev 14: 336-363. https://doi.org/10.1128/CMR.14.2.336-363.2001
|
[2]
|
Durand ML, Calderwood SB, Weber DJ, et al. (1993) Acute bacterial meningitis in adults-A review of 493 episodes. N Engl J Med 328: 21-28. https://doi.org/10.1056/NEJM199301073280104
|
[3]
|
Lara HH, Ayala-Nu~nez NV, Ixtepan-Turrent L, et al. (2010) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechno 8: 1-10. https://doi.org/10.1186/1477-3155-8-1
|
[4]
|
Singh SR, Krishnamurthy NB, Mathew BB (2014) A review on recent diseases caused by microbes. J Appl Environ Microbiol 2: 106-115. |
[5]
|
Laxminarayan R, Duse A, Wattal C, et al. (2013) Antibiotic resistance—the need for global solutions. Lancet Infect Dis 13: 1057-1098. https://doi.org/10.1016/S1473-3099(13)70318-9
|
[6]
|
Friedman H, Newton C, Klein TW (2003) Microbial infections, immunomodulation, and drugs of abuse. Clin Microbiol Rev 16: 209-219. https://doi.org/10.1128/CMR.16.2.209-219.2003
|
[7]
|
Atolani O, Baker MT, Adeyemi OS, et al. (2020) Covid-19: critical discussion on the applications and implications of chemicals in sanitizers and disinfectants. EXCLI J 19: 785-799. |
[8]
|
Gurunathan S, Han JW, Kwon DN, et al. (2014) Enhanced antibacterial and antibiofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res Lett 9: 1-17. https://doi.org/10.1186/1556-276X-9-373
|
[9]
|
Yien L, Zin NM, Sarwar A, et al. (2012) Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J Biomater 632698. https://doi.org/10.1155/2012/632698 |
[10]
|
Sobhani Z, Samani SM, Montaseri H, et al. (2017) Nanoparticles of chitosan loaded ciprofloxacin: fabrication and antimicrobial activity. Adv Pharmaceut Bull 7: 427. https://doi.org/10.15171/apb.2017.051
|
[11]
|
Rai A, Prabhune A, Perry CC (2010) Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem 20: 6789-6798. https://doi.org/10.1039/c0jm00817f
|
[12]
|
Alshammari F, Alshammari B, Moin A, et al. (2021) Ceftriaxone mediated synthesized gold nanoparticles: A nano-therapeutic tool to target bacterial resistance. Pharmaceutics 13: 1896. https://doi.org/10.3390/pharmaceutics13111896
|
[13]
|
Cepas V, López Y, Gabasa Y, et al. (2019) Inhibition of bacterial and fungal biofilm formation by 675 extracts from microalgae and cyanobacteria. Antibiotics (Basel) 8: 77. https://doi.org/10.3390/antibiotics8020077
|
[14]
|
Cremonini E, Zonaro E, Donini M, et al. (2016) Biogenic selenium nanoparticles: characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts. Microb Biotechnol 9: 758-771. https://doi.org/10.1111/1751-7915.12374
|
[15]
|
Haghighi F, Roudba Mohammadir S, Mohammadi P, et al. (2013) Antifungal acitivity of TiO2 nanoparticles and EDTA on Candida abicans Biofilms. Infect Epidemiol Med 1: 133-138. |
[16]
|
Singh P, Singh D, Sa P, et al. (2021) Insights from nanotechnology in COVID-19: prevention, detection, therapy and immunomodulation. Nanomedicine (Lond) 16: 1219-1235. https://doi.org/10.2217/nnm-2021-0004
|
[17]
|
Singh CK, Sodhi KK (2023) The emerging significance of nanomedicine-based approaches to fighting COVID-19 variants of concern: A perspective on the nanotechnology's role in COVID-19 diagnosis and treatment. Front Nanotechnol 4: 1084033. https://doi.org/10.3389/fnano.2022.1084033
|
[18]
|
Yang D (2021) Application of nanotechnology in the COVID-19 pandemic. Int J Nanomedicine 16: 623-649. https://doi.org/10.2147/IJN.S296383
|
[19]
|
Diwan A, Chakraborty A, Vijetha Chiniga V, et al. (2022) Dual effects of NV-CoV-2 biomimetic polymer: An antiviral regimen against COVID-19. PLOS One 17: e0278963. https://doi.org/10.1371/journal.pone.0278963
|
[20]
|
Chakraborty A, Diwan A, Arora V, et al. (2022) Mechanism of antiviral activities of nanoviricide's platform technology based biopolymer (NV-CoV-2). AIMS Public Health 9: 415-422. https://doi.org/10.3934/publichealth.2022028
|
[21]
|
Mubeen B, Ansar AN, Rasool R, et al. (2021) Nanotechnology as a novel approach in combating microbes providing an alternative to antibiotics. Antibiotics (Basel) 10: 1473. https://doi.org/10.3390/antibiotics10121473
|
[22]
|
Hung YP, Chen YF, Tsai PJ, et al. (2021) Advances in the application of nanomaterials as treatments for bacterial infectious diseases. Pharmaceutics 13: 1913. https://doi.org/10.3390/pharmaceutics13111913
|
[23]
|
Ozdal M, Gurkok S (2022) Recent advances in nanoparticles as antibacterial agent. ADMET DMPK 10: 115-129. https://doi.org/10.5599/admet.1172 |
[24]
|
Hussain FS, Abro NQ, Ahmed N, et al. (2022) Nano antivirals: A comprehensive review. Front Nanotechnol 4: 1064615. https://doi.org/10.3389/fnano.2022.1064615
|
[25]
|
Nami S, Aghebati-Maleki A, Aghebati-Maleki L (2021) Current applications and prospects of nanoparticles for antifungal drug delivery. EXCLI J 20: 562-584. |
[26]
|
Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem 12: 908-931. https://doi.org/10.1016/j.arabjc.2017.05.011
|
[27]
|
Song X, Bayati P, Gupta M, et al. (2021) Fracture of magnesium matrix nanocomposites-a review. Int J Lightweight Mater Manufact 4: 67-98. https://doi.org/10.1016/j.ijlmm.2020.07.002 |
[28]
|
Vert M, Doi Y, Hellwich KH, et al. (2012) Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl Chem 84: 377-410. https://doi.org/10.1515/amma-2016-0032
|
[29]
|
Von Nussbaum F, Brands M, Hinzen B, et al. (2006) Antibacterial natural products in medicinal chemistry—Exodus or revival?. Angew Chem Int Ed 45: 5072-5129. https://doi.org/10.1002/anie.200600350
|
[30]
|
Akhtar M, Swamy MK, Umar A, et al. (2015) Biosynthesis and characterization of silver nanoparticles from methanol leaf extract of Cassia didymobotyra and assessment of their antioxidant and antibacterial activities. J Nanosci Nanotechnol 15: 9818-9823. https://doi.org/10.1166/jnn.2015.10966
|
[31]
|
Fröhlich E, Salar-Behzadi S (2014) Toxicological assessment of inhaled nanoparticles: Role of in vivo, ex vivo, in vitro, and in silico studies. Int J Mol Sci 15: 4795-4822. https://doi.org/10.3390/ijms15034795
|
[32]
|
Qiu Y, Xu D, Sui G, et al. (2020) Gentamicin decorated phosphatidylcholine-chitosan nanoparticles against biofilms and intracellular bacteria. Int J Biol Macromol 156: 640-647. https://doi.org/10.1016/j.ijbiomac.2020.04.090
|
[33]
|
Evangelista TF, Andrade GR, Nascimento KN, et al. (2020) Supramolecular polyelectrolyte complexes based on cyclodextrin-grafted chitosan and carrageenan for controlled drug release. Carbohydr Polym 245: 116592. https://doi.org/10.1016/j.carbpol.2020.116592
|
[34]
|
Walvekar P, Gannimani R, Salih M, et al. (2019) Self-assembled oleylamine grafted hyaluronic acid polymersomes for delivery of vancomycin against methicillin resistant Staphylococcus aureus (MRSA). Colloids Surf B Biointerfaces 182: 110388. https://doi.org/10.1016/j.colsurfb.2019.110388
|
[35]
|
Ejaz S, Ihsan A, Noor T, et al. (2020) Mannose functionalized chitosan nanosystems for enhanced antimicrobial activity against multidrug resistant pathogens. Polym Test 91: 106814. https://doi.org/10.1016/j.polymertesting.2020.106814
|
[36]
|
Ucak S, Sudagidan M, Borsa BA, et al. (2020) Inhibitory effects of aptamer targeted teicoplanin encapsulated PLGA nanoparticles for Staphylococcus aureus strains. World J Microbiol Biotechnol 36: 69. https://doi.org/10.1007/s11274-020-02845-y
|
[37]
|
Vrouvaki I, Koutra E, Kornaros M, et al. (2020) Polymeric nanoparticles of pistacia lentiscus var. chia essential oil for cutaneous applications. Pharmaceutics 12: 353. https://doi.org/10.3390/pharmaceutics12040353
|
[38]
|
Gherasim O, Grumezescu AM, Grumezescu V, et al. (2020) Bioactive surfaces of polylactide and silver nanoparticles for the prevention of microbial contamination. Materials 13: 768. https://doi.org/10.3390/ma13030768
|
[39]
|
Grumezescu AM, Stoica AE, Dima-Balcescu MS, et al. (2019) Electrospun polyethylene terephthalate nanofibers loaded with silver nanoparticles: novel approach in anti-infective therapy. J Clin Med 8: 1039. https://doi.org/10.3390/jcm8071039
|
[40]
|
Khandelwal N, Kaur G, Kumara N, et al. (2014) Application of silver nanoparticles in viral inhibition: A new hope for antivirals. Dig J Nanomater Biostruct 9: 175-186. https://nanogo.co.uk/wp-content/uploads/2021/12/application-of-nanosilver.pdf |
[41]
|
Alamdaran M, Movahedi B, Mohabatkar H, et al. (2018) In-vitro study of the novel nanocarrier of chitosan-based nanoparticles conjugated HIV-1 P24 protein-derived peptides. J Mol Liq 265: 243-250. https://doi.org/10.1016/j.molliq.2018.05.137
|
[42]
|
Belgamwar AV, Khan SA, Yeole PG (2019) Intranasal dolutegravir sodium loaded nanoparticles of hydroxypropyl-beta-cyclodextrin for brain delivery in Neuro-AIDS. J Drug Deliv Sci Technol 52: 1008-1020. https://doi.org/10.1016/j.jddst.2019.06.014
|
[43]
|
Costa AF, Araujo DE, Cabral MS, et al. (2018) Development, characterization, and in vitro-in vivo evaluation of polymeric nanoparticles containing miconazole and farnesol for treatment of vulvovaginal candidiasis. Med Mycol 7: 52-62. https://doi.org/10.1093/mmy/myx155 |
[44]
|
Reddy YC (2018) Formulation and evaluation of chitosan nanoparticles for improved efficacy of itraconazole antifungal drug. Asian J Pharm Clin Res 11: 147-152. https://doi.org/10.22159/ajpcr.2018.v11s4.31723 |
[45]
|
Sombra FM, Richter AR, De Araújo AR, et al. (2020) Development of amphotericin B-loaded propionate Sterculia striata polysaccharide nanocarrier. Int J Biol Macromol 146: 1133-1141. https://doi.org/10.1016/j.ijbiomac.2019.10.053
|
[46]
|
Real D, Hoffmann S, Leonardi D, et al. (2018) Chitosan-based nanodelivery systems applied to the development of novel triclabendazole formulations. PLOS One 13: e0207625. https://doi.org/10.1371/journal.pone.0207625
|
[47]
|
Durak S, Arasoglu T, Ates SC, et al. (2020) Enhanced antibacterial and antiparasitic activity of multifunctional polymeric nanoparticles. Nanotechnology 31: 175705. https://doi.org/10.1088/1361-6528/ab6ab9
|
[48]
|
Binder U, Aigner M, Risslegger B, et al. (2019) Minimal Inhibitory concentration (mic)-phenomena in candida albicans and their impact on the diagnosis of antifungal resistance. J Fungi (Basel) 5: 83. https://doi.org/10.3390/jof5030083
|
[49]
|
Kesharwani P, Fatima M, Singh V, et al. (2022) Itraconazole and difluorinated-curcumin containing chitosan nanoparticle loaded hydrogel for amelioration of onychomycosis. Biomimetics (Basel) 7: 206. https://doi.org/10.3390/biomimetics7040206
|
[50]
|
Butani D, Yewale C, Misra A (2016) Topical amphotericin B solid lipid nanoparticles: Design and development. Colloids Surf B 139: 17-24. https://doi.org/10.1016/j.colsurfb.2015.07.032
|
[51]
|
Souto E, Wissing S, Barbosa C, et al. (2004) Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int J Pharm 278: 71-7. https://doi.org/10.1016/j.ijpharm.2004.02.032
|
[52]
|
Cassano R, Ferrarelli T, Mauro MV, et al. (2016) Preparation, characterization and in vitro activities evaluation of solid lipid nanoparticles based on PEG-40 stearate for antifungal drugs vaginal delivery. Drug Deliv 23: 1037-46. https://doi.org/10.3109/10717544.2014.932862
|
[53]
|
Sanna V, Gavini E, Cossu M, et al. (2007) Solid lipid nanoparticles (SLN) as carriers for the topical delivery of econazole nitrate: In-vitro characterization, ex-vivo and in-vivo studies. J Pharm Pharmacol 59: 1057-64. https://doi.org/10.1211/jpp.59.8.0002
|
[54]
|
Bhalekar MR, Pokharkar V, Madgulkar A, et al. (2009) Preparation and evaluation of miconazole nitrate-loaded solid lipid nanoparticles for topical delivery. AAPS PharmSciTech 10: 289-96. https://doi.org/10.1208/s12249-009-9199-0
|
[55]
|
Jain S, Jain S, Khare P, et al. (2010) Design and development of solid lipid nanoparticles for topical delivery of an anti-fungal agent. Drug Deliv 17: 443-451. https://doi.org/10.3109/10717544.2010.483252
|
[56]
|
Kenechukwu FC, Attama AA, Ibezim EC (2017) Novel solidified reverse micellar solution-based mucoadhesive nano lipid gels encapsulating miconazole nitrate-loaded nanoparticles for improved treatment of oropharyngeal candidiasis. J Microencapsul 34: 592-609. https://doi.org/10.1080/02652048.2017.1370029
|
[57]
|
Mahato R, Tai W, Cheng K (2011) Prodrugs for improving tumor targetability and efficiency. Adv Drug Deliv Rev 63: 659-70. https://doi.org/10.1016/j.addr.2011.02.002
|
[58]
|
Kumar R, Sinha VR (2016) Solid lipid nanoparticle: An efficient carrier for improved ocular permeation of voriconazole. Drug Dev Ind Pharm 42: 1956-67. https://doi.org/10.1080/03639045.2016.1185437
|
[59]
|
Füredi P, Pápay ZE, Kovács K, et al. (2017) Development and characterization of the voriconazole loaded lipid-based nanoparticles. J Pharm Biomed Anal 132: 184-9. https://doi.org/10.1016/j.jpba.2016.09.047
|
[60]
|
El-Housiny S, Shams Eldeen MA, El-Attar YA, et al. (2018) Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: formulation and clinical study. Drug Deliv 25: 78-90. https://doi.org/10.1080/10717544.2017.1413444
|
[61]
|
Anurak L, Chansiri G, Peankit D, et al. (2011) Griseofulvin solid lipid nanoparticles based on microemulsion technique. Adv Mater Res 197–198: 47-50. https://doi.org/10.4028/www.scientific.net/AMR.197-198.47
|
[62]
|
Ahmad A, Wei Y, Syed F, et al. (2016) Amphotericin B-conjugated biogenic silver nanoparticles as an innovative strategy for fungal infections. Microb Pathol 99: 271-81. https://doi.org/10.1016/j.micpath.2016.08.031
|
[63]
|
Tutaj K, Szlazak R, Szalapata K, et al. (2016) Amphotericin B-silver hybrid nanoparticles: Synthesis, properties and antifungal activity. Nanomedicine 12: 1095-103. https://doi.org/10.1016/j.nano.2015.12.378
|
[64]
|
Hussain MA, Ahmed D, Anwar A, et al. (2019) Combination therapy of clinically approved antifungal drugs is enhanced by conjugation with silver nanoparticles. Int Microbiol 22: 239-46. https://doi.org/10.1007/s10123-018-00043-3
|
[65]
|
Mussin JE, Roldán MV, Rojas F, et al. (2019) Antifungal activity of silver nanoparticles in combination with ketoconazole against Malassezia furfur. AMB Express 9: 131. https://doi.org/10.1186/s13568-019-0857-7
|
[66]
|
Souza AC, Nascimento AL, de Vasconcelos NM, et al. (2015) Activity and in vivo tracking of Amphotericin B loaded PLGA nanoparticles. Eur J Med Chem 95: 267-276. https://doi.org/10.1016/j.ejmech.2015.03.022
|
[67]
|
Vásquez Marcano RGDJ, Tominaga TT, Khalil NM, et al. (2018) Chitosan functionalized poly (ϵ-caprolactone) nanoparticles for amphotericin B delivery. Carbohydr Polym 202: 345-354. https://doi.org/10.1016/j.carbpol.2018.08.142
|
[68]
|
Chhonker YS, Prasad YD, Chandasana H, et al. (2015) Amphotericin-B entrapped lecithin/chitosan nanoparticles for prolonged ocular application. Int J Biol Macromol 72: 1451-8. https://doi.org/10.1016/j.ijbiomac.2014.10.014
|
[69]
|
Bhattacharjee S, Joshi R, Chughtai AA, et al. (2021) Graphene-and nanoparticle-embedded antimicrobial and biocompatible cotton/silk fabrics for protective clothing. ACS Appl Bio Mater 4: 6175-6185. https://doi.org/10.1021/acsabm.1c00508. 10.1021/acsabm.1c00508
|
[70]
|
Kharaghani D, Dutta D, Gitigard P, et al. (2019) Development of antibacterial contact lenses containing metallic nanoparticles. Polym Test 79: 106034. https://doi.org/10.1016/j.polymertesting.2019.106034
|
[71]
|
Kalita S, Kandimalla R, Bhowal AC, et al. (2018) Functionalization of β-lactam antibiotic on lysozyme capped gold nanoclusters retrogress MRSA and its persisters following awakening. Sci Rep 8: 1-13. https://doi.org/10.1038/s41598-018-22736-5
|
[72]
|
Konop M, Czuwara J, Kłodzińska E, et al. (2020) Evaluation of keratin biomaterial containing silver nanoparticles as a potential wound dressing in full-thickness skin wound model in diabetic mice. J Tissue Eng Regen Med 14: 334-346. https://doi.org/10.1002/term.2998
|
[73]
|
Gupta A, Briffa SM, Swingler S, et al. (2020) Synthesis of silver nanoparticles using curcumin-cyclodextrins loaded into bacterial cellulose-based hydrogels for wound dressing applications. Biomacromolecules 21: 1802-1811. https://doi.org/10.1021/acs.biomac.9b01724
|
[74]
|
Urbán P, Liptrott NJ, Bremer S (2019) Overview of the blood compatibility of nanomedicines: A trend analysis of in vitro and in vivo studies. Wiley Interdiscip Rev Nanomed Nanobiotechnol 11: e1546. https://doi.org/10.1002/wnan.1546
|
[75]
|
de la Harpe KM, Kondiah PPD, Choonara YE, et al. (2019) The hemocompatibility of nanoparticles: A review of cell-nanoparticle interactions and hemostasis. Cells 8: 1209. https://doi.org/10.3390/cells8101209
|
[76]
|
Guo S, Shi Y, Liang Y, et al. (2021) Relationship and improvement strategies between drug nanocarrier characteristics and hemocompatibility: What can we learn from the literature. Asian J Pharm Sci 16: 551-576. https://doi.org/10.1016/j.ajps.2020.12.002
|
[77]
|
Mikušová V, Mikuš P (2021) Advances in chitosan-based nanoparticles for drug delivery. Int J Mol Sci 22: 9652. https://doi.org/10.3390/ijms22179652
|
[78]
|
Pathak N, Singh P, Singh PK, et al. (2022) Biopolymeric nanoparticles based effective delivery of bioactive compounds toward the sustainable development of anticancerous therapeutics. Front Nutr 9: 963413. https://doi.org/10.3389/fnut.2022.963413
|
[79]
|
Chen HT, Neerman MF, Parrish AR, et al. (2004) Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J Am Chem Soc 126: 10044-10048. https://doi.org/10.1021/ja048548j
|
[80]
|
Jia YP, Ma BY, Wei XW, et al. (2017) The in vitro and in vivo toxicity of gold nanoparticles. Chin Chem Lett 28: 691-702. https://doi.org/10.1016/j.cclet.2017.01.021
|
[81]
|
Chetyrkina MR, Fedorov FS, Nasibulin AG (2022) In vitro toxicity of carbon nanotubes: a systematic review. RSC Adv 25: 16235-16256. https://doi.org/10.1039/D2RA02519A
|
[82]
|
Mahmoudi M, Hofmann H, Rothen-Rutishauser B, et al. (2012) Petri-Assessing the in vitro and in vivo Toxicity of Superparamagnetic Iron Oxide Nanoparticles. Chem Rev 112: 2323-2338. https://doi.org/10.1021/cr2002596
|
[83]
|
Chen L, Liu J, Zhang Y, et al. (2018) The toxicity of silica nanoparticles to the immune system. Nanomedicine 13: 1939-1962. https://doi.org/10.2217/nnm-2018-0076
|
[84]
|
Hadipour Moghaddam SP, Mohammadpour R, Ghandehari H (2019) In vitro and in vivo evaluation of degradation, toxicity, biodistribution, and clearance of silica nanoparticles as a function of size, porosity, density, and composition. J Control Release 311–312: 1-15. https://doi.org/10.1016/j.jconrel.2019.08.028
|
[85]
|
Zhang XF, Shen W, Gurunathan S (2016) Silver nanoparticle-mediated cellular responses in various cell lines: An in vitro model. Int J Mol Sci 17: 1603. https://doi.org/10.3390/ijms17101603
|
[86]
|
Yuan YG, Zhang S, Hwang JY, et al. (2018) Silver nanoparticles potentiates cytotoxicity and apoptotic potential of camptothecin in human cervical cancer cells. Oxid Med Cell Longev 18: 6121328. https://doi.org/10.1155/2018/6121328 |
[87]
|
Rim KT, Song SW, Kim HY (2013) Oxidative DNA damage from nanoparticle exposure and its application to workers' health: a literature review. Saf Health Work 4: 177-186. https://doi.org/10.1016/j.shaw.2013.07.006
|
[88]
|
Wen H, Dan M, Yang Y, et al. (2017) Acute toxicity and genotoxicity of silver nanoparticle in rats. PLOS One 2: e0185554. https://doi.org/10.1371/journal.pone.0185554
|
[89]
|
Hassanen EI, Khalaf AA, Tohamy AF, et al. (2019) Toxicopathological and immunological studies on different concentrations of chitosan-coated silver nanoparticles in rats. Int J Nanomedicine 14: 4723-4739. https://doi.org/10.2147/IJN.S207644
|
[90]
|
Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55: 329-347. https://doi.org/10.1016/S0169-409X(02)00228-4
|
[91]
|
Almofti MR, Ichikawa T, Yamashita K, et al. (2003) Silver ion induces a cyclosporine a-insensitive permeability transition in rat liver mitochondria and release of apoptogenic cytochrome C. J Biochem 134: 43-49. https://doi.org/10.1093/jb/mvg111
|
[92]
|
Iancu SD, Albu C, Chiriac L, et al. (2020) Assessment of gold-coated iron oxide nanoparticles as negative T2 contrast agent in small animal MRI studies. Int J Nanomedicine 4811–4824. https://doi.org/10.2147/IJN.S253184 |
[93]
|
Akhlaghi N, Najafpour-Darzi G (2021) Manganese ferrite (MnFe2O4) Nanoparticles: From synthesis to application-A review. J Ind Eng Chem 103: 292-304. https://doi.org/10.1016/j.jiec.2021.07.043
|
[94]
|
Ganapathe LS, Mohamed Md A, Yunus RM (2020) Magnetite (Fe3O4) Nanoparticles in biomedical application: from synthesis to surface functionalisation. Magnetochemistry 6: 68. https://doi.org/10.3390/magnetochemistry6040068
|
[95]
|
Liu Z, Liu Y, Liu S, et al. (2021) The effects of TiO2 nanotubes on the biocompatibility of 3D printed Cu-bearing TC4 alloy. Mater Des 207: 109831. https://doi.org/10.1016/j.matdes.2021.109831
|
[96]
|
Andrade RGD, Ferreira D, Veloso SRS, et al. (2022) Synthesis and cytotoxicity assessment of citrate-coated calcium and manganese ferrite nanoparticles for magnetic hyperthermia. Pharmaceutics 14: 2694. https://doi.org/10.3390/pharmaceutics14122694
|
[97]
|
Rudramurthy GR, Swamy MK, Sinniah UR, et al. (2016) Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 21: 836. https://doi.org/10.3390/molecules21070836
|
[98]
|
Shiri S, Abbasi N, Alizadeh K, et al. (2019) Novel and green synthesis of a nanopolymer and its use as a drug delivery system of silibinin and silymarin extracts in the olfactory ensheathing cells of rats in normal and high-glucose conditions. RSC Adv 9: 38912-38927. https://doi.org/10.1039/C9RA05608D
|
[99]
|
Sharma S, Sudhakara P, Singh J, et al. (2021) Critical review of biodegradable and bioactive polymer composites for bone tissue engineering and drug delivery applications. Polymers (Basel) 13: 2623. https://doi.org/10.3390/polym13162623
|
[100]
|
Makadia HK, Siegel SJ (2011) Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 3: 1377-1397. https://doi.org/10.3390/polym3031377
|
[101]
|
Félix Lanao RP, Jonker AM, Wolke JG, et al. (2013) Physicochemical properties and applications of poly(lactic-co-glycolic acid) for use in bone regeneration. Tissue Eng Part B Rev 19: 380-390. https://doi.org/10.1089/ten.teb.2012.0443 |
[102]
|
da Silva D, Kaduri M, Poley M, et al. (2018) Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem Eng J 340: 9-14. https://doi.org/10.1016/j.cej.2018.01.010
|
[103]
|
Ramos DP, Sarjinsky S, Alizadehgiashi M, et al. (2019) Polyelectrolyte vs polyampholyte behavior of composite chitosan/ gelatin films. ACS Omega 4: 8795-8803. http://pubs.acs.org/journal/acsodf
|
[104]
|
Olasehinde TA, Olaniran AO (2022) Neurotoxicity of polycyclic aromatic hydrocarbons: a systematic mapping and review of neuropathological mechanisms. Toxics 10: 417. https://doi.org/10.3390/toxics10080417
|
[105]
|
Liu Y, Hardie J, Zhang X, et al. (2017) Effects of engineered nanoparticles on the innate immune system. Semin Immunol 34: 25-32. https://doi.org/10.1016/j.smim.2017.09.011
|
[106]
|
Corbo C, Molinaro R, Parodi A, et al. (2016) The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine (Lond) 11: 81-100. https://doi.org/10.2217/nnm.15.188
|
[107]
|
Suk JS, Xu Q, Kim N, et al. (2016) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99: 28-51. https://doi.org/10.1016/j.addr.2015.09.012
|
[108]
|
Tan X, Fang Y, Ren Y, et al. (2019) D-α-tocopherol polyethylene glycol 1000 succinate-modified liposomes with an siRNA corona confer enhanced cellular uptake and targeted delivery of doxorubicin via tumor priming. Int J Nanomedicine 14: 1255-1268. https://doi.org/10.2147/IJN.S191858
|
[109]
|
Neophytou CM, Mesaritis A, Gregoriou G, et al. (2019) d-a-Tocopheryl Polyethylene Glycol 1000 Succinate and a small-molecule Survivin suppressant synergistically induce apoptosis in SKBR3 breast cancer cells. Sci Rep 9: 14375. https://doi.org/10.1038/s41598-019-50884-9
|
[110]
|
Dang Y, Guan J (2020) Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater Med 1: 10-19. https://doi.org/10.1016/j.smaim.2020.04.001
|
[111]
|
Adepu S, Ramakrishna S (2021) Controlled drug delivery systems: current status and future directions. Molecules 26: 5905. https://doi.org/10.3390/molecules26195905
|
[112]
|
Yu B, Tai HC, Xue W, et al. (2010) Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol 27: 286-298. https://doi.org/10.3109/09687688.2010.521200
|
[113]
|
Yu H, Yang Z, Li F, et al. (2020) Cell-mediated targeting drugs delivery systems. Drug Deliv 27: 1425-1437. https://doi.org/10.1080/10717544.2020.1831103
|
[114]
|
Zhao Z, Ukidve A, Kim J, et al. (2020) Targeting strategies for tissue-specific drug delivery. Cell 181: 2020. https://doi.org/10.1016/j.cell.2020.02.001
|
[115]
|
Manzari MT, Shamay Y, Kiguchi H, et al. (2021) Targeted drug delivery strategies for precision medicines. Nat Rev Mater 6: 351-370. https://doi.org/10.1038/s41578-020-00269-6
|
[116]
|
Mitchell MJ, Billingsley MM, Haley RM, et al. (2021) Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 20: 101-124. https://doi.org/10.1038/s41573-020-0090-8
|
[117]
|
Xie J, Lee S, Chen X (2010) Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 62: 1064-1079. https://doi.org/10.1016/j.addr.2010.07.009
|
[118]
|
Chatterjee DK, Diagaradjane P, Krishnan S (2011) Nanoparticle-mediated Hyperthermia in Cancer Therapy. Ther Deliv 2: 1001-1014. https://doi.org/10.4155/tde.11.72
|
[119]
|
Jacque D, Martínez Maestro L, del Rosal B, et al. (2014) Nanoparticles for photothermal therapies. Nanoscale 6: 9494-9530. https://doi.org/10.1039/C4NR00708E
|
[120]
|
Zhou Y, Quan G, Wu Q, et al. (2018) Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharmaceutica Sinica B 8: 165-177. https://doi.org/10.1016/j.apsb.2018.01.007
|
[121]
|
Li Z, Barnes JC, Bosoy A, et al. (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 41: 2590-2605. https://doi.org/10.1039/c1cs15246g
|
[122]
|
De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine 3: 133-149. https://doi.org/10.2147/IJN.S596
|
[123]
|
Patra JK, Das G, Fraceto LF, et al. (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16: 71. https://doi.org/10.1186/s12951-018-0392-8
|
[124]
|
Masarudin MJ, Cutts SM, Evison BJ, et al. (2015) Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [(14)C]-doxorubicin. Nanotechnol Sci Appl 8: 67-80. https://doi.org/10.2147/NSA.S91785
|
[125]
|
Ajdary M, Moosavi MA, Rahmati M, et al. (2018) Health concerns of various nanoparticles: a review of their in vitro and in vivo toxicity. Nanomaterials (Basel) 8: 634. https://doi.org/10.3390/nano8090634
|
[126]
|
Ray P, Haideri N, Haque I, et al. (2021) The impact of nanoparticles on the immune system: a gray zone of nanomedicine. J Immunological Sci 5: 19-33. https://doi.org/10.29245/2578-3009/2021/1.1206
|
[127]
|
Abdal Dayem A, Hossain MK, Lee SB, et al. (2017) The role of reactive oxygen species (ros) in the biological activities of metallic nanoparticles. Int J Mol Sci 18: 120. https://doi.org/10.3390/ijms18010120
|
[128]
|
Ray PC, Yu H, Fu PP (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27: 1-35. https://doi.org/10.1080/10590500802708267
|
[129]
|
Egbuna C, Parmar VK, Jeevanandam J, et al. (2021) Toxicity of nanoparticles in biomedical application: nanotoxicology. J Toxicol 2021:9954443: 1-21. https://doi.org/10.1155/2021/9954443
|
[130]
|
Huang YW, Cambre M, Lee HJ (2017) The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. Int J Mol Sci 18: 2702. https://doi.org/10.3390/ijms18122702
|
[131]
|
You DJ, Bonner JC (2020) Susceptibility factors in chronic lung inflammatory responses to engineered nanomaterials. Int J Mol Sci 21: 7310. https://doi.org/10.3390/ijms21197310
|
[132]
|
Singh A, Kukreti R, Saso L, et al. (2019) Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 24: 1583. https://doi.org/10.3390/molecules24081583
|
[133]
|
Gänger S, Schindowski K (2018) Tailoring formulations for intranasal nose-to-brain delivery: a review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics 10: 116. https://doi.org/10.3390/pharmaceutics10030116
|
[134]
|
Guo C, Xia Y, Niu P, et al. (2015) Silica nanoparticles induce oxidative stress, inflammation, and endothelial dysfunction in vitro via activation of the MAPK/Nrf2 pathway and nuclear factor-κB signaling. Int J Nanomedicine 10: 1463-1477. https://doi.org/10.2147/IJN.S76114
|
[135]
|
Uskoković V (2021) Nanomedicine for the poor: a lost cause or an idea whose time has yet to come?. Nanomedicine (Lond) 16: 1203-1218. https://doi.org/10.2217/nnm-2021-0024
|
[136]
|
Shubhika Kwatra (2013) Nanotechnology and medicine–The upside and the downside. Int. J Drug Dev Res 5: 1-10. http://www.ijddr.in |
[137]
|
Diwan A, Tatake J, Chakraborty A (2022) Therapeutic uses of TheraCour™ polymeric nanomicelles against cancer, infectious diseases and more. Nanomaterials for Cancer Detection Using Imaging Techniques and Their Clinical Applications.Springer Nature 473-506. https://doi.org/10.1007/978-3-031-09636-5_17
|
[138]
|
Chakraborty A, Diwan A, Barton R, et al. (2022) A new antiviral regimen against sars-cov-2 based on nanoviricide's biopolymer (NV-CoV-2). Front Nanotechnol 4: 891605. https://doi.org/10.3389/fnano.2022.891605
|
[139]
|
Barton RW, Tatake JG, Diwan AR (2011) Nanoviricides-A novel approach to antiviral therapeutics. Bionanotechnology II.CRC Press 141-154. |
[140]
|
Chakraborty A, Diwan A (2020) NL-63: A better surrogate virus for studying SARS-CoV-2. Integr Mol Med 7: 1-9. https://doi.org/10.15761/IMM.1000408
|
[141]
|
NanoViricides, Inc., Pan-coronavirus COVID-19 Drug Candidates Are Highly Effective in Pre-clinical Animal Studies in Support of FDA Pre IND Application (2021). Available from: https://www.bloomberg.com/press-releases/2021-03-09/nanoviricides-inc-pan-coronavirus-covid-19-drug-candidates-are-highly-effective-in-pre-clinical-animal-studies-i. |
[142]
|
Barton RW, Tatake JG, Diwan AR (2016) Nanoviricides: Targeted Anti-Viral Nanomaterials. Handbook of Clinical Nanomedicine, Nanoparticles, Imaging, Therapy, and Clinical Applications.Jenny Stanford Publishing 1039-1046. |
[143]
|
NanoViricides is Developing Drugs Against SARS-CoV-2 with an Integrated Approach to Combat COVID-19, as Reported at The LD 500 Virtual Conference (2020). Available from: https://www.accesswire.com/604794/NanoViricides-is-Developing-Drugs-Against-SARS-CoV-2-with-an-Integrated-Approach-to-Combat-COVID-19-as-Reported-at-The-LD-500-Virtual-Conference. |
[144]
|
Pal M, Berhanu G, Desalegn C, et al. (2020) Severe acute respiratory syndrome coronavirus-2 (sars-cov-2): an update. Cureus 12: e7423. https://doi.org/10.7759/cureus.7423 |
[145]
|
Chatterjee S, Bhattacharya M, Nag S, et al. (2023) A detailed overview of sars-cov-2 omicron: its sub-variants, mutations and pathophysiology, clinical characteristics, immunological landscape, immune escape, and therapies. Viruses 15: 167. https://doi.org/10.3390/v15010167
|
[146]
|
Beigel JM, Tomashek KM, Dodd LE, et al. (2020) Remdesivir for the treatment of Covid-19 final report. N Engl J Med 83: 1813-1826. https://doi.org/10.1056/NEJMoa2007764
|
[147]
|
ClinicalTrials.gov, multicenter, retrospective study of the effects of remdesivir in the treatment of severe Covid-19 infections, 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT04365725 |
[148]
|
Chakraborty A, Diwan A, Arora V, et al. (2022) Polymer protects the drug and improves its pharmacokinetics. EC Pharmacol Toxicol 10.2: 108-118. https://ecronicon.org/assets/ecpt/pdf/ECPT-10-00707.pdf |
[149]
|
Osorno LL, Brandley AN, Maldonado DE, et al. (2021) Review of contemporary self-assembled systems for the controlled delivery of therapeutics in medicine. Nanomaterials (Basel) 11: 278. https://doi.org/10.3390/nano11020278
|
[150]
|
Yadav S, Sharma AK, Kumar P (2020) Nanoscale self-assembly for therapeutic delivery. Front Bioeng Biotechnol 8: 127. https://doi.org/10.3389/fbioe.2020.00127
|
[151]
|
Li H, Labean TH, Leong KW (2011) Nucleic acid-based nanoengineering: novel structures for biomedical applications. Interface Focus 1: 702-24. https://doi.org/10.1098/rsfs.2011.0040
|
[152]
|
Marshall ML, Wagstaff KM (2020) Internalized functional DNA aptamers as alternative cancer therapies. Front Pharmacol 11: 1115. https://doi.org/10.3389/fphar.2020.01115
|
[153]
|
Ni X, Castanares M, Mukherjee A, et al. (2011) Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem 18: 4206-14. https://doi.org/10.2174/092986711797189600
|
[154]
|
Li J, Mo L, Lu CH, et al. (2016) Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications. Chem Soc Rev 45: 1410-31. https://doi.org/10.1039/C5CS00586H
|
[155]
|
Abune L, Wang Y (2021) Affinity hydrogels for protein delivery. Trends Pharmacol Sci 42: 300-312. https://doi.org/10.1016/j.tips.2021.01.005
|