Rapid diagnosis to test diseases, such as COVID-19, is a significant issue. It is a routine virus test in a reverse transcriptase-polymerase chain reaction. However, a test like this takes longer to complete because it follows the serial testing method, and there is a high chance of a false-negative ratio (FNR). Moreover, there arises a deficiency of R.T.–PCR test kits. Therefore, alternative procedures for a quick and accurate diagnosis of patients are urgently needed to deal with these pandemics. The infrared image is self-sufficient for detecting these diseases by measuring the temperature at the initial stage. C.T. scans and other pathological tests are valuable aspects of evaluating a patient with a suspected pandemic infection. However, a patient's radiological findings may not be identified initially. Therefore, we have included an Artificial Intelligence (A.I.) algorithm-based Machine Intelligence (MI) system in this proposal to combine C.T. scan findings with all other tests, symptoms, and history to quickly diagnose a patient with a positive symptom of current and future pandemic diseases. Initially, the system will collect information by an infrared camera of the patient's facial regions to measure temperature, keep it as a record, and complete further actions. We divided the face into eight classes and twelve regions for temperature measurement. A database named patient-info-mask is maintained. While collecting sample data, we incorporate a wireless network using a cloudlets server to make processing more accessible with minimal infrastructure. The system will use deep learning approaches. We propose convolution neural networks (CNN) to cross-verify the collected data. For better results, we incorporated tenfold cross-verification into the synthesis method. As a result, our new way of estimating became more accurate and efficient. We achieved 3.29% greater accuracy by incorporating the "decision tree level synthesis method" and "ten-folded-validation method". It proves the robustness of our proposed method.
Citation: Mohammed Alhameed, Fathe Jeribi, Bushra Mohamed Elamin Elnaim, Mohammad Alamgir Hossain, Mohammed Eltahir Abdelhag. Pandemic disease detection through wireless communication using infrared image based on deep learning[J]. Mathematical Biosciences and Engineering, 2023, 20(1): 1083-1105. doi: 10.3934/mbe.2023050
[1] | Xiaohang Ren, Weixi Xu, Kun Duan . Fourier transform based LSTM stock prediction model under oil shocks. Quantitative Finance and Economics, 2022, 6(2): 342-358. doi: 10.3934/QFE.2022015 |
[2] | Donatien Hainaut . Continuous Mixed-Laplace Jump Diffusion Models for Stocks and Commodities. Quantitative Finance and Economics, 2017, 1(2): 145-173. doi: 10.3934/QFE.2017.2.145 |
[3] | Lucjan T. Orlowski, Monika Sywak . Wavering interactions between commodity futures prices and us dollar exchange rates. Quantitative Finance and Economics, 2019, 3(2): 221-243. doi: 10.3934/QFE.2019.2.221 |
[4] | Raéf Bahrini, Assaf Filfilan . Impact of the novel coronavirus on stock market returns: evidence from GCC countries. Quantitative Finance and Economics, 2020, 4(4): 640-652. doi: 10.3934/QFE.2020029 |
[5] | Albert A. Agyemang-Badu, Fernando Gallardo Olmedo, José María Mella Márquez . Conditional macroeconomic and stock market volatility under regime switching: Empirical evidence from Africa. Quantitative Finance and Economics, 2024, 8(2): 255-285. doi: 10.3934/QFE.2024010 |
[6] | Lorna Katusiime . Time-Frequency connectedness between developing countries in the COVID-19 pandemic: The case of East Africa. Quantitative Finance and Economics, 2022, 6(4): 722-748. doi: 10.3934/QFE.2022032 |
[7] | Emmanuel Assifuah-Nunoo, Peterson Owusu Junior, Anokye Mohammed Adam, Ahmed Bossman . Assessing the safe haven properties of oil in African stock markets amid the COVID-19 pandemic: a quantile regression analysis. Quantitative Finance and Economics, 2022, 6(2): 244-269. doi: 10.3934/QFE.2022011 |
[8] | Takashi Kanamura . Supply-side perspective for carbon pricing. Quantitative Finance and Economics, 2019, 3(1): 109-123. doi: 10.3934/QFE.2019.1.109 |
[9] | Jin Liang, Hong-Ming Yin, Xinfu Chen, Yuan Wu . On a Corporate Bond Pricing Model with Credit Rating Migration Risksand Stochastic Interest Rate. Quantitative Finance and Economics, 2017, 1(3): 300-319. doi: 10.3934/QFE.2017.3.300 |
[10] | Xiaoling Yu, Kaitian Xiao, Javier Cifuentes-Faura . Closer is more important: The impact of Chinese and global macro-level determinants on Shanghai crude oil futures volatility. Quantitative Finance and Economics, 2024, 8(3): 573-609. doi: 10.3934/QFE.2024022 |
Rapid diagnosis to test diseases, such as COVID-19, is a significant issue. It is a routine virus test in a reverse transcriptase-polymerase chain reaction. However, a test like this takes longer to complete because it follows the serial testing method, and there is a high chance of a false-negative ratio (FNR). Moreover, there arises a deficiency of R.T.–PCR test kits. Therefore, alternative procedures for a quick and accurate diagnosis of patients are urgently needed to deal with these pandemics. The infrared image is self-sufficient for detecting these diseases by measuring the temperature at the initial stage. C.T. scans and other pathological tests are valuable aspects of evaluating a patient with a suspected pandemic infection. However, a patient's radiological findings may not be identified initially. Therefore, we have included an Artificial Intelligence (A.I.) algorithm-based Machine Intelligence (MI) system in this proposal to combine C.T. scan findings with all other tests, symptoms, and history to quickly diagnose a patient with a positive symptom of current and future pandemic diseases. Initially, the system will collect information by an infrared camera of the patient's facial regions to measure temperature, keep it as a record, and complete further actions. We divided the face into eight classes and twelve regions for temperature measurement. A database named patient-info-mask is maintained. While collecting sample data, we incorporate a wireless network using a cloudlets server to make processing more accessible with minimal infrastructure. The system will use deep learning approaches. We propose convolution neural networks (CNN) to cross-verify the collected data. For better results, we incorporated tenfold cross-verification into the synthesis method. As a result, our new way of estimating became more accurate and efficient. We achieved 3.29% greater accuracy by incorporating the "decision tree level synthesis method" and "ten-folded-validation method". It proves the robustness of our proposed method.
Hoops are algebraic structure which are introduced by B. Bosbach in [5,6] are naturally ordered commutative residuated integral monoids. In the last years, some mathematician studied hoop theory in different fields [1,2,3,5,6,7,8,9,10,17,19]. Most of these results have a very deep relation with fuzzy logic. Particularly, by using of some theorems and notions of finite basic hoops, in [1] the authors could find a short proof for completeness theorem for propositional basic logic, which is introduced by Hájek in [11]. BL-algebras, the familiar cases of hoops, are the algebraic structures corresponding to basic logic. In algebra of logics, there are some sub-algebras that are very important and have a fundamental role in these algebraic structures. They are very similar to normal subgroups in group theory and ideals in ring theory which we called them filters and by using these notion we can introduce a congruence relation on algebraic structures and study the quotient structure that is made by them. Kondo, in [14], introduced different kinds of filters such as implicative, positive implicative and fantastic filters of hoops and investigated some properties of them. Borzooei and Aaly Kologani in [7], investigated these filters deeply and they introduced some equivalent characterizations of these filters on hoops. Also, they studied the relation among these filters and they showed some equivalent characterizations of these filters.
Zadeh in [21] introduced the notion of fuzzy sets and different kinds of operations on them. After that mathematicians studied on them and applied it to diverse fields. Actually, fuzzy mathematics have reached by studying of fuzzy subsets and their application to mathematical contexts. Nowadays, fuzzy algebra is an important branch of mathematics and mathematicians studied it in different fileds. For example, Rosenfeld in [18] studied fuzzy sub-groups in 1971. After using the concept of fuzzy sets to group theory and defined the notion of fuzzy subgroups, in [21] by Rosenfeld, the different fuzzy algebraic concepts has been growing very fast [12,13,16] and applied in other algebraic structures such as lattices, semigroups, rings, ideals, modules and vector spaces. Moreover, the concepts related to fuzzy sets have been used in various fields, including its use in fuzzy graphs and its application in decision theory. Borzooei and Aaly Kologani in [8], studied the notions of fuzzy filter of hoops and the relation among them and characterized some properties of them. Also, they defined a congruence relation on hoops by a fuzzy filter and proved that the quotient structure of this relation is a hoop.
Atanassov for the first time introduced the term, an intuitionistic fuzzy set [4] that is an extended form of a fuzzy set. These are the sets containing elements having degrees of membership and non-membership. Intuitionistic fuzzy sets are more adaptable and real intending to the uncertainty and vagueness than the conventional fuzzy sets. The foremost critical property of intuitionistic fuzzy sets not shared by the fuzzy sets is that modular operators can be characterized over intuitionistic fuzzy sets. The intuitionistic fuzzy sets have basically higher depicting conceivable outcomes than fuzzy sets. Also, there are a lot of applications of intuitionistic fuzzy sets in decision making, pattern recognition, medical diagnosis, neural models, image processing, market prediction, color region extraction, and others. In the last years, some mathematician studied intuitionistic fuzzy sets in different fields [15,20]. In decision-making problems, the use of fuzzy approaches is ubiquitous. The purpose of these intuitionistic fuzzy sets is, to provide a new approach with useful mathematical tools to address the fundamental problem of decision-making. The generality of the fuzzy set is given special importance, illustrating how many interesting decision-making problems can be formulated as a problem of fuzzy sets. These applied contexts provide solid evidence of the wide applications of fuzzy sets approach to model and research decision-making problems.
Now, in the following we define the notions of intuitionistic fuzzy filters and intuitionistic fuzzy implicative (positive implicative, fantastic) filters on hoops. Then we show that all intuitionistic fuzzy filters make a bounded distributive lattice. Also, by using intuitionistic fuzzy filters we introduce a relation on hoops and show that it is a congruence relation, then we prove that the algebraic structure made by it is a hoop. Finally, we investigate the conditions that quotient structure will be different algebras of logics such as Brouwerian semilattice, Heyting algebra and Wajesberg hoop.
In this section, we refer to the basic concepts and properties required in the field of hoop and fuzzy sets that we will use in the following sections.
A hoop is an algebraic structure (H,∗,↠,1) such that, for any d,s,q∈H:
(HP1) (H,∗,1) is a commutative monoid,
(HP2) d↠d=1,
(HP3) (d∗s)↠q=d↠(s↠q),
(HP4) d∗(d↠s)=s∗(s↠d).
On hoop H, we define the relation ⪯ by d⪯s iff d↠s=1. Obviously, (H,⪯) is a poset. A hoop H is said to be bounded if H has a least element such as 0, it means that for all d∈H, we have 0⪯d. Define d0=1,dn=dn−1∗d, for any n∈N. If H is bounded, then we can introduce a unary operation "′" on H such that d′=d↠0, for any d∈H. The bounded hoop H is said to have the double negation property, or (DNP), for short if (d′)′=d, for any d∈H (see [1]).
The next proposition provides some properties of hoop.
Proposition 2.1. [5,6] Suppose (H,∗,↠,1) is a hoop and d,s,q∈H. Then:
(i) (H,⪯) is a ∧-semilattice with d∧s=d∗(d↠s).
(ii) d∗s⪯q iff d⪯s↠q.
(iii) d∗s⪯d,s and dn⪯d, for any n∈N.
(iv) d⪯s↠d.
(v) 1↠d=d.
(vi) d↠1=1.
(vii) d∗(d↠s)⪯s.
(viii) d⪯(d↠s)↠s.
(ix) d↠s⪯(s↠q)↠(d↠q).
(x) (d↠s)∗(s↠q)⪯d↠q.
(xi) d⪯s implies d∗q⪯s∗q.
(xii) d⪯s implies q↠d⪯q↠s.
(xiii) d⪯s implies s↠q⪯d↠q.
(xiv) ((d↠s)↠s)↠s=d↠s.
Proposition 2.2. [5,6] Suppose H is a bounded hoop and d,s∈H. Then:
(i) d⪯d″.
(ii) d∗d′=0.
(iii) d′⪯d↠s.
Proposition 2.3. [10] Let H be a hoop and d,s∈H. Define a binary operation ⊔ on H as d⊔s=((d↠s)↠s)∧((s↠d)↠d). Then for any d,s,q∈H, the next conditions are equivalent:
(i) ⊔ is associative,
(ii) d⪯s implies d⊔q⪯s⊔q,
(iii) d⊔(s∧q)⪯(d⊔s)∧(d⊔q),
(iv) ⊔ is the join operation on H.
Remark 2.4. A hoop H is said to be a ⊔-hoop if ⊔ satisfies in one of the conditions of Proposition 2.3. Note that any ⊔-hoop (H,⊔,∧) is a distributive lattice (see [10]).
A non-empty subset K of H is said to be a filter of H if (F1): d,s∈K implies d∗s∈K, (F2): d∈K and d⪯s imply s∈K, for any d,s∈H. This definition is equal with, if 1∈K and if d,d↠s∈K, then s∈K, for any d,s∈H. We use F(H) to denote the set of all filters of H. Clearly, 1∈K, for all K∈F(H). A proper filter is a filter which is not equal to H. Obviously, a filter is proper iff 0∉H if H is a bounded hoop. Assume ∅≠K⊆H such that 1∈K. Then K is called an implicative filter of H if, d↠((s↠q)↠s)∈K and d∈K imply s∈K, for any d,s,q∈H, is called a positive implicative filter of H if, (d∗s)↠q∈K and d↠s∈K imply d↠q∈K, for any d,s,q∈H, is called a fantastic filter of H if q↠(s↠d)∈K and q∈K imply ((d↠s)↠s)↠d∈K, for any d,s,q∈H (see [10,14]).
Let H be a set. A fuzzy set ς on H is a map ς:H→[0,1]. Let ϱB,ςB:H→[0,1] be two fuzzy sets on H and mapping B:H→[0,1]×[0,1] is defined by B(d)=(ςB(d),ϱB(d)), for any d∈H. Then B=(ςB,ϱB) is called an intuitionistic fuzzy set or an IF-set of H if ςB(x)+ϱB(d)⪯1, for all d∈H or denoted by B={⟨d,ςB(d),ϱB(d)⟩∣d∈H}. The family of all intuitionistic fuzzy sets on H will be denoted by IFS(H). Let B=(ςB,ϱB),C=(ςC,ϱC)∈IFS(H). Then we define B∩C=(ςB∧ςC,ϱB∨ϱC),B∪C=(ςB∨ςC,ϱB∧ϱC) and B⊆C iff ςB⪯ςC,ϱB⪰ϱC. Let B=(ςB,ϱB) and C=(ςC,ϱC) be two IF-sets on H. Then, for any d∈H, we define a relation between them as follows:
B⪯Ciff(ςB(d)<ςC(d))or(ςB(d)=ςC(d)andϱB(d)⪯ϱC(d)) |
A fuzzy set ς on hoop H is called a fuzzy filter of H if for all d,s∈H, ς(d)⪯ς(1) and
ς(d)∧ς(d↠s)=min |
Proposition 2.5. [8] Let {\varsigma} be a fuzzy filter on hoop {H} . Then, for any {d}, {s}\in {H} , {d}{\preceq} {s} implies {\varsigma}({d}){\preceq} {\varsigma}({s}) .
Theorem 2.6. [8] Let {\varsigma} be a fuzzy set on hoop {H} and for {r}\in [0, 1] {\varsigma}_{{r}} = \{{d}\in {H}\mid {\varsigma}({d}){\succeq} {r}\} . Then {\varsigma} is a fuzzy filter of {H} iff for any {r}\in[0, 1] , {\varsigma}_{{r}}\neq \emptyset is a filter of {H} .
Theorem 2.7. [8] Let {\varsigma} be a fuzzy filter on hoop {H} and fuzzy relation {\approx}_{{\varsigma}} on hoop {H} is defined by
{d}{\approx}_{{\varsigma}} \;s\; \mathit{{iff}}\; {\varsigma}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\wedge {\varsigma}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) = {\varsigma}(1),\; \mathit{{for\; any}}\; {d},{s}\in {H}. |
Then {\approx}_{{\varsigma}} is a congruence relation on {H} .
Theorem 2.8. [8] Suppose {H} is a hoop and \dfrac{{H}}{{\approx}_{{\varsigma}}} = \{[{e}]_{{\varsigma}}\mid {e}\in {H}\} . Define the operations \otimes and \hookrightarrow on \dfrac{{H}}{{\approx}_{{\varsigma}}} as follows:
[{e}]_{{\varsigma}}\otimes [{k}]_{{\varsigma}} = [{{e}{\ast} {k}}]_{{\varsigma}}\; \mathit{{and}}\; [{e}]_{{\varsigma}}\hookrightarrow [{k}]_{{\varsigma}} = [{{e}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {k}}]_{{\varsigma}} |
Then (\dfrac{{H}}{{\approx}_{{\varsigma}}}, \odot, \hookrightarrow, [1]_{{\varsigma}}) is a hoop.
Notation. In the following, we will consider in this article {H} as a hoop and {\varsigma} and {\varrho} as fuzzy sets. Moreover, the set of all fuzzy filters of {H} and anti-fuzzy filter of {H} are denoted by FF({H}) and AFF({H}) , respectively.
In this section, the concept of anti-fuzzy filter on hoop {H} is defined and some related results are investigated.
A complement of {\varsigma} is the fuzzy set {\varsigma}^{c} which is defined by, {\varsigma}^{c}({d}) = 1-{\varsigma}({d}) , for any {d}\in {H} .
Definition 3.1. {\varrho} is called an anti-fuzzy filter of {H} if for any {d}, {s}\in {H} :
(AFF1) {\varrho}({d}{\ast} {s}){\preceq} \max\{{\varrho}({d}), {\varrho}({s})\} = {\varrho}({d})\vee {\varrho}({s}) ,
(AFF2) if {d}{\preceq} {s} , then {\varrho}({s}){\preceq} {\varrho}({d}) .
Example 3.2. Let {H} = \{0, {e}, {k}, 1\} be a chain such that 0{\preceq} {e}{\preceq} {k}{\preceq} 1 . Define the operations {\ast} and { {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} on {H} as follows:
![]() |
Then ({H}, {\ast}, { {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}}, 0, 1) is a bounded hoop. Define {\varrho}: {H}\rightarrow {H} such that {\varrho}(1) = 0, \ {\varrho}(0) = {\varrho}({e}) = 0.5 and {\varrho}({k}) = 0.3 . Then {\varrho} is an anti-fuzzy filter of {H} .
Remark 3.3. (1) The following statements hold:
(i) {\varsigma}\in FF({H}) iff {\varsigma}^{c}\in AFF({H}) .
(ii) {\varrho}\in AFF({H}) iff {\varrho}^{c}\in FF({H}) .
(2) It is easy to see that {\varsigma}({d}){\preceq} {\varsigma}(1) ( {\varrho}(1){\preceq} {\varrho}({d}) ) and {\varsigma}(0){\preceq} {\varsigma}({d}) ( {\varrho}({d}){\preceq} {\varrho}(0) ), for any {d}\in {H} .
Theorem 3.4. Suppose for any {r}\in [0, 1] , we have {\varrho}_{{r}} = \{{d}\in {H}\mid{\varrho}({d}){\preceq} {r}\} . Then {\varrho}\in AFF({H}) iff for any {r}\in [0, 1] , {\varrho}_{{r}}\neq \emptyset is a filter of {H} .
Proof. The proof is clear. In the next proposition we investigate some properties of anti-fuzzy filters of hoops.
Proposition 3.5. Assume {\varrho}(1){\preceq} {\varrho}({d}) , for all {d}\in {H} . Then for all {d}, {s}, {q}\in {H} , the next statements are equivalent:
(i) {\varrho}\in AFF({H}) ,
(ii) If {d}{\preceq} {s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q} , then {\varrho}({q}){\preceq} {\varrho}({d})\vee {\varrho}({s}) ,
(iii) {\varrho}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {\varrho}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\vee {\varrho}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}) ,
(iv) {\varrho}({s}{\ast} {q}){\preceq} {\varrho}({d}{\ast} {q})\vee {\varrho}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) ,
(v) {\varrho}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {\varrho}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})\vee {\varrho}({s}) .
Proof. (i)\Rightarrow (ii) Let {\varrho}\in AFF({H}) and {d}, {s}, {q}\in {H} such that {d}{\preceq} {s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q} . Then {\varrho}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {\varrho}({d}) . By Proposition 2.1(vii), {s}{\ast} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {q} , since {\varrho}\in AFF({H}) , we have {\varrho}({q}){\preceq} {\varrho}({s}{\ast} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})){\preceq} {\varrho}({s})\vee {\varrho}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}) . Hence, {\varrho}({q}){\preceq} {\varrho}({s})\vee {\varrho}({d}) .
(ii)\Rightarrow (iii) By Proposition 2.1(ix), {d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}{\preceq} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}) . Then by (ii),
{\varrho}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {\varrho}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})\vee {\varrho}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}). |
(iii)\Rightarrow (i) Let {d}{\preceq} {s} , then {d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s} = 1 . Thus, by (iii) and assumption,
{\varrho}({s}) = {\varrho}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {\varrho}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})\vee {\varrho}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) = {\varrho}({d})\vee {\varrho}(1) = {\varrho}({d}). |
Also, from {d}{\ast} {s}{\preceq} {d}{\ast} {s} , by Proposition 2.1(ii), {d}{\preceq} {s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{\ast} {s}) , then {\varrho}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{\ast} {s})){\preceq} {\varrho}({d}) . Let {d} = 1 and {q} = {d}{\ast} {s} in (iii). Then
{\varrho}({d}{\ast} {s}) = {\varrho}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{\ast} {s})){\preceq} {\varrho}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\vee{\varrho}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{\ast} {s})){\preceq} {\varrho}({s})\vee{\varrho}({d}). |
Hence, {\varrho}\in AFF({H}) .
(ii)\Rightarrow (iv) By Proposition 2.1(vii) and (xi), ({q}{\ast} {d}){\ast} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {q}{\ast} {s} . Then {q}{\ast} {d}{\preceq} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}{\ast} {s}) . Thus, by (ii), {\varrho}({q}{\ast} {s}){\preceq} {\varrho}({q}{\ast} {d})\vee {\varrho}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) .
(iv)\Rightarrow (v) Let {d}, {s}, {q}\in {H} . By Proposition 2.1(iii) and (iv), {d}{\ast} {s}{\preceq} {s}{\preceq} {d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s} . Then by Proposition 2.1(xiii) and (HP3),
({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}{\preceq} ({d}{\ast} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q} = {s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}). |
Thus, by Proposition 2.1(vii), {s}{\ast} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q} . Also, if {d}{\preceq} {s} , let {q} = 1 in (iv), then by assumption {\varrho}({s}) = {\varrho}(1{\ast} {s}){\preceq} {\varrho}({d}{\ast} 1)\vee {\varrho}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) = {\varrho}({d}) , and so {\varrho}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {\varrho}({s}{\ast} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})) . Moreover, if {q} = {d} and {d} = 1 in (iv), then {\varrho}({d}{\ast} {s}){\preceq} {\varrho}({d})\vee{\varrho}({s}) . Hence,
{\varrho}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {\varrho}({s}{\ast} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})){\preceq} {\varrho}({s})\vee {\varrho}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})). |
(v)\Rightarrow (ii) Let {d}{\preceq} {s} . Then {d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s} = 1 . It is enough to choose {d} = 1, {q} = {s} and {s} = {d} in (v). Thus, by assumption,
{\varrho}({s}) = {\varrho}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {\varrho}((1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\vee {\varrho}({d}) = {\varrho}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\vee {\varrho}({d}) = {\varrho}(1)\vee{\varrho}({d}) = {\varrho}({d}). |
So, if {d}{\preceq} {s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q} , then {\varrho}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {\varrho}({d}) . Now, let {d} = 1 in (v), then
{\varrho}({q}) = {\varrho} (1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {\varrho}((1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})\vee {\varrho}({s}) = {\varrho}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})\vee {\varrho}({s}){\preceq} {\varrho}({d})\vee {\varrho}({s}). |
Theorem 3.6. Let {\varrho}\in AFF({H}) and fuzzy relation {\approx}_{{\varrho}} on {H} be defined by
{d}{\approx}_{{\varrho}}\; s\; \mathit{{iff}}\; {\varrho}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\vee {\varrho}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) = {\varrho}(1),\; \mathit{{for\; any}}\; {d},{s}\in {H}. |
Then {\approx}_{{\varrho}} is a congruence relation on {H} .
Proof. Since {\varrho}\in AFF({H}) , for all {d}\in {H} , we get
{\varrho}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})\vee{\varrho}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) = {\varrho}(1)\; {\rm{iff}}\; {d}{\approx}_{{\varrho}} {d}. |
Hence {\approx}_{{\varrho}} is reflexive. Clearly, {\approx}_{{\varrho}} is symmetric. Now, suppose {d}{\approx}_{{\varrho}} {s} and {s}{\approx}_{{\varrho}} {q} , for {d}, {s}, {q}\in {H} . Then {\varrho}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\vee{\varrho}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) = {\varrho}(1) and {\varrho}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})\vee {\varrho}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) = {\varrho}(1) . Thus,
{\varrho}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\vee {\varrho}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})\vee {\varrho}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})\vee {\varrho}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) = {\varrho}(1). |
Moreover, since {\varrho} is an anti-fuzzy filter, by Propositions 2.1(x), 3.5(iii) and Remark 3.3 (2), we have
\begin{eqnarray*} {\varrho}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})\vee{\varrho}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) &{\preceq} & {\varrho}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\ast} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}))\vee{\varrho}(({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\ast} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))\\ &{\preceq} &[{\varrho}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\vee{\varrho}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})]\vee[{\varrho}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\vee{\varrho}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})]\\ & = &{\varrho}(1). \end{eqnarray*} |
So, {d}{\approx}_{{\varrho}} {q} and this means that {\approx}_{{\varrho}} is transitive. Hence, {\approx}_{{\varrho}} is an equivalence relation. Now, we prove that {\approx}_{{\varrho}} is a congruence relation. Let {d}, {s}, {q}\in {H} such that {d}{\approx}_{{\varrho}} {s} . Then {\varrho}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\vee{\varrho}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) = {\varrho}(1) . Since {s}{\ast} {q}{\preceq} {s}{\ast} {q} , by Proposition 2.1(ii) and (xii), {d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}{\preceq} {d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{\ast} {q})) . Thus by (HP3), {d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}{\preceq} ({d}{\ast} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{\ast} {q}) . Since {\varrho} is an anti-fuzzy filter, {\varrho}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\succeq} {\varrho}(({d}{\ast} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{\ast} {q})) . By the similar way, {\varrho}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\succeq} {\varrho}(({s}{\ast} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{\ast} {q})) . Thus,
{\varrho}(1) = {\varrho}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\vee{\varrho}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\succeq} {\varrho}(({d}{\ast} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{\ast} {q}))\vee{\varrho}(({q}{\ast} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}{\ast} {d})). |
Hence, {d}{\ast} {q}{\approx}_{{\varrho}} {s}{\ast} {q} . On the other hand, by Proposition 2.1(ix), {d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}{\preceq} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}) , for any {d}, {s}, {q}\in {H} . From {\varrho} is an anti-fuzzy filter, {\varrho}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\succeq} {\varrho}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})) . By the similar way, {\varrho}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\succeq} {\varrho}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})) . Then
{\varrho}(1) = {\varrho}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\vee{\varrho}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\succeq} {\varrho}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}))\vee{\varrho}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})), |
and so {d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}{\approx}_{{\varrho}} {s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q} . By the similar way, we can see {q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}{\approx}_{{\varrho}} {q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s} . Therefore, {\approx}_{{\varrho}} is a congruence relation on {H} .
For any {e}\in {H} , [{e}]_{{\varrho}} denotes the equivalence class of {e} with respect to {\approx}_{{\varrho}} . Clearly
[{e}]_{{\varrho}} = \{{d}\in {H}\mid {e}{\approx}_{{\varrho}} {d}\} = \{{d}\in {H}\mid {\varrho}({e}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})\vee{\varrho}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {e}) = {\varrho}(1)\}. |
Theorem 3.7. Let \dfrac{{H}}{{\approx}_{{\varrho}}} = \{[{e}]_{{\varrho}}\mid {e}\in {H}\} and operations \otimes and \hookrightarrow on \dfrac{{H}}{{\approx}_{{\varrho}}} defined as follows:
[{e}]_{{\varrho}}\otimes [{k}]_{{\varrho}} = [{{e}{\ast} {k}}]_{{\varrho}}\; \mathit{{and}}\; [{e}]_{{\varrho}}\hookrightarrow [{k}]_{{\varrho}} = [{{e}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {k}}]_{{\varrho}}. |
Then (\dfrac{{H}}{{\approx}_{{\varrho}}}, \otimes, \hookrightarrow, [1]_{{\varrho}}) is a hoop.
Proof. We have [{e}]_{{\varrho}} = [{k}]_{{\varrho}} and [{m}]_{{\varrho}} = [{z}]_{{\varrho}} iff {e}{\approx}_{{\varrho}} {k} and {m}{\approx}_{{\varrho}} {z} . Since {\approx}_{{\varrho}} is the congruence relation on {H} , we get that all above operations are well-defined. Thus, by routine calculation, we can see that \dfrac{{H}}{{\approx}_{{\varrho}}} is a hoop. Now, we define a binary relation on \dfrac{{H}}{{\approx}_{{\varrho}}} by
[{e}]_{{\varrho}}{\preceq} [{k}]_{{\varrho}}\; {\rm{iff}}\; {\varrho}({e}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {k}) = {\varrho}(1),\; {\rm{for\; any}}\; {e},{k}\in {H}. |
Easily we can see (\dfrac{{H}}{{\approx}_{{\varrho}}}, {\preceq}) is a partial order monoid.
Example 3.8. Let {H} be the hoop as in Example 3.2. Define a map {\varrho}:{H}\rightarrow {H} by {\varrho}(1) = {\varrho}({k}) = 0.3 and {\varrho}(0) = {\varrho}({e}) = 0.5 . Then, we have [0]_{{\varrho}} = \{0\} , [{e}]_{{\varrho}} = \{{e}\} and [{k}]_{{\varrho}} = [1]_{{\varrho}} = \{{k}, 1\} . Hence, \dfrac{{H}}{{\approx}_{{\varrho}}} = \{[0]_{{\varrho}}, [{e}]_{{\varrho}}, [1]_{{\varrho}}\} , which by the operations defining in Theorem 3.7 is a hoop.
In the following, we define the concept of intuitionistic fuzzy filter on hoop {H} and investigate some related results.
Definition 4.1. An intuitionistic fuzzy set or IF-set \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) on {H} is called an intuitionistic fuzzy filte or an IF-filter of {H} if, for any {d}, {s}\in {H} , it satisfies the next conditions:
(IFF1) if {d}{\preceq} {s} , then {\varsigma}_{\mathcal{{B}}}({d}){\preceq} {\varsigma}_{\mathcal{{B}}}({s}) and {\varrho}_{\mathcal{{B}}}({s}){\preceq} {\varrho}_{\mathcal{{B}}}({d}) ,
(IFF2) {\varsigma}_{\mathcal{{B}}}({d}{\ast} {s}){\succeq} {\varsigma}_{\mathcal{{B}}}({d})\wedge {\varsigma}_{\mathcal{{B}}}({s}) ,
(IFF3) {\varrho}_{\mathcal{{B}}}({d}{\ast} {s}){\preceq} {\varrho}_{\mathcal{{B}}}({d})\vee {\varrho}_{\mathcal{{B}}}({s}) .
The family of all intuitionistic fuzzy filters of {H} will be denoted by \mathcal{IFF}({H}) .
Example 4.2. Let {H} be the hoop as in Example 3.2. Define {\varsigma}_{\mathcal{{B}}}(1) = 0.9 , {\varsigma}_{\mathcal{{B}}}(0) = {\varsigma}_{\mathcal{{B}}}({e}) = 0.5 , {\varsigma}_{\mathcal{{B}}}({k}) = 0.7 and {\varrho}_{\mathcal{{B}}}(1) = 0.1 , {\varrho}_{\mathcal{{B}}}(0) = {\varrho}_{\mathcal{{B}}}({e}) = 0.5 and {\varrho}_{\mathcal{{B}}}({k}) = 0.3 . Then \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) is an intuitionistic fuzzy filter on {H} .
Proposition 4.3. An IF-set \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) on A is an IF-filter iff {\varsigma}_{\mathcal{{B}}}\in FF({H}) and {\varrho}_{\mathcal{{B}}}\in AFF({H}) such that {\varsigma}_{\mathcal{{B}}}({d})+{\varrho}_{\mathcal{{B}}}({d}){\preceq} 1 .
Proof. By Definitions 3.1, 4.1 and Proposition 2.5, the proof is clear. In the next example, we show that the condition {\varsigma}_{\mathcal{{B}}}({d})+{\varrho}_{\mathcal{{B}}}({d}){\preceq} 1 , for any {d}\in {H} is necessary.
Example 4.4. Let {H} be the hoop as in Example 3.2. Define
{{\varsigma}_{\mathcal{{B}}}}(1) = 1, {{\varsigma}_{\mathcal{{B}}}}({e}) = {{\varsigma}_{\mathcal{{B}}}}(0) = 0.5, {{\varsigma}_{\mathcal{{B}}}}({k}) = 0.7 \ , \ {{\varrho}_{\mathcal{{B}}}}(1) = 0.7, {{\varrho}_{\mathcal{{B}}}}({e}) = {{\varrho}_{\mathcal{{B}}}}(0) = 0.9, {{\varrho}_{\mathcal{{B}}}}({k}) = 0.8. |
Clearly, {{\varsigma}_{\mathcal{{B}}}}\in FF({H}) and {{\varrho}_{\mathcal{{B}}}}\in AFF({H}) such that {{\varsigma}_{\mathcal{{B}}}}(1)+{{\varrho}_{\mathcal{{B}}}}(1){\succeq} 1 . Hence, \mathcal{{B}} = ({{\varsigma}_{\mathcal{{B}}}}, {{\varrho}_{\mathcal{{B}}}}) is not an IF-set of {H} .
In the next proposition we prove that by a fuzzy filter (anti-fuzzy filter) on A we can make an IF-filter.
Proposition 4.5. Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-set on {H} . Then \mathcal{{B}} is an IF-filter iff \mathcal{{B}}_{{C}} = ({\varsigma}_{\mathcal{{B}}}, {\varsigma}^{c}_{\mathcal{{B}}}) and _{{C}}\mathcal{{B}} = ({\varrho}^{c}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) are IF-filters of {H} .
Proof. (\Rightarrow) Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-filter of {H} . By Definition 4.1, {\varsigma}_{\mathcal{{B}}}\in FF({H}) and {\varrho}_{\mathcal{{B}}}\in AFF({H}) . Thus, by Remark 3.3 , {\varsigma}^{c}_{\mathcal{{B}}}\in AFF({H}) and \nu^{c}_{\mathcal{{B}}}\in FF({H}) . Also, from {\varsigma}_{\mathcal{{B}}}+{\varsigma}^{c}_{\mathcal{{B}}}{\preceq} 1 and {\varrho}_{\mathcal{{B}}}+{\varrho}^{c}_{\mathcal{{B}}}{\preceq} 1 , obviously, \mathcal{{B}}_{{C}} = ({\varsigma}_{\mathcal{{B}}}, {\varsigma}^{c}_{\mathcal{{B}}}) and _{{C}}\mathcal{{B}} = ({\varrho}^{c}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) are IF-filters of {H} .
(\Leftarrow) Let \mathcal{{B}}_{{C}} = ({\varsigma}_{\mathcal{{B}}}, {\varsigma}^{c}_{\mathcal{{B}}}) and _{{C}}\mathcal{{B}} = ({\varrho}^{c}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be IF-filters of {H} . Then {\varsigma}_{\mathcal{{B}}}\in FF({H}) and {\varrho}_{\mathcal{{B}}}\in AFF({H}) . From, \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) is an IF-set on {H} , then {\varsigma}_{\mathcal{{B}}}+{\varrho}_{\mathcal{{B}}}{\preceq} 1 . Thus, by Proposition 4.3 , \mathcal{{B}} is an IF-filter of {H} .
Theorem 4.6. Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-set on {H} and for any {r}\in [0, 1] ,
\mathcal{{B}}_{{r}} = \{{d}\in {H}\mid{\varsigma}_{\mathcal{{B}}}({d}){\succeq} r\; \mathit{{and}}\; {\varrho}_{\mathcal{{B}}}({d}){\preceq} {r}\}. |
Then \mathcal{{B}} is an IF-filter of {H} iff for any {r}\in [0, 1] , \mathcal{{B}}_{{r}}\neq \emptyset is a filter of {H} .
Proof. By Theorems 2.6 , 3.4 and Proposition 4.3 , the proof is clear. Now, we mainly investigate the lattice of all IF-filters by introducing the notion of tip-extended pair of IF-sets.
Proposition 4.7. Let \{\mathcal{{B}}_{i} = ({\varsigma}_{\mathcal{{B}}_{i}}, {\varrho}_{\mathcal{{B}}_{i}})\}_{i\in I} be a set of IF-filters of {H} and fuzzy sets \bigwedge_{i\in I} {{\varsigma}_{\mathcal{{B}}_{i}}} and \bigvee_{i\in I} {{\varrho}_{\mathcal{{B}}_{i}}} on {H} are defined as follows:
(\bigwedge\limits_{i\in I} {{\varsigma}_{\mathcal{{B}}_{i}}})({d}) = \bigwedge\limits_{i\in I}{\{{\varsigma}_{\mathcal{{B}}_{i}}({d})\mid i\in I\}} \ \ , \ \ (\bigvee\limits_{i\in I} {{\varrho}_{{\mathcal{{B}}_{i} }}})({d}) = {\bigvee\limits_{i\in I}}\{{{\varrho}_{\mathcal{{B}}_{i}}}({d})\mid i\in I\}, |
and IF-set \bigcap_{i\in I} {\mathcal{{B}}_{i}} on {H} , are defined by \bigcap_{i\in I} {\mathcal{{B}}_{i}} = (\bigwedge_{i\in I} {{\varsigma}_{\mathcal{{B}}_{i}}}, \bigvee_{i\in I} {{\varrho}_{\mathcal{{B}}_{i}}}) . Then \mathcal{{B}} = \bigcap_{i\in I} {\mathcal{{B}}_{i}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) is an IF-filter of {H} , too.
Proof. Let \{\mathcal{{B}}_{i} = ({\varsigma}_{\mathcal{{B}}_{i}}, {\varrho}_{\mathcal{{B}}_{i}})\}_{i\in I} be a set of IF-filters of {H} and \mathcal{{B}} = \bigcap_{i\in I} {\mathcal{{B}}_{i}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) such that {\varsigma}_{\mathcal{{B}}} = \bigwedge_{i\in I}{{\varsigma}_{\mathcal{{B}}_{i}}} and {\varrho}_{\mathcal{{B}}} = \bigvee_{i\in I}{{\varrho}_{\mathcal{{B}}_{i}}} . Let {d}, {s}, {q}\in {H} such that {d}{\preceq} {s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q} . Then
{\varsigma}_{\mathcal{{B}}}({q}) = (\bigwedge\limits_{i\in I}{{\varsigma}_{\mathcal{{B}}_{i}}})({q}) = \bigwedge\limits_{i\in I}({{\varsigma}_{\mathcal{{B}}_{i}}}({q})){\succeq} \bigwedge\limits_{i\in I}({{\varsigma}_{\mathcal{{B}}_{i}}}({d})\wedge {{\varsigma}_{\mathcal{{B}}_{i}}}({s})) = \bigwedge\limits_{i\in I}{{\varsigma}_{\mathcal{{B}}_{i}}}({d}) \wedge \bigwedge\limits_{i\in I}{{\varsigma}_{\mathcal{{B}}_{i}}}({s}) = {\varsigma}_{\mathcal{{B}}}({d})\wedge {\varsigma}_{\mathcal{{B}}}({s}). |
{\varrho}_{\mathcal{{B}}}({q}) = (\bigvee\limits_{i\in I}{{\varrho}_{\mathcal{{B}}_{i}}})({q}) = \bigvee\limits_{i\in I}({{\varrho}_{\mathcal{{B}}_{i}}}({q})){\preceq} \bigvee\limits_{i\in I}({{\varrho}_{\mathcal{{B}}_{i}}}({d})\vee {{\varrho}_{\mathcal{{B}}_{i}}}({s})) = \bigvee\limits_{i\in I}{{\varrho}_{\mathcal{{B}}_{i}}}({d}) \vee \bigvee\limits_{i\in I}{{\varrho}_{\mathcal{{B}}_{i}}}({s}) = {\varrho}_{\mathcal{{B}}}({d})\vee {\varrho}_{\mathcal{{B}}}({s}). |
In the next example we show that (\bigvee_{i\in I}{{\varsigma}_{\mathcal{{B}}_{i}}}, \bigvee_{i\in I}{{\varrho}_{\mathcal{{B}}_{i}}}) is not an IF-filter, in general.
Example 4.8. Let {H} be as Example 4.4 and;
{{\varsigma}_{\mathcal{{B}}}}_{1}(1) = 0.4, \; {{\varsigma}_{\mathcal{{B}}}}_{1}({e}) = {{\varsigma}_{\mathcal{{B}}}}_{1}(0) = 0.2, {{\varsigma}_{\mathcal{{B}}}}_{1}({k}) = 0.3, {{\varrho}_{\mathcal{{B}}}}_{1}(1) = 0.6, \; {{\varrho}_{\mathcal{{B}}}}_{1}({e}) = {{\varrho}_{\mathcal{{B}}}}_{1}(0) = 0.8\; {\rm{and}}\; {{\varrho}_{\mathcal{{B}}}}_{1}({k}) = 0.7\\ {{\varsigma}_{\mathcal{{B}}}}_{2}(1) = 0.5, \; {{\varsigma}_{\mathcal{{B}}}}_{2}({e}) = {{\varsigma}_{\mathcal{{B}}}}_{2}(0) = 0.3, {{\varsigma}_{\mathcal{{B}}}}_{2}({k}) = 0.4, {{\varrho}_{\mathcal{{B}}}}_{2}(1) = 0.5, \; {{\varrho}_{\mathcal{{B}}}}_{2}({e}) = {{\varrho}_{\mathcal{{B}}}}_{2}(0) = 0.7\; {\rm{and}}\; {{\varrho}_{\mathcal{{B}}}}_{2}({k}) = 0.6\\ {{\varsigma}_{\mathcal{{B}}}}_{3}(1) = 1, \; {{\varsigma}_{\mathcal{{B}}}}_{3}({e}) = {{\varsigma}_{\mathcal{{B}}}}_{3}(0) = 0.5, {{\varsigma}_{\mathcal{{B}}}}_{3}({k}) = 0.7, {{\varrho}_{\mathcal{{B}}}}_{3}(1) = 0, \; {{\varrho}_{\mathcal{{B}}}}_{3}({e}) = {{\varrho}_{\mathcal{{B}}}}_{3}(0) = 0.5\; {\rm{and}}\; {{\varrho}_{\mathcal{{B}}}}_{3}({k}) = 0.3\\ {{\varsigma}_{\mathcal{{B}}}}_{4}(1) = 0.3, \; {{\varsigma}_{\mathcal{{B}}}}_{4}({e}) = {{\varsigma}_{\mathcal{{B}}}}_{4}(0) = 0.1, {{\varsigma}_{\mathcal{{B}}}}_{4}({k}) = 0.2, {{\varrho}_{\mathcal{{B}}}}_{4}(1) = 0.7, \; {{\varrho}_{\mathcal{{B}}}}_{4}({e}) = {{\varrho}_{\mathcal{{B}}}}_{4}(0) = 0.9\; {\rm{and}}\; {{\varrho}_{\mathcal{{B}}}}_{4}({k}) = 0.8
Then (\vee{\varsigma}_{\mathcal{{B}}}(1), \vee{\varrho}_{\mathcal{{B}}}(1)) = (1, 0.7) such that {\varsigma}_{\mathcal{{B}}}+{\varrho}_{\mathcal{{B}}}{\succeq} 1 , which is a contradiction with definition of IF-set.
Let {L} be an IF-set on {H} . The intersection of all IF-filters containing {L} is called the generated IF-filter by {L} , denoted as \langle {L}\rangle .
Theorem 4.9. Let {L} = ({\varsigma}_{{L}}, {\varrho}_{{L}}) be an IF-set on {H} and \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) is defined on {H} by;
{\varsigma}_{\mathcal{{B}}}({d}) = \bigvee\limits_{{e}_{1}{\ast} {e}_{2}{\ast} ...{\ast} {e}_{n}{\preceq} {d}} \{{\varsigma}_{{{L}}}({e}_{1})\wedge {\varsigma}_{{{L}}}({e}_{2})\wedge ...\wedge {\varsigma}_{{{L}}}({e}_{n})\}, |
and
{\varrho}_{\mathcal{{B}}}({d}) = \bigwedge\limits_{{e}_{1}{\ast} {e}_{2}{\ast} ...{\ast} {e}_{n}{\preceq} {d}} \{{\varrho}_{{{L}}}({e}_{1})\vee {\varrho}_{{{L}}}({e}_{2})\vee ...\vee {\varrho}_{{{L}}}({e}_{n})\}, |
for all {d}\in {H} , {e}_{i}\in {H} , 1{\preceq} i{\preceq} n and n\in \mathbb{N} . Then \mathcal{{B}} = \langle {L}\rangle .
Proof. First, we verify that \mathcal{{B}} is an IF-filter. For all {d}, {s}\in {H} , such that {d}{\preceq} {s} , the definition of \mathcal{{B}} yields that {\varsigma}_{\mathcal{{B}}}({d}){\preceq} {\varsigma}_{\mathcal{{B}}}({s}) and {\varrho}_{\mathcal{{B}}}({s}){\preceq} {\varrho}_{\mathcal{{B}}}({d}) . For all {d}, {s}, {e}_{i}, {k}_{j}, {m}_{l}\in {H} , 1{\preceq} i{\preceq} n , 1{\preceq} j{\preceq} m , 1{\preceq} l{\preceq} k and n, m, k\in \mathbb{N} , we have
\begin{eqnarray*} {{\varsigma}_{\mathcal{{B}}}}({d})\wedge {{\varsigma}_{\mathcal{{B}}}}({s}) & = &\bigvee_{{e}_{1}{\ast} {e}_{2}{\ast} ...{\ast} {e}_{n}{\preceq} {d}} \{{\varsigma}_{{{L}}}({e}_{1})\wedge {\varsigma}_{{{L}}}({e}_{2})\wedge ...\wedge {\varsigma}_{{{L}}}({e}_{n})\}\\ &\wedge& \bigvee_{{k}_{1}{\ast} {k}_{2}{\ast} ...{\ast} {k}_{m}{\preceq} {s}} \{{\varsigma}_{{{L}}}({k}_{1})\wedge {\varsigma}_{{{L}}}({k}_{2})\wedge ...\wedge {\varsigma}_{{{L}}}({k}_{m})\}\\ & = & \bigvee_{{e}_{1}{\ast} {e}_{2}{\ast} ...{\ast} {e}_{n}{\preceq} {d},\; } \bigvee_{{k}_{1}{\ast} {k}_{2}{\ast} ...{\ast} {k}_{m}{\preceq} {s}} \{{\varsigma}_{{{L}}}({e}_{1})\wedge {\varsigma}_{{{L}}}({e}_{2})\wedge ...\wedge {\varsigma}_{{{L}}}({e}_{n}) \end{eqnarray*} |
\begin{eqnarray*} &\wedge& {\varsigma}_{{{L}}}({k}_{1})\wedge {\varsigma}_{{{L}}}({k}_{2})\wedge ...\wedge {\varsigma}_{{{L}}}({k}_{m})\} \\\\ &{\preceq} & \bigvee_{{m}_{1}{\ast} {m}_{2}{\ast} ...{\ast} {m}_{k}{\preceq} {d}{\ast} {s}} \{{\varsigma}_{{{L}}}({m}_{1})\wedge {\varsigma}_{{{L}}}({m}_{2})\wedge ...\wedge {\varsigma}_{{{L}}}({m}_{k})\}\\ & = & {{\varsigma}_{\mathcal{{B}}}}({d}{\ast} {s}) \end{eqnarray*} |
and
\begin{eqnarray*} {{\varrho}_{\mathcal{{B}}}}({d})\vee {{\varrho}_{\mathcal{{B}}}}({s}) & = &\bigwedge_{{e}_{1}{\ast} {e}_{2}{\ast} ...{\ast} {e}_{n}{\preceq} {d}} \{{\varrho}_{{{L}}}({e}_{1})\vee {\varrho}_{{{L}}}({e}_{2})\vee ...\vee {\varrho}_{{{L}}}({e}_{n})\}\\ &\vee& \bigwedge_{{k}_{1}{\ast} {k}_{2}{\ast} ...{\ast} {k}_{m}{\preceq} {s}} \{{\varrho}_{{{L}}}({k}_{1})\vee {\varrho}_{{{L}}}({k}_{2})\vee ...\vee {\varrho}_{{{L}}}({k}_{m})\}\\ & = & \bigwedge_{{e}_{1}{\ast} {e}_{2}{\ast} ...{\ast} {e}_{n}{\preceq} {d},\; } \bigwedge_{{k}_{1}{\ast} {k}_{2}{\ast} ...{\ast} {k}_{m}{\preceq} {s}} \{{\varrho}_{{{L}}}({e}_{1})\vee {\varrho}_{{{L}}}({e}_{2})\vee ...\vee {\varrho}_{{{L}}}({e}_{n})\\\\\\ &\vee& {\varrho}_{{{L}}}({k}_{1})\vee {\varrho}_{{{L}}}({k}_{2})\vee ...\vee {\varrho}_{{{L}}}({k}_{m})\} \\\\ &{\succeq} & \bigwedge_{{m}_{1}{\ast} {m}_{2}{\ast} ...{\ast} {m}_{k}{\preceq} {d}{\ast} {s}} \{{\varrho}_{{{L}}}({m}_{1})\vee {\varrho}_{{{L}}}({m}_{2})\vee ...\vee {\varrho}_{{{L}}}({m}_{k})\}\\ & = & {{\varrho}_{\mathcal{{B}}}}({d}{\ast} {s}). \end{eqnarray*} |
Thus \mathcal{{B}} is an IF-filter. Secondly, let \mathcal{{C}} be an IF-filter such that {L}\subseteq \mathcal{{C}} . By definition of IF-filter, for all {d}, {s}, {e}_{i}\in {H} , 1{\preceq} i{\preceq} n and n\in \mathbb{N} , it holds that
\begin{eqnarray*} {{\varsigma}_{\mathcal{{B}}}}({d}) & = &\bigvee_{{e}_{1}{\ast} {e}_{2}{\ast} ...{\ast} {e}_{n}{\preceq} {d}} \{{\varsigma}_{{{L}}}({e}_{1})\wedge {\varsigma}_{{{L}}}({e}_{2})\wedge ...\wedge {\varsigma}_{{{L}}}({e}_{n})\}\\ &{\preceq} & \bigvee_{{e}_{1}{\ast} {e}_{2}{\ast} ...{\ast} {e}_{n}{\preceq} {d}} \{{\varsigma}_{{\mathcal{{C}}}}({e}_{1})\wedge {\varsigma}_{{\mathcal{{C}}}}({e}_{2})\wedge ...\wedge {\varsigma}_{{\mathcal{{C}}}}({e}_{n})\}\\ &{\preceq} & \bigvee_{{e}_{1}{\ast} {e}_{2}{\ast} ...{\ast} {e}_{n}{\preceq} {d}} \{{\varsigma}_{{\mathcal{{C}}}}({e}_{1}{\ast} {e}_{2}{\ast} ...{\ast} {e}_{n})\}\\ &{\preceq} & {{\varsigma}_{\mathcal{{C}}}}({d}) \end{eqnarray*} |
and
\begin{eqnarray*} {{\varrho}_{\mathcal{{B}}}}({d}) & = &\bigwedge_{{e}_{1}{\ast} {e}_{2}{\ast} ...{\ast} {e}_{n}{\preceq} {d}} \{{\varrho}_{{{L}}}({e}_{1})\vee {\varrho}_{{{L}}}({e}_{2})\vee ...\vee {\varrho}_{{{L}}}({e}_{n})\}\\ &{\succeq} & \bigwedge_{{e}_{1}{\ast} {e}_{2}{\ast} ...{\ast} {e}_{n}{\preceq} {d}} \{{\varrho}_{{\mathcal{{C}}}}({e}_{1})\vee {\varrho}_{{\mathcal{{C}}}}({e}_{2})\vee ...\vee {\varrho}_{{\mathcal{{C}}}}({e}_{n})\}\\ &{\succeq} & \bigwedge_{{e}_{1}{\ast} {e}_{2}{\ast} ...{\ast} {e}_{n}{\preceq} {d}} \{{\varrho}_{{\mathcal{{C}}}}({e}_{1}{\ast} {e}_{2}{\ast} ...{\ast} {e}_{n})\}\\ &{\succeq} & {{\varrho}_{\mathcal{{C}}}}({d}) \end{eqnarray*} |
and hence, \mathcal{{B}}\subseteq\mathcal{{C}} . Thus, \mathcal{{B}} = \langle {L}\rangle .
Associating with the above results, similar to the proof of ([15,Theorems 10–12]), we define the operations \sqcap and \sqcup on IF-filters of {H} in this way, \mathcal{{B}}\sqcap \mathcal{{C}} = \mathcal{{B}}\cap \mathcal{{C}} and \mathcal{{B}}\sqcup \mathcal{{C}} = \langle \mathcal{{B}}\cup \mathcal{{C}}\rangle , for any \mathcal{{B}}, \mathcal{{C}}\in IFF({H}) .
Theorem 4.10. (\mathcal{IFF}({H}), \sqcap, \sqcup, \emptyset, {H}) is a bounded distributive lattice.
Proof. The proof is similar to the proof of [15,Theorems 10–12].
Theorem 4.11. Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-filter of {H} and fuzzy relation {\approx}_{\mathcal{{B}}} on {H} , for any {d}, {s}\in {H} , is defined by
{d}{\approx}_{\mathcal{{B}}} \;s\; \mathit{{iff}}\; {\varsigma}_{\mathcal{{B}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\wedge {\varsigma}_{\mathcal{{B}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) = {\varsigma}_{\mathcal{{B}}}(1) \ , \ {\varrho}_{\mathcal{{B}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\vee {\varrho}_{\mathcal{{B}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) = {\varrho}_{\mathcal{{B}}}(1). |
Then {\approx}_{\mathcal{{B}}} is a congruence relation on {H} .
Proof. The proof is similar to the proof of Theorems 2.7 and 3.6 .
Theorem 4.12. Let \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} = \{[{e}]_{\mathcal{{B}}}\mid {e}\in {H}\} and operations \odot and \hookrightarrow on \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} are defined as follows:
[{e}]_{\mathcal{{B}}}\odot [{k}]_{\mathcal{{B}}} = [{{e}{\ast} {k}}]_{\mathcal{{B}}}\; \mathit{{and}}\; [{e}]_{\mathcal{{B}}}\hookrightarrow [{k}]_{\mathcal{{B}}} = [{{e}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {k}}]_{\mathcal{{B}}}. |
Also, we define a binary relation on \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} by
[{e}]_{\mathcal{{B}}}{\preceq} [{k}]_{\mathcal{{B}}}\; \mathit{{iff}}\; {\varsigma}_{\mathcal{{B}}}({e}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {k}) = {\varsigma}_{\mathcal{{B}}}(1)\; \mathit{{and}}\; {\varrho}_{\mathcal{{B}}}({e}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {k}) = {\varrho}_{\mathcal{{B}}}(1),\; \mathit{{for\; any}}\; {e},{k}\in {H}. |
Clearly, (\dfrac{{H}}{{\approx}_{\mathcal{{B}}}}, {\preceq}) is a poset. Then (\dfrac{{H}}{{\approx}_{\mathcal{{B}}}}, \odot, \hookrightarrow, [1]_{\mathcal{{B}}}) is a hoop.
Proof. The proof is similar to the proof of Theorems 2.8 and 3.7 .
Example 4.13. Let {H} be the hoop as in Example 3.2. Define {\varsigma}_{\mathcal{{B}}}(0) = {\varsigma}_{\mathcal{{B}}}({e}) = 0.5 , {\varsigma}_{\mathcal{{B}}}(1) = {\varsigma}_{\mathcal{{B}}}({k}) = 0.7 and {\varrho}_{\mathcal{{B}}}(0) = {\varrho}_{\mathcal{{B}}}({e}) = 0.5 and {\varrho}_{\mathcal{{B}}}(1) = {\varrho}_{\mathcal{{B}}}({k}) = 0.3 . Then \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) is an intuitionistic fuzzy filter on {H} and \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} = \{[0]_{\mathcal{{B}}}, [{e}]_{\mathcal{{B}}}, [1]_{\mathcal{{B}}}\} with the operations defining in Theorem 4.12 is a hoop.
Here, we define the notions of intuitionistic fuzzy (positive) implicative filters on hoops and some related results are investigated. We find some equivalence characterizations of them.
Definition 5.1. An IF-set \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) on {H} is called an intuitionistic fuzzy implicative filter or an IF-implicative filter of {H} if for all {d}, {s}, {q}\in {H} , it satisfies the next conditions:
(IFIF_{1}) If {d}{\preceq} {s} , then {\varsigma}_{\mathcal{{B}}}({d}){\preceq} {\varsigma}_{\mathcal{{B}}}({s}) and {\varrho}_{\mathcal{{B}}}({s}){\preceq} {\varrho}_{\mathcal{{B}}}({d}) ,
(IFIF_{2}) {\varsigma}_{\mathcal{{B}}}({d})\wedge{\varsigma}_{\mathcal{{B}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){\preceq} {\varsigma}_{\mathcal{{B}}}({s}) and {\varrho}_{\mathcal{{B}}}({s}){\preceq} {\varrho}_{\mathcal{{B}}}({d})\vee{\varrho}_{\mathcal{{B}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})) .
Example 5.2. Assume {H} = \{0, {e}, {k}, 1\} is a chain such that 0{\preceq} {e}{\preceq} {k}{\preceq} 1 . Define two binary operations {\ast} and { {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} on {H} as follows:
![]() |
Clearly, ({H}, {\ast}, { {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}}, 0, 1) is a hoop. Define {\varsigma}_{\mathcal{{B}}} on {H} by {\varsigma}_{\mathcal{{B}}}(1) = {\varsigma}_{\mathcal{{B}}}({k}) = {\varsigma}_{\mathcal{{B}}}({e}) = {r}_{2} and {\varsigma}_{\mathcal{{B}}}(0) = {r}_{1} such that 0{\preceq} {r}_{1} < {r}_{2}{\preceq} 1 and {\varrho}_{\mathcal{{B}}} = 1-{\varsigma}_{\mathcal{{B}}} . One easily verify that \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) is an IF-implicative filter.
Theorem 5.3. Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-set on {H} . Then \mathcal{{B}} is an IF-implicative filters of {H} iff for any {r}\in [0, 1] , \mathcal{{B}}_{{r}}\neq \emptyset is an implicative filter of {H} .
Proof. The proof is similar to the proof of Theorem 4.6 .
Theorem 5.4. Every IF-implicative filter of {H} is an IF-filter.
Proof. Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-implicative filter. By (IFIF_{1}) , obviously (IFF1) holds. Since {d}{\ast} {s}{\preceq} {d}{\ast} {s} , by Proposition 2.1 (ii), {s}{\preceq} {d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{\ast} {s}) . Then by (IFIF_{1}) , {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{\ast} {s})){\preceq} {{\varrho}_{\mathcal{{B}}}}({s}) . Also, since {{\varrho}_{\mathcal{{B}}}} is an IF-implicative filter, it is enough to choose {q} = 1 , then
{{\varrho}_{\mathcal{{B}}}}({d}{\ast} {s}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d})\vee {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ((({d}{\ast} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} 1){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{\ast} {s}))) = {{\varrho}_{\mathcal{{B}}}}({d})\vee {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{\ast} {s})){\preceq} {{\varrho}_{\mathcal{{B}}}}({d})\vee {{\varrho}_{\mathcal{{B}}}}({s}). |
Similarly, we can see {{\varsigma}_{\mathcal{{B}}}}({d}{\ast} {s}){\succeq} {{\varsigma}_{\mathcal{{B}}}}({d})\wedge {{\varsigma}_{\mathcal{{B}}}}({s}) . Hence, \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) is an IF-filter. In the next example we can see that the converse of the previous theorem does not hold.
Example 5.5. Assume {H} = \{0, {e}, {k}, 1\} is a chain, where 0{\preceq} {e}{\preceq} {k}{\preceq} 1 . Define two binary operations {\ast} and { {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} on {H} as follows:
![]() |
Hence ({H}, {\ast}, { {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}}, 0, 1) is a hoop. Define {\varsigma}_{\mathcal{{B}}}\in FF({H}) by {\varsigma}_{\mathcal{{B}}}(1) = {r}_{1}, \; {\varsigma}_{\mathcal{{B}}}({k}) = {r}_{2} and {\varsigma}_{\mathcal{{B}}}({e}) = {\varsigma}_{\mathcal{{B}}}(0) = {r}_{3} such that 0{\preceq} {r}_{3} < {r}_{2} < {r}_{1}{\preceq} 1 and {\varrho}_{\mathcal{{B}}} = 1-{\varsigma}_{\mathcal{{B}}} . One easily verify that \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) is an IF-filter of {H} but \mathcal{{B}} is not an IF-implicative filter. Because {r}_{2} = {\varsigma}_{\mathcal{{B}}}({k}) = {\varsigma}_{\mathcal{{B}}}({k})\wedge {\varsigma}_{\mathcal{{B}}}({k}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({e}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} 0){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {e}))\nleq {\varsigma}_{\mathcal{{B}}}({e}) = {r}_{3} .
Theorem 5.6. Suppose {H} is bounded and \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) is an IF-filter of {H} . Then the next statements are equivalent, for all {d}, {s}\in {H} ,
(i) \mathcal{{B}} is an IF-implicative filter of {H} ,
(ii) {{\varsigma}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} {{\varsigma}_{\mathcal{{B}}}}({d}) and {{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\succeq} {{\varrho}_{\mathcal{{B}}}}({d}) ,
(iii) {{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\succeq} {{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}))\wedge {{\varsigma}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}) and {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}))\vee {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}) ,
(iv) {{\varsigma}_{\mathcal{{B}}}}(({d}{\ast} {s}'){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) and {{\varrho}_{\mathcal{{B}}}}(({d}{\ast} {s}'){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\succeq} {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) .
Proof. In this proof, we just prove the items of {\varrho}_{\mathcal{{B}}} . Also, since \mathcal{{B}} is an IF-filter of {H} , by Definition 4.1 , {\varsigma}_{\mathcal{{B}}}\in FF({H}) and {\varrho}_{\mathcal{{B}}}\in AFF({H}) . Then as we notice, {{\varrho}_{\mathcal{{B}}}}(1){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}) and {{\varsigma}_{\mathcal{{B}}}}(1){\succeq} {{\varsigma}_{\mathcal{{B}}}}({d}) , for any {d}\in {H} .
(i)\Rightarrow (ii) It is enough to let {d} = 1 in (IFIF_{2}) . Then
{{\varrho}_{\mathcal{{B}}}}({s}){\preceq} {{\varrho}_{\mathcal{{B}}}}(1)\vee{{\varrho}_{\mathcal{{B}}}}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})) = {{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}). |
(ii)\Rightarrow (i) Let {d}, {s}, {q}\in {H} . Then by Proposition 2.1 (vii),
{d}{\ast} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){\preceq} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}. |
Since {{\varrho}_{\mathcal{{B}}}}\in AFF({H}) , we get
{{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d})\vee {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})). |
By (ⅱ),
{{\varrho}_{\mathcal{{B}}}}({s}){\preceq} {{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d})\vee {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})). |
Hence, \mathcal{{B}} is an IF-implicative filter of {H} .
(i)\Rightarrow (iv) Let {d}, {s}\in {H} . Then by Proposition 2.1 (iv) and (xii), {s}{\preceq} {d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s} , and so ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})'{\preceq} {s}' . Again, by Proposition 2.1 (xiii), {s}'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) . Since {{\varrho}_{\mathcal{{B}}}}\in AFF({H}) , {{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){\preceq} {{\varrho}_{\mathcal{{B}}}}({s}'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})) . Moreover, since {\mathcal{{B}}} is an IF-implicative filter of {H} , we have
{{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {{\varrho}_{\mathcal{{B}}}}(1)\vee{{\varrho}_{\mathcal{{B}}}}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} 0){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){\preceq} {{\varrho}_{\mathcal{{B}}}}(1)\vee {{\varrho}_{\mathcal{{B}}}}({s}'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})) = {{\varrho}_{\mathcal{{B}}}}(({s}'{\ast} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}). |
(iv)\Rightarrow (iii) Let {d}, {s}, {q}\in {H} . Then by Proposition 2.1 (x),
({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){\ast} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}) = (({d}{\ast} {q}'){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\ast} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} ({d}{\ast} {q}'){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}. |
Since {{\varrho}_{\mathcal{{B}}}}\in AFF({H}) ,
{{\varrho}_{\mathcal{{B}}}}(({d}{\ast} {q}'){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {{\varrho}_{\mathcal{{B}}}}(({d}{\ast} {q}'){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\vee{{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}), |
by (iv), {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {{\varrho}_{\mathcal{{B}}}}(({d}{\ast} {q}'){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}) . Hence, {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}))\vee {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}) .
(iii)\Rightarrow (i) Let {d} = 1 and {q} = {s} in (iii). Then {{\varrho}_{\mathcal{{B}}}}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {{\varrho}_{\mathcal{{B}}}}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}))\vee {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) , and so {{\varrho}_{\mathcal{{B}}}}({s}){\preceq} {{\varrho}_{\mathcal{{B}}}}({s}'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\vee {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) = {{\varrho}_{\mathcal{{B}}}}({s}'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) . Also, by Proposition 2.1 (vii),
{d}{\ast} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}. |
Since \mathcal{{B}} is an IF-filter of {H} , by Definition 4.1 , {\varrho}_{\mathcal{{B}}} \in AFF({H}) , then {{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d})\vee {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})) . Moreover, by Proposition 2.1 (xiii) and Proposition 2.2 (iii), {s}'{\preceq} {s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q} , and so ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}{\preceq} {s}'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s} , thus, {{\varrho}_{\mathcal{{B}}}}({s}'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) . Hence, {{\varrho}_{\mathcal{{B}}}}({s}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d})\vee {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) .
Definition 5.7. Assume \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) is an IF-set of {H} . Then \mathcal{{B}} is said to be an intuitionistic fuzzy positive implicative filter or an IF-positive implicative filter of {H} if, for all {d}, {s}, {q}\in {H} ,
(IFPIF_{1}) if {d}{\preceq} {s} , then {{\varsigma}_{\mathcal{{B}}}}({d}){\preceq} {{\varsigma}_{\mathcal{{B}}}}({s}) and {{\varrho}_{\mathcal{{B}}}}({s}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}) ,
(IFPIF_{2}) {{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\wedge{{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})){\preceq} {{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}) and {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\vee{{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})) .
Example 5.8. Assume {H} = \{0, {e}, {k}, 1\} is a chain where 0{\preceq} {e}{\preceq} {k}{\preceq} 1 . Define two binary operations {\ast} and { {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} on {H} as follows:
![]() |
Hence ({H}, {\ast}, { {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}}, 0, 1) is a hoop. Define {\varsigma}_{\mathcal{{B}}}\in FF({H}) by {\varsigma}_{\mathcal{{B}}}(1) = {r}_{2} and {\varsigma}_{\mathcal{{B}}}({k}) = {\varsigma}_{\mathcal{{B}}}({e}) = {\varsigma}_{\mathcal{{B}}}(0) = {r}_{1} such that 0{\preceq} {r}_{1} < {r}_{2}{\preceq} 1 and let {\varrho}_{\mathcal{{B}}} = 1-{\varsigma}_{\mathcal{{B}}} . Clearly, \mathcal{{B}} is an IF-positive implicative filter.
Theorem 5.9. Let \mathcal{{B}} be an IF-set of {H} . Then \mathcal{{B}} is an IF-positive implicative filter of {H} iff for any {r}\in [0, 1] , \mathcal{{B}}_{{r}}\neq \emptyset is a positive implicative filter of {H} .
Proof. The proof is similar to the proof of Theorem 4.6 .
Theorem 5.10. Each IF-positive implicative filter of {H} is an IF-filter.
Proof. Assume \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) is an IF-positive implicative filter of {H} . Then by (IFPIF_{1}) , obviously, (IFF1) holds. Moreover, by Proposition 2.1 (v) and (IFPIF_{2}) , we have
{{\varrho}_{\mathcal{{B}}}}({d}{\ast} {s}){\preceq} {{\varrho}_{\mathcal{{B}}}}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\vee {{\varrho}_{\mathcal{{B}}}}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{\ast} {s}))) = {{\varrho}_{\mathcal{{B}}}}({s})\vee {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{\ast} {s})). |
Also, by Proposition 2.1 (ii), {d}{\preceq} {s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{\ast} {s}) . Then by (IFPIF_{1}) , {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{\ast} {s})){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}) . Hence, {{\varrho}_{\mathcal{{B}}}}({d}{\ast} {s}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d})\vee{{\varrho}_{\mathcal{{B}}}}({s}) . Similarly, {{\varsigma}_{\mathcal{{B}}}}({d})\wedge {{\varsigma}_{\mathcal{{B}}}}({s}){\preceq} {{\varsigma}_{\mathcal{{B}}}}({d}{\ast} {s}) . Therefore, \mathcal{{B}} is an IF-filter of {H} .
Next example shows that the converse of the previous theorem does not hold.
Example 5.11. According to Example 5.2 , introduce {{\varsigma}_{\mathcal{{B}}}} by {{\varsigma}_{\mathcal{{B}}}}(1) = {r}_{3}, \; {{\varsigma}_{\mathcal{{B}}}}({k}) = {{\varsigma}_{\mathcal{{B}}}}({e}) = {r}_{2} and {{\varsigma}_{\mathcal{{B}}}}(0) = {r}_{1} such that 0{\preceq} {r}_{1} < {r}_{2} < {r}_{3}{\preceq} 1 . Routine calculation shows {{\varsigma}_{\mathcal{{B}}}}\in FF({H}) and {{\varrho}_{\mathcal{{B}}}} = 1-{{\varsigma}_{\mathcal{{B}}}}\in AFF({H}) . So, \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) is an IF-filter of {H} but \mathcal{{B}} = ({{\varsigma}_{\mathcal{{B}}}}, {{\varrho}_{\mathcal{{B}}}}) is not an IF-positive implicative filter. Because
{r}_{2} = {{\varsigma}_{\mathcal{{B}}}}({k}) = {{\varsigma}_{\mathcal{{B}}}}({k}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {e})\nsucceq {{\varsigma}_{\mathcal{{B}}}}({k}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({k}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {e}))\wedge{{\varsigma}_{\mathcal{{B}}}}({k}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {k}) = {{\varsigma}_{\mathcal{{B}}}}(1) = {r}_{3}. |
Theorem 5.12. Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-filter of {H} . Then for any {d}, {s}, {q}\in {H} the next conditions are equivalent:
(i) \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) is an IF-positive implicative filter of {H} ,
(ii) {{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){\preceq} {{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) \, \ {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})) ,
(iii) {{\varsigma}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})){\preceq} {{\varsigma}_{\mathcal{{B}}}}(({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) \, \ {{\varrho}_{\mathcal{{B}}}}(({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})){\preceq} {{\varrho}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) ,
(iv) {{\varsigma}_{\mathcal{{B}}}}({q})\wedge {{\varsigma}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))){\preceq} {{\varsigma}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) \, \ {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} {{\varrho}_{\mathcal{{B}}}}({q})\vee {{\varrho}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))) ,
(v) {{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}) = {{\varsigma}_{\mathcal{{B}}}}(1) and {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}) = {{\varrho}_{\mathcal{{B}}}}(1) .
Proof. In this proof, we just prove the items of {\varrho}_{\mathcal{{B}}} . Also, since \mathcal{{B}} is an IF-filter of {H} , by Definition 4.1 , {\varsigma}_{\mathcal{{B}}} \in FF({H}) and {\varrho}_{\mathcal{{B}}}\in AFF({H}) . Then as we notice, {{\varrho}_{\mathcal{{B}}}}(1){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}) and {{\varsigma}_{\mathcal{{B}}}}(1){\succeq} {{\varsigma}_{\mathcal{{B}}}}({d}) , for any {d}\in {H} .
(i)\Rightarrow (ii) Let {q} = {s} and {s} = {d} in (IFPIF_{2}) . Then
{{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})\vee{{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})) = {{\varrho}_{\mathcal{{B}}}}(1)\vee{{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})) = {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})). |
(ii)\Rightarrow (iii) Since {q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}{\preceq} {q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s} , by Proposition 2.1 (vii), {q}{\ast} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {s} . Also, by (HP3),
{q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) = {q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} [({q}{\ast} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}] = [{q}{\ast} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})]{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} [{q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}]{\succeq} {s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}). |
Since {{\varrho}_{\mathcal{{B}}}}\in AFF({H}) ,
{{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})){\succeq} {{\varrho}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))). |
Also, by (ⅱ),
{{\varrho}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))){\succeq} {{\varrho}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})). |
Hence, by (HP3),
{{\varrho}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})){\succeq} {{\varrho}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))){\succeq} {{\varrho}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) = {{\varrho}_{\mathcal{{B}}}}(({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})). |
(iii)\Rightarrow (iv) By Proposition 2.1 (vii), {q}{\ast} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))){\preceq} {s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) . Since {{\varrho}_{\mathcal{{B}}}}\in AFF({H}) ,
{{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})){\preceq} {{\varrho}_{\mathcal{{B}}}}({q})\vee {{\varrho}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))). |
So it is enough to choose {q} = {s} in (iii). Then
{{\varrho}_{\mathcal{{B}}}}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})){\preceq} {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})){\preceq} {{\varrho}_{\mathcal{{B}}}}({q})\vee {{\varrho}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))). |
(iv)\Rightarrow (v) Let {q} = 1, {s} = {d} and {d} = {d}^{2} in (iv). Then
{{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}){\preceq} {{\varrho}_{\mathcal{{B}}}}(1)\vee {{\varrho}_{\mathcal{{B}}}}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}))) = {{\varrho}_{\mathcal{{B}}}}(1), |
and so {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}) = {{\varrho}_{\mathcal{{B}}}}(1) .
(v)\Rightarrow (i) By Proposition 2.1 (vii),
({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\ast} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})){\preceq} {d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}) = {d}^{2}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}. |
Since {{\varrho}_{\mathcal{{B}}}}\in AFF({H}) , we have
{{\varrho}_{\mathcal{{B}}}}({d}^{2}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\vee {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})). |
By Proposition 2.1 (vii), ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}){\ast} ({d}^{2}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q} . Then
{{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2})\vee{{\varrho}_{\mathcal{{B}}}}({d}^{2}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}). |
By (v), {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}) = {{\varrho}_{\mathcal{{B}}}}(1) , hence, {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}^{2}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}) . As we prove,
{{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}^{2}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\vee {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})). |
Corollary 5.13. Let {d}^{2} = {d} , for all {d}\in {H} . Then any IF-filter of {H} is an IF-positive implicative filter.
Proof. Let {d}, {s}, {q}\in {H} and \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-filter of {H} . If, for all {d}\in {H} , {d}^{2} = {d} , then {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}) = {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) = {{\varrho}_{\mathcal{{B}}}}(1) and also, {{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}) = {{\varsigma}_{\mathcal{{B}}}}(1) . Thus, by Theorem 5.12 (v), \mathcal{{B}} is an IF-positive implicative filter.
Theorem 5.14. Every IF-implicative filter of {H} is an IF-positive implicative filter.
Proof. In this proof, we just prove the sentence of {\varrho}_{\mathcal{{B}}} . Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-implicative filter of {H} . Then by (IFIF_{1}) , clearly (IFPIF_{1}) holds. Now, let {d}\in {H} . Then by Theorem 5.4 , \mathcal{{B}} is an IF-filter. Thus, by Theorem 5.6 (ii), Proposition 2.1 (xiv), (HP2) and (HP3),
\begin{eqnarray*} {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2})&{\preceq} &{{\varrho}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}))\\ &{\preceq} & {{\varrho}_{\mathcal{{B}}}}(1)\vee{{\varrho}_{\mathcal{{B}}}}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}))\\ & = & {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}))\\ & = & {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}))\\ & = &{{\varrho}_{\mathcal{{B}}}}({d}^{2}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2})\\ & = &{{\varrho}_{\mathcal{{B}}}}(1) \end{eqnarray*} |
By the similar way, {{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}) = {{\varsigma}_{\mathcal{{B}}}}(1) . Hence, by Theorem 5.12 (v), \mathcal{{B}} is an IF-positive implicative filter. The next example shows that the converse of the pervious theorem does not hold, in general.
Example 5.15. According to Example 5.8 , we see that \mathcal{{B}} is an IF-positive implicative filter, but it is not an IF-implicative filter. Because by Theorem 5.6 (iv), {r}_{2} = {{\varsigma}_{\mathcal{{B}}}}(1) = {{\varsigma}_{\mathcal{{B}}}}(0{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {e}) = {{\varsigma}_{\mathcal{{B}}}}(({k}{\ast} {e}'){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {e})\neq {{\varsigma}_{\mathcal{{B}}}}({k}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {e}) = {{\varsigma}_{\mathcal{{B}}}}({e}) = {r}_{1} .
Theorem 5.16. Let {H} be bounded with (DNP). Then every IF-positive implicative filter of {H} is an IF-implicative filter.
Proof. Let {H} be bounded with (DNP) and \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-positive implicative filter of {H} . Then by Theorem 5.10 , \mathcal{{B}} is an IF-filter. Thus, by Proposition 2.1 (vii),
{d}{\ast} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){\preceq} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}, |
and so
{{\varsigma}_{\mathcal{{B}}}}({d})\wedge {{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){\preceq} {{\varsigma}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}), |
and
{{\varrho}_{\mathcal{{B}}}}({d})\vee {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){\succeq} {{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}). |
Since {H} has (DNP), by (HP3), we have,
{{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) = {{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}{''}) = {{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{'}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} 0)) = {{\varrho}_{\mathcal{{B}}}}({s}{'}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} 0)). |
By the similar way,
{{\varsigma}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) = {{\varsigma}_{\mathcal{{B}}}}({s}{'}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} 0)). |
Moreover, since \mathcal{{B}} is an IF-positive implicative filter of {H} , by Theorem 5.12 (iii), Proposition 2.2 (ii) and (DNP), we get
\begin{eqnarray*} {{\varrho}_{\mathcal{{B}}}}({s}) & = &{{\varrho}_{\mathcal{{B}}}}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\\ & = &{{\varrho}_{\mathcal{{B}}}}((0{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}{''})\\ & = &{{\varrho}_{\mathcal{{B}}}}((({s}{\ast} {s}{'}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}{''})\\ & = &{{\varrho}_{\mathcal{{B}}}}(({s}{'}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{'}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} 0))\\ &{\preceq} & {{\varrho}_{\mathcal{{B}}}}({s}{'}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} 0))\\ & = &{{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\\ &{\preceq} & {{\varrho}_{\mathcal{{B}}}}({d})\vee {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})) \end{eqnarray*} |
By the similar way, {{\varsigma}_{\mathcal{{B}}}}({s}){\succeq} {{\varsigma}_{\mathcal{{B}}}}({d})\wedge {{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})) . Therefore, by Theorem 5.6 (ii), {\mathcal{{B}}} is an IF-implicative filter.
Theorem 5.17. Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-set of {H} . Then \mathcal{{B}} is an IF-implicative filter of {H} iff \mathcal{{B}} is an IF-positive implicative filter of {H} and {{\varsigma}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {{\varsigma}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) and {{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\succeq} {{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) , for all {d}, {s}\in {H} .
Proof. (\Rightarrow) Let \mathcal{{B}} be an IF-implicative filter. Then by Theorem 5.14 , \mathcal{{B}} is an IF-positive implicative filter. Now, suppose {d}, {s}\in {H} . Then by Proposition 2.1 (iv) and (viii), {d}, {s}{\preceq} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d} . Since {s}{\preceq} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d} , by Proposition 2.1 (xii), we have ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}{\preceq} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) . Moreover, since {d}{\preceq} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d} , by Proposition 2.1 (xiii), {d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}{\succeq} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s} , and so
({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} ((({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}). |
Thus, we have,
({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}{\preceq} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} ((({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}). |
Since \mathcal{{B}} is an IF-implicative filter, by Theorem 5.4 , \mathcal{{B}} is an IF-filter. Thus, by Theorem 5.6 (ii),
{\varrho}_{\mathcal{{B}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\succeq} {\varrho}_{\mathcal{{B}}}(((({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})){\succeq} {\varrho}_{\mathcal{{B}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}). |
Hence, {\varrho}_{\mathcal{{B}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\succeq} {\varrho}_{\mathcal{{B}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) .
(\Leftarrow) Let {d}, {s}\in {H} . Then by Proposition 2.1 (viii), {d}{\preceq} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s} , and by Proposition 2.1 (xii), ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}{\preceq} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) . Since \mathcal{{B}} is an IF-positive implicative filter, by Theorem 5.12 (ii), we have
{\varrho}_{\mathcal{{B}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {\varrho}_{\mathcal{{B}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){\preceq} {\varrho}_{\mathcal{{B}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}). |
Also, by assumption,
{\varrho}_{\mathcal{{B}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} {\varrho}_{\mathcal{{B}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {\varrho}_{\mathcal{{B}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}). |
On the other hand, by Proposition 2.1 (iv), {s}{\preceq} {d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s} and by Proposition 2.1 (xiii), ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}{\preceq} {s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d} . Since \mathcal{{B}} is an IF-positive implicative filter, by Theorem 5.10 , \mathcal{{B}} is an IF-filter, thus, {\varrho}_{\mathcal{{B}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} {\varrho}_{\mathcal{{B}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) . Hence,
\begin{eqnarray*} {\varrho}_{\mathcal{{B}}}({d}) &{\preceq} &{\varrho}_{\mathcal{{B}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})\vee{\varrho}_{\mathcal{{B}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d} )\\ &{\preceq} &{{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})\vee{\varrho}_{\mathcal{{B}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d} )\\ & = &{\varrho}_{\mathcal{{B}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) \end{eqnarray*} |
Therefore, {\mathcal{{B}}} is an IF-implicative filter.
Theorem 5.18. Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-filter of {H} . Then \mathcal{{B}} is an IF-positive implicative filter iff \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a Brouwerian semilattice.
Proof. (\Rightarrow) Let \mathcal{{B}} be an IF-filter. Then by Theorem 4.12 , \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is well-defined. Since \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a hoop, then by Proposition 2.1 (i), \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a \wedge -semilattice. Now, it is enough to prove that
[{d}]_{\mathcal{{B}}}\wedge [{s}]_{\mathcal{{B}}}{\preceq} [{q}]_{\mathcal{{B}}}\; {\rm{iff}}\; [{d}]_{\mathcal{{B}}}{\preceq} [{s}]_{\mathcal{{B}}}\hookrightarrow [{q}]_{\mathcal{{B}}},\; \rm{for all}\; {d},{s},{q}\in {H}. |
Let [{d}]_{\mathcal{{B}}}\wedge [{s}]_{\mathcal{{B}}}{\preceq} [{q}]_{\mathcal{{B}}} . Then by Proposition 2.1 (iii), [{d}]_{\mathcal{{B}}}\otimes [{s}]_{\mathcal{{B}}}{\preceq} [{d}]_{\mathcal{{B}}}\wedge [{s}]_{\mathcal{{B}}}{\preceq} [{q}]_{\mathcal{{B}}} . Thus, [{d}]_{\mathcal{{B}}}\otimes [{s}]_{\mathcal{{B}}}{\preceq} [{q}]_{\mathcal{{B}}} . Since \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a hoop, by Proposition 2.1 (ii), we get [{d}]_{\mathcal{{B}}}{\preceq} [{s}]_{\mathcal{{B}}}\hookrightarrow [{q}]_{\mathcal{{B}}} .
Conversely, suppose [{d}]_{\mathcal{{B}}}{\preceq} [{s}]_{\mathcal{{B}}}\hookrightarrow [{q}]_{\mathcal{{B}}} . Then [{d}]_{\mathcal{{B}}}\hookrightarrow ([{s}]_{\mathcal{{B}}}\hookrightarrow [{q}]_{\mathcal{{B}}}) = [1]_{\mathcal{{B}}} , so {\varsigma}_{\mathcal{{B}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})) = {\varsigma}_{\mathcal{{B}}}(1) and {\varrho}_{\mathcal{{B}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})) = {\varrho}_{\mathcal{{B}}}(1) . Since \mathcal{{B}} is an IF-positive implicative filter, by Theorem 5.6 (iii), we have
{\varsigma}_{\mathcal{{B}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})){\succeq} {\varsigma}_{\mathcal{{B}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})) = {\varsigma}_{\mathcal{{B}}}(1), |
and
{\varrho}_{\mathcal{{B}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})){\preceq} {\varrho}_{\mathcal{{B}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})) = {\varrho}_{\mathcal{{B}}}(1). |
Thus, {\varsigma}_{\mathcal{{B}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})) = {\varsigma}_{\mathcal{{B}}}(1) and {\varrho}_{\mathcal{{B}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})) = {\varrho}_{\mathcal{{B}}}(1) , and so [{d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}]_{\mathcal{{B}}}{\preceq} [{d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}}{q}]_{\mathcal{{B}}} . Hence, [{d}]_{\mathcal{B}}\hookrightarrow [{s}]_{\mathcal{{B}}}{\preceq} [{d}]_{\mathcal{{B}}}\hookrightarrow [{q}]_{\mathcal{{B}}} . Since \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a hoop, by Proposition 2.1 (ii) and (i), we have
[{d}]_{\mathcal{{B}}}\wedge[{s}]_{\mathcal{{B}}} = [{d}]_{\mathcal{{B}}}\otimes ([{d}]_{\mathcal{{B}}}\hookrightarrow [{s}]_{\mathcal{{B}}}){\preceq} [{q}]_{\mathcal{{B}}}. |
Therefore, \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a Brouwerian semilattice.
(\Leftarrow) Since \mathcal{{B}} is an IF-filter, by (IFF1) , {\varsigma}_{\mathcal{{B}}}({d}){\preceq} {\varsigma}_{\mathcal{{B}}}(1) and {\varrho}_{\mathcal{{B}}}(1){\preceq} {\varrho}_{\mathcal{{B}}}({d}) , for all {d}\in {H} . By assumption, \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a Brouwerian semilattice, define [{d}]_{\mathcal{{B}}}\otimes [{s}]_{\mathcal{{B}}} = [{d}]_{\mathcal{{B}}}\wedge [{s}]_{\mathcal{{B}}} , for all {d}, {s}\in {H} . Since [{d}]_{\mathcal{{B}}}{\preceq} [{d}]_{\mathcal{{B}}} , we have
[{d}]_{\mathcal{{B}}}{\preceq} [{d}]_{\mathcal{{B}}}\wedge [{d}]_{\mathcal{{B}}} = [{d}]_{\mathcal{{B}}}\otimes [{d}]_{\mathcal{{B}}} = [{d}{\ast} {d}]_{\mathcal{{B}}}. |
So, [{d}]_{\mathcal{{B}}}{\preceq} [{d}^{2}]_{\mathcal{{B}}} . Then [{d}]_{\mathcal{{B}}}\hookrightarrow [{d}^{2}]_{\mathcal{{B}}} = [1]_{\mathcal{{B}}} , and so, {\varsigma}_{\mathcal{{B}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}) = {\varsigma}_{\mathcal{{B}}}(1) and {\varrho}_{\mathcal{{B}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}) = {\varrho}_{\mathcal{{B}}}(1) . Hence, by Theorem 5.12 (v), \mathcal{{B}} is an IF-positive implicative filter.
Example 5.19. Let {H} be the hoop and \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-positive implicative filter of {H} as in Example 5.8. Then \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} = \{[0]_{\mathcal{{B}}}, [{e}]_{\mathcal{{B}}}, [{k}]_{\mathcal{{B}}}, [1]_{\mathcal{{B}}}\} is a Brouwerian semilattice.
In the following, the concept of intuitionistic fuzzy fantastic filter on hoops is defined and some related results are investigated.
Definition 6.1. Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-set of {H} . Then \mathcal{{B}} is called an intuitionistic fuzzy fantastic filter or an IF-fantastic filter of {H} if, for all {d}, {s}, {q}\in {H} ,
(IFFF_{1}) if {d}{\preceq} {s} , then {\varsigma}_{\mathcal{{B}}}({d}){\preceq} {\varsigma}_{\mathcal{{B}}}({s}) and {\varrho}_{\mathcal{{B}}}({s}){\preceq} {\varrho}_{\mathcal{{B}}}({d}) ,
(IFFF_{2}) {\varsigma}_{\mathcal{{B}}}({q})\wedge{\varsigma}_{\mathcal{{B}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})){\preceq} {\varsigma}_{\mathcal{{B}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) and {\varrho}_{\mathcal{{B}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} {\varrho}_{\mathcal{{B}}}({q})\vee{\varrho}_{\mathcal{{B}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) .
Example 6.2. According to Example 5.5 , routine calculation shows that \mathcal{{B}} is an IF-fantastic filter.
Theorem 6.3. Let \mathcal{{B}} be an IF-set of {H} . Then \mathcal{{B}} is an IF-fantastic filter of {H} iff for any {r}\in [0, 1] , \mathcal{{B}}_{{r}}\neq \emptyset is a fantastic filter.
Proof. The proof is similar to the proof of Theorem 4.6 .
Theorem 6.4. Every IF-fantastic filter of {H} is an IF-filter.
Proof. Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-fantastic filter and {d}, {s}\in {H} . Then (IFF{1}) holds. Since \mathcal{{B}} is an IF-fantastic filter, then by Proposition 2.1 (v), we have
{{\varrho}_{\mathcal{{B}}}}({d})\vee {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\succeq} {{\varrho}_{\mathcal{{B}}}}({d})\vee{{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){\succeq} {{\varrho}_{\mathcal{{B}}}}((({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} 1){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} 1){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}). |
By the similar way, we can see that {{\varsigma}_{\mathcal{{B}}}}({d})\wedge {{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {{\varsigma}_{\mathcal{{B}}}}({s}) . Therefore, \mathcal{{B}} is an IF-filter of {H} .
In the next example we show that the converse of the previous theorem does not hold, in general.
Example 6.5. According to Example 5.5 , \mathcal{{B}} is an IF-filter but it is not an IF-fantastic filter. Because
{r}_{1} = {{\varsigma}_{\mathcal{{B}}}}(1) = {{\varsigma}_{\mathcal{{B}}}}(1)\wedge{{\varsigma}_{\mathcal{{B}}}}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({e}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {k}))\nleq {{\varsigma}_{\mathcal{{B}}}}((({k}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {e}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {e}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {k}) = {{\varsigma}_{\mathcal{{B}}}}({k}) = {r}_{2}. |
Theorem 6.6. Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-filter of {H} . Then the next statements are equivalent, for all {d}, {s}\in {H} ,
(i) \mathcal{{B}} is an IF-fantastic filter of {H} ,
(ii) {{\varsigma}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} {{\varsigma}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) and {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\succeq} {{\varrho}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) ,
(iii) {{\varsigma}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) = {{\varsigma}_{\mathcal{{B}}}}(1) and {{\varrho}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) = {{\varrho}_{\mathcal{{B}}}}(1) .
Proof. In this proof, we just prove the items of {\varrho}_{\mathcal{{B}}} . Also, since \mathcal{{B}} is an IF-filter of {H} , by Definition 4.1 , {\varsigma}_{\mathcal{{B}}}\in FF({H}) and {\varrho}_{\mathcal{{B}}}\in AFF({H}) . Then as we notice, {{\varrho}_{\mathcal{{B}}}}(1){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}) and {{\varsigma}_{\mathcal{{B}}}}(1){\succeq} {{\varsigma}_{\mathcal{{B}}}}({d}) , for any {d}\in {H} .
(i)\Rightarrow (ii) Suppose \mathcal{{B}} is an IF-fantastic filter and {d}, {s}\in {H} . Let {q} = 1 . Then
{{\varrho}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} {{\varrho}_{\mathcal{{B}}}}(1)\vee{{\varrho}_{\mathcal{{B}}}}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) = {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}). |
(ii)\Rightarrow (i) Let {d}, {s}, {q}\in {H} . Since \mathcal{{B}} is an IF-filter, we get {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} {{\varrho}_{\mathcal{{B}}}}({q})\vee{{\varrho}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) . Thus, by (ii),
{{\varrho}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} {{\varrho}_{\mathcal{{B}}}}({q})\vee{{\varrho}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})). |
(ii)\Rightarrow (iii) Let {d}, {s}\in {H} . Then by Proposition 2.1 (viii), {d}{\preceq} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d} , thus, by Proposition 2.1 (xiii), ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}{\preceq} ((({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s} , and so
(((({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}). |
Since \mathcal{{B}} is an IF-filter,
{{\varrho}_{\mathcal{{B}}}}((((({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})){\succeq} {{\varrho}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})). |
Now, since \mathcal{{B}} is an IF-fantastic filter, we have
\begin{eqnarray*} {{\varrho}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) &{\preceq} & {{\varrho}_{\mathcal{{B}}}}((((({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))\\ &{\preceq} & {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))\\ & = &{{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))\\ & = &{{\varrho}_{\mathcal{{B}}}}(1) \end{eqnarray*} |
Hence, (iii) holds.
(iii)\Rightarrow (ii) Let {d}, {s}\in {H} such that
{{\varrho}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) = {{\varrho}_{\mathcal{{B}}}}(1). |
Then by (HP3),
{{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) = {{\varrho}_{\mathcal{{B}}}}(1). |
Now, since \mathcal{{B}} is an IF-filter, we get
{{\varrho}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})\vee{{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) = {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}). |
Theorem 6.7. Every IF-implicative filter of {H} is an IF-fantastic filter.
Proof. Let {d}, {s}\in {H} and \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-implicative filter of {H} . Then by Proposition 2.1 (iv), {d}{\preceq} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d} , thus by Proposition 2.1 (xiii), ((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}{\preceq} {d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s} , and so by Proposition 2.1 (xiii) and (vii),
\begin{eqnarray*} {s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d} &{\preceq} & (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\ast} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}\\ & = & ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})\\ &{\preceq} & (((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) \end{eqnarray*} |
Moreover, since \mathcal{{B}} is an IF-implicative filter,
\begin{eqnarray*} {{\varrho}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) &{\preceq} & {{\varrho}_{\mathcal{{B}}}}((((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))\\ &{\preceq} &{{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})\\ & = &{{\varrho}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))\\ &{\preceq} & {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) \end{eqnarray*} |
Hence, by Theorem 6.6 (ii), \mathcal{{B}} is an IF-fantastic filter. The next example shows that the converse of the pervious theorem may not be true, in general.
Example 6.8. According to Example 4.4 , define an IF-set \mathcal{{B}} by {{\varsigma}_{\mathcal{{B}}}}(1) = {{\varsigma}_{\mathcal{{B}}}}({k}) = {r}_{1} and {{\varsigma}_{\mathcal{{B}}}}({e}) = {{\varsigma}_{\mathcal{{B}}}}(0) = {r}_{2} such that 0{\preceq} {r}_{2} < {r}_{1}{\preceq} 1 and {{\varrho}_{\mathcal{{B}}}} = 1-{{\varsigma}_{\mathcal{{B}}}} . By routine calculation, \mathcal{{B}} is an IF-fantastic filter but it is not an IF-implicative filter. Because by Theorem 5.6 (ii),
{{\varsigma}_{\mathcal{{B}}}}(({e}{'}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {e}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {e}) = {{\varsigma}_{\mathcal{{B}}}}(({e}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {e}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {e}) = {{\varsigma}_{\mathcal{{B}}}}({e}) = {r}_{2}\neq {r}_{1} = {{\varsigma}_{\mathcal{{B}}}}(1). |
Theorem 6.9. \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) is an IF-implicative filter of {H} iff \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) is an IF-positive implicative filter and IF-fantastic filter of {H} .
Proof. (\Rightarrow) By Theorems 6.7 and 5.14 , the proof is clear.
(\Leftarrow) Let {d}, {s}\in {H} . Then by Proposition 2.1 (viii) and (xii),
({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}{\preceq} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}). |
Since \mathcal{{B}} is an IF-positive implicative filter, by Theorem 5.10 , \mathcal{{B}} is an IF-filter of {H} , we have
{{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\succeq} {{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})). |
Also, since \mathcal{{B}} is an IF-positive implicative filter, by Theorem 5.12 (ii), we get
{{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){\preceq} {{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}). |
On the other side, by Proposition 2.1 (iv) and (xiii), ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}{\preceq} {s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d} . Since \mathcal{{B}} is an IF-filter of {H} , {{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\succeq} {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) . Moreover, since \mathcal{{B}} is an IF-fantastic filter, by Theorem 6.6 (ii),
{{\varrho}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} {{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}). |
From \mathcal{{B}} is an IF-filter, then
{{\varrho}_{\mathcal{{B}}}}({d}){\preceq} {{\varrho}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})\vee{{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}). |
Thus, by Theorem 5.6 (ii), \mathcal{{B}} is an IF-implicative filter.
Theorem 6.10. Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-filter of {H} . Then \mathcal{{B}} is an IF-fantastic filter of {H} iff \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a Wajesberg hoop.
Proof. (\Rightarrow) Since \mathcal{{B}} is an IF-filter, by Theorem 4.12 , \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is well-define and is a hoop. Since \mathcal{{B}} is an IF-fantastic filter of {H} , by Theorem 6.6 (iii), we get
{\varsigma}_{\mathcal{{B}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) = {\varsigma}_{\mathcal{{B}}}(1), |
and
{\varrho}_{\mathcal{{B}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) = {\varrho}_{\mathcal{{B}}}(1). |
Then by Theorem 4.12 , [({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}]_{\mathcal{{B}}}{\preceq} [({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}]_{\mathcal{{B}}} . By the similar way, [({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}]_{\mathcal{{B}}}{\preceq} [({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}]_{\mathcal{{B}}} . Thus
([{d}]_{\mathcal{{B}}}\hookrightarrow [{s}]_{\mathcal{{B}}})\hookrightarrow [{s}]_{\mathcal{{B}}} = ([{s}]_{\mathcal{{B}}}\hookrightarrow [{d}]_{\mathcal{{B}}})\hookrightarrow [{d}]_{\mathcal{{B}}}. |
Therefore, \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a Wajesberg hoop.
(\Leftarrow) Let \mathcal{{B}} be an IF-filter of {H} . Then by (IFF{1}) , {\varsigma}_{\mathcal{{B}}}({d}){\preceq} {\varsigma}_{\mathcal{{B}}}(1) and {\varrho}_{\mathcal{{B}}}({d}){\succeq} {\varrho}_{\mathcal{{B}}}(1) , for all {d}\in {H} . Moreover, since \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a Wajesberg hoop, we have ([{d}]_{\mathcal{{B}}}\hookrightarrow [{s}]_{\mathcal{{B}}})\hookrightarrow [{s}]_{\mathcal{{B}}} = ([{s}]_{\mathcal{{B}}}\hookrightarrow [{d}]_{\mathcal{{B}}})\hookrightarrow [{d}]_{\mathcal{{B}}} , for any [{d}]_{\mathcal{{B}}}, [{s}]_{\mathcal{{B}}}\in \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} . Thus, {\varsigma}_{\mathcal{{B}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) = {\varsigma}_{\mathcal{{B}}}(1) and {\varrho}_{\mathcal{{B}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) = {\varrho}_{\mathcal{{B}}}(1) , thus, by Theorem 6.6 (iii), \mathcal{{B}} is an IF-fantastic filter of {H} .
Example 6.11. Let {H} be the hoop as in Example 5.5 . Define {\varsigma}_{\mathcal{{B}}}(1) = {\varsigma}_{\mathcal{{B}}}({k}) = r_1 , {\varsigma}_{\mathcal{{B}}}(0) = {\varsigma}_{\mathcal{{B}}}({e}) = r_2 , {\varrho}_{\mathcal{{B}}}(1) = {\varrho}_{\mathcal{{B}}}({k}) = 1-r_1 and {\varrho}_{\mathcal{{B}}}(0) = {\varrho}_{\mathcal{{B}}}({e}) = 1-r_2 , where 0\leq r_2\leq r_1\leq 1 . Then \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} = \{[0]_{\mathcal{{B}}}, [{e}]_{\mathcal{{B}}}, [1]_{\mathcal{{B}}}\} is a Wajesberg hoop.
Theorem 6.12. Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-filter of {H} . Then \mathcal{{B}} is an IF-implicative filter of {H} iff \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a Heyting semilattice that has Wajesberg property.
Proof. (\Rightarrow) Let \mathcal{{B}} be an IF-filter. Then by Theorem 4.12, \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is well-define and is a hoop. Since \mathcal{{B}} is an IF-implicative filter, by Theorem 5.14, we have \mathcal{{B}} is an IF-positive implicative filter. Hence by Theorem 5.18, \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a Brouwerian semilattice. On the other side, by Theorem 6.7, \mathcal{{B}} is an IF-fantastic filter, and by Theorem 6.10, \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a Wajesberg hoop. Thus, by Proposition 2.3, we define
[{d}]_{\mathcal{{B}}}\sqcup [{s}]_{\mathcal{{B}}} = ([{d}]_{{\varsigma}}\hookrightarrow [{s}]_{\mathcal{{B}}})\hookrightarrow [{s}]_{\mathcal{{B}}}. |
Then it is easy to see that \sqcup is a join operation, and so by Remark 2.4, {H}/ {\approx}_{\mathcal{{B}}} is a distributive lattice. Therefore, \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a Heyting semilattice.
(\Leftarrow) Since \dfrac{{H}}{ {\approx}_{\mathcal{{B}}}} is a Heyting semilattice, then \dfrac{{H}}{ {\approx}_{\mathcal{{B}}}} is a Brouwerian semilattice. Thus, by Theorem 5.18, \mathcal{{B}} is an IF-positive implicative filter. Moreover, by assumption, \dfrac{{H}}{ {\approx}_{\mathcal{{B}}}} is a Wajesberg hoop, by Theorem 6.10, \mathcal{{B}} is an IF-fantastic filter. Thus, by Theorem 6.9, \mathcal{{B}} is an IF-implicative filter of {H} .
Example 6.13. Let {H} be the hoop and \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-implicative filter of {H} as in Example 5.2. Then \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} = \{[0]_{\mathcal{{B}}}, [1]_{\mathcal{{B}}}\} is a Heyting semilattice that has Wajesberg property.
In decision problems, the use of fuzzy approaches is ubiquitous. Given the importance of fuzzy concepts in solving decision problems, we decided to use these concepts, intuitionistic fuzzy sets, in a specific logical algebra to provide a new approach with useful mathematical tools to address the fundamental decision problem. In this paper, the concept of anti-fuzzy filter of hoops is defined and the concepts of intuitionistic fuzzy filters, intuitionistic fuzzy (positive) implicative and intuitionistic fuzzy fantastic filters of hoops are introduced and the properties and equivalent characterizations of them are discussed. Moreover, it was proved that all intuitionistic fuzzy filters make a bounded distributive lattice. Also, the relations between different kinds of intuitionistic fuzzy filters are investigated and studied that under which conditions they are equivalent. Also, a congruence relation on hoops is defined by an intuitionistic fuzzy filter and proved the new structure is a hoop. Finally, the conditions that quotient structure will be Brouwerian semilattice, Heyting algebra and Wajesberg hoop are investigated.
The authors declare that there is no conflict of interest.
[1] |
M. Karnati, A. Seal, G. Sahu, A. Yazidi, O. Krejcar, A novel multi-scale based deep convolutional neural network for detecting COVID-19 from X-rays, Appl. Soft Comput., 125 (2022), 109109. https://doi.org/10.1016/j.asoc.2022.109109 doi: 10.1016/j.asoc.2022.109109
![]() |
[2] | S. Vyas, A. Seal, A comparative study of different feature extraction techniques for identifying COVID-19 patients using chest X-rays images, in 2020 International Conference on Decision Aid Sciences and Application, (2020), 209–213. https://doi.org/10.1109/DASA51403.2020.9317299 |
[3] |
G. N. Ahmad, S. Ullah, A. Algethami, H. Fatima, S. M. H. Akhter, Comparative study of optimum medical diagnosis of human heart disease using machine learning technique with and without sequential feature selection, IEEE Access, 10 (2022), 23808–23828. https://doi.org/10.1109/ACCESS.2022.3153047 doi: 10.1109/ACCESS.2022.3153047
![]() |
[4] |
G. N. Ahmad, H. Fatima, S. Ullah, A. S. Saidi, Imdadullah, Efficient medical diagnosis of human heart diseases using machine learning techniques with and without GridSearchCV, IEEE Access, (2022), 1–24. https://doi.org/10.1109/ACCESS.2022.3165792 doi: 10.1109/ACCESS.2022.3165792
![]() |
[5] |
A. Chharia, R. Upadhyay, V. Kumar, C. Cheng, J. Zhang, T. Wang, et al., Deep-precognitive diagnosis: Preventing future pandemics by novel disease detection with biologically-inspired conv-fuzzy network, IEEE Access, 10 (2022), 23167–23185. https://doi.org/10.1109/ACCESS.2022.3153059 doi: 10.1109/ACCESS.2022.3153059
![]() |
[6] |
M. A. Hossain, S. A. Turkey, G. Sanyal, A novel stochastic tracking approach on human movement analysis, Int. J. Comput. Appl., 86 (2014), 36–40. https://doi.org/10.5120/15089-3488 doi: 10.5120/15089-3488
![]() |
[7] | M. A. Hossain, D. Samanta, G. Sanyal, Eye diseases detection based on covariance, Int. J. Comput. Sci. Inform. Secur., 2 (2012), 376–379. |
[8] |
N. M. Moacdieh, N. Sarter, The effects of data density, display organization, and stress on search performance: An eye tracking study of clutter, IEEE Trans. Human Mach. Syst., 47 (2017), 886–895. https://doi.org/10.1109/THMS.2017.2717899 doi: 10.1109/THMS.2017.2717899
![]() |
[9] |
M. A. Hossain, B. Assiri, An enhanced eye-tracking approach using pipeline computation, Arabian J. Sci. Eng., 45 (2020), 3191–3204. https://doi.org/10.1007/s13369-019-04322-7 doi: 10.1007/s13369-019-04322-7
![]() |
[10] |
K. Kurzhals, M. Hlawatsch, C. Seeger, D. Weiskopf, Visual analytics for mobile eye tracking, IEEE Trans. Visual. Comput. Graph., 23 (2017), 301–310. https://doi.org/10.1109/TVCG.2016.2598695 doi: 10.1109/TVCG.2016.2598695
![]() |
[11] |
M. A. Hossain, B. Assiri, Facial emotion verification by infrared image, IEEE, (2020), 12–14. https://doi.org/10.1109/ESCI48226.2020.9167616 doi: 10.1109/ESCI48226.2020.9167616
![]() |
[12] |
M. Kim, B. H. Kim, S. Jo, Quantitative evaluation of a low-cost noninvasive hybrid interface based on EEG and eye movement, IEEE Trans. Neural Syst. Rehab. Eng., 23 (2015), 59–168. https://doi.org/10.1109/TNSRE.2014.2365834 doi: 10.1109/TNSRE.2014.2365834
![]() |
[13] | M. A. Hossain, H. Zogan, G. Sanyal, Emotion tracking and grading based on sophisticated statistical approach, in International Conference on Science, Technology, Engineering and Mathematics, (2018), 21–22. |
[14] |
D. Kumar, A. Dutta, A. Das, U. Lahiri, SmartEye: Developing a novel eye tracking system for quantitative assessment of oculomotor abnormalities, IEEE Trans. Neural Syst. Rehab. Eng., 24 (2016), 1051–1059. https://doi.org/10.1109/TNSRE.2016.2518222 doi: 10.1109/TNSRE.2016.2518222
![]() |
[15] | A. H. Mohammad, A. Basem, Emotion specific human face authentication based on infrared thermal image, in International Conference on Communication and Information Systems, (2020), 13–15. https://doi.org/10.1109/ICCIS49240.2020.9257683 |
[16] |
Z. Kang, S. J. Landry, An eye movement analysis algorithm for a multielement target tracking task: Maximum transition-based agglomerative hierarchical clustering, IEEE Trans. Human Mach. Syst., 45 (2015), 13–24. https://doi.org/10.1109/THMS.2014.2363121 doi: 10.1109/THMS.2014.2363121
![]() |
[17] |
W. Zhang, H. Liu, Toward a reliable collection of eye-tracking data for image quality research: Challenges, solutions, and applications, IEEE Transact. Image Process., 26 (2017), 2424–2437. https://doi.org/10.1109/TIP.2017.2681424 doi: 10.1109/TIP.2017.2681424
![]() |
[18] |
S. Happy, A. Routray, Automatic facial expression recognition using features of salient facial patches, IEEE Trans. IEEE Trans. Autom. Control, 6 (2014), 1–12. https://doi.org/10.1109/TAFFC.2014.2386334 doi: 10.1109/TAFFC.2014.2386334
![]() |
[19] |
X. Zhang, S. M. Yua, An eye tracking analysis for video advertising: Relationship between advertisement elements and effectiveness, IEEE Access, 6 (2018), 10699–10707. https://doi.org/10.1109/ACCESS.2018.2802206 doi: 10.1109/ACCESS.2018.2802206
![]() |
[20] |
M. A. Hossain, G. Sanyal, Tracking humans based on interest point over span-space in multifarious situations, Int. J. Software Eng. Appl., 10 (2016), 175–192. https://doi.org/10.1109/TAFFC.2014.2386334 doi: 10.1109/TAFFC.2014.2386334
![]() |
[21] |
Y. Liu, Y. Cao, Y. Li, M. Liu, R. Song, Y. Wang, et al., Facial expression recognition with PCA and LBP features extracting from active facial patches, IEEE, (2016), 368–373. https://doi.org/10.1109/RCAR.2016.7784056 doi: 10.1109/RCAR.2016.7784056
![]() |
[22] |
M. A. Hossain, G. Sanyal, A novel approach to extract region from facial expression based on mutation, Int. Janit. Clean. Serv. Assoc., 2 (2012), 15–18. https://doi.org/10.1109/RCAR.2016.7784056 doi: 10.1109/RCAR.2016.7784056
![]() |
[23] |
M. A. Hossain, A. M. A Bamhdi, G. S. Sanyal, A new tactic to maintain privacy and safety of imagery information, Int. J. Comput. Appl., 110 (2015), 6–12. https://doi.org/10.5120/19310-0764 doi: 10.5120/19310-0764
![]() |
[24] | L. Zhong, Q. Liu, P. Yang, B. Liu, J. Huang, D. Metaxas, Learning active facial patches for expression analysis, in IEEE Conference on Computer Vision and Pattern Recognition, (2012), 16–21. https://doi.org/10.1109/CVPR.2012.6247974 |
[25] |
T. Wu, P. Wang, Y. Lin, C. Zhou, A robust noninvasive eye control approach for disabled people based on Kinect 2.0 sensor, IEEE Sensors Letters, 1 (2017), 1–4. https://doi.org/10.1109/LSENS.2017.2720718 doi: 10.1109/LSENS.2017.2720718
![]() |
[26] | A. H. Mohammad, G. Sanyal, Object tracking podium on region covariance for recognition and classification, Int. J. Emerg. Technol. Comput. Appl. Sci., 2 (2012), 68–73. |
[27] |
S. H Lee, K. N. Plataniotis, Y. M. Ro, Intra-class variation reduction using training expression images for sparse representation based facial expression recognition, IEEE Trans. Autom. Control, 5 (2014), 340–531. https://doi.org/10.1109/TAFFC.2014.2346515 doi: 10.1109/TAFFC.2014.2346515
![]() |
[28] | H. A. Mohammad, S. Samanta, S. Sanyal, Extraction of panic expression depending on lip detection, in 2012 International Conference on Computing Sciences, (2012), 137–141. https://doi.org/10.1109/ICCS.2012.35 |
[29] | A. Mollahosseini, D. Chan, M. H. Mahoor, Going deeper in facial expression recognition using deep neural networks, in 2016 IEEE Winter Conference on Applications of Computer Vision, (2016), 1–10. https://doi.org/10.1109/WACV.2016.7477450 |
[30] |
M. A. Hossain, B. Assiri, Facial expression recognition based on active region of interest using deep learning and parallelism, PeerJ Comput. Sci., 8 (2022), e894. https://doi.org/10.7717/peerj-cs.894 doi: 10.7717/peerj-cs.894
![]() |
[31] |
R. Saranya, C. Poongodi, D. Somasundaram, M. Nirmala, Novel deep learning model for facial expression recognition based on maximum boosted CNN and LSTM, IET Image Process., 14 (2020), 1373–1381. https://doi.org/10.1049/iet-ipr.2019.1188 doi: 10.1049/iet-ipr.2019.1188
![]() |
[32] |
A. T. Lopes, E. Aguiar, A. F. De Souza, T. Oliveira-Santos, Facial expression recognition with convolutional neural networks: Coping with few data and the training sample order, Pattern Recogn., 61 (2017), 610–628. https://doi.org/10.1016/j.patcog.2016.07.026 doi: 10.1016/j.patcog.2016.07.026
![]() |
[33] |
R. Janarthanan, E. A. Refaee, K. Selvakumar, M. A. Hossain, R. Soundrapandiyan, M. Karuppiah, Biomedical image retrieval using adaptive neuro-fuzzy optimized classifier system, Math. Biosci. Eng., 19 (2022), 8132–8151. https://doi.org/10.3934/mbe.2022380 doi: 10.3934/mbe.2022380
![]() |
[34] | P. Shen, S. Wang, X. Liu, Facial expression recognition from infrared thermal videos, in Intelligent Autonomous Systems 12. Advances in Intelligent Systems and Computing (eds S. Lee, H. Cho, K. J. Yoon and J. Lee), Springer, (2013), 323–333. https://doi.org/10.1016/j.imavis.2011.07.002 |
[35] |
S. Pastel, J. Marlok, N. Bandow, K. Witte, Application of eye-tracking systems integrated into immersive virtual reality and possible transfer to the sports sector-A systematic review, Multimed. Tools Appl., (2022). https://doi.org/10.1007/s11042-022-13474-y doi: 10.1007/s11042-022-13474-y
![]() |
[36] | M. A. Hossain, D. Samanta, G. Sanyal, Statistical approach for extraction of panic expression, in 2012 Fourth International Conference on Computational Intelligence and Communication Networks, 420–424, https://doi.org/10.1109/CICN.2012.189 |
[37] |
S. S. Alam, R. Jianu, Analyzing eye-tracking information in visualization and data space: From where on the screen to what on the screen, IEEE Trans. Visual. Comput. Graph., 23 (2017), 1492–1505. https://doi.org/10.1109/TVCG.2016.2535340 doi: 10.1109/TVCG.2016.2535340
![]() |
[38] |
D. H. Jiang, Y. Z. Hu, D. Lei, P. Jin, Facial expression recognition based on attention mechanism, Sci. Program., 2021 (2021), Article ID 6624251. https://doi.org/10.1155/2021/6624251 doi: 10.1155/2021/6624251
![]() |
[39] |
Z. An, W. Deng, J. Hu, Y. Zhong, Y. Zhao, Adaptive pose alignment for pose-invariant face recognition, IEEE Access, 7 (2019), 14653–14670. https://doi.org/10.1109/ACCESS.2019.2894162 doi: 10.1109/ACCESS.2019.2894162
![]() |
[40] |
M. D. H. Alamgir, D. Samanta, G. Sanyal, Automated smiley face extraction based on genetic algorithm, Comput. Sci. Inform. Technol., (2012), 31–37. https://doi.org/10.5121/csit.2012.2304 doi: 10.5121/csit.2012.2304
![]() |
[41] |
J. Y. Choi, B. Lee, Ensemble of deep convolutional neural networks with gabor face representations for face recognition, IEEE Transact. Image Process., 29 (2020), 3270–3328. https://doi.org/10.1109/TIP.2019.2958404. doi: 10.1109/TIP.2019.2958404
![]() |
[42] |
Z. Lei, L. Ji, Z. Bob, Z. David, Z. Ce, Deep cascade model-based face recognition: When deep-layered learning meets small data, IEEE Transact. Image Process., 29 (2020), 1016–1029. https://doi.org/10.1109/TIP.2019.2938307 doi: 10.1109/TIP.2019.2938307
![]() |
[43] |
A. H. Mohd, S. Gautam, A new improved tactic to extract facial expression based on genetic algorithm and WVDF, Int. J. Adv. Inform. Technol., 2 (2012), 37–44. https://doi.org/10.5121/ijait.2012.2504.37 doi: 10.5121/ijait.2012.2504.37
![]() |
[44] |
A. C. Elizabeth, K. J. Nai, E. D. Susan, A. B. Martha, L. Jacob, L. G. Daniel, et al., The facial action coding system for characterization of human affective response to consumer product-based stimuli: A systematic review, Front. Psychol., 11 (2020), 920. https://doi.org/10.3389/fpsyg.2020.00920 doi: 10.3389/fpsyg.2020.00920
![]() |
[45] |
S. M. Lajevardi, Z. M. Hussain, Automatic facial expression recognition: Feature extraction and selection, Signal Image Video Process., 6 (2010), 159–169. https://doi.org/10.1007/s11760-010-0177-5 doi: 10.1007/s11760-010-0177-5
![]() |
[46] | M. H Alamgir, D. S. S. Goutam, A novel approach for panic-face extraction based on mutation, in International Conference on Advanced Communication Control & Computing Technology, (2012), 473–477. https://doi.org/10.1109/ICACCCT.2012.6320825 |
[47] |
F. Zhang, F. Wang, Exercise fatigue detection algorithm based on video image information extraction, IEEE Access, 8 (2020), 199696–199709. https://doi.org/10.1109/ACCESS.2020.3023648 doi: 10.1109/ACCESS.2020.3023648
![]() |
[48] | M. A. Hossain, G. Sanyal, Extraction of panic expression from human face based on histogram approach, in International Conference on Image Processing, (2012), 411–418. https://doi.org/10.1007/978-3-642-31686-9_48 |
[49] |
C. Vincenzo, G. Antonio, P. Gennaro, V. Mario, Age from faces in the deep learning revolution, IEEE Trans. Pattern Anal. Mach. Intell., 42 (2020), 2113–2132. https://doi.org/10.1109/TPAMI.2019.2910522. doi: 10.1109/TPAMI.2019.2910522
![]() |
[50] |
B. Jin, C. Leandro, G. Nuno, Deep facial diagnosis: Deep transfer learning from face Recognition to facial diagnosis, IEEE Access, (2020). https://doi.org/10.1109/ACCESS.2020.3005687 doi: 10.1109/ACCESS.2020.3005687
![]() |
[51] |
L. Daqi, B. Nicola, Y. Shigang, Deep spiking neural network for video-based disguise face recognition based on dynamic facial movements, IEEE Trans. Neural Netw. Learn. Syst., 31 (2020), 1843–1855. https://doi.org/10.1109/TNNLS.2019.2927274 doi: 10.1109/TNNLS.2019.2927274
![]() |
[52] |
Y. Said, M. Barr, H. E. Ahmed, Design of a face recognition system based on convolutional neural network (CNN), Eng. Technol. Appl. Sci. Res., 10 (2020), 5608–5612. https://doi.org/10.1109/CAC48633.2019.8996236 doi: 10.1109/CAC48633.2019.8996236
![]() |
[53] |
A. Nada, H. A. B. Heyam, Deep learning approach for multimodal biometric recognition system based on fusion of iris, face, and finger vein traits, Sensor, 20 (2020), 5523–5539. https://doi.org/10.3390/s20195523 doi: 10.3390/s20195523
![]() |
[54] |
A. Jawad, A. AlBdairi, Z. Xiao, M. Alghaili, Identifying ethnics of people through face recognition: A deep CNN approach, Sci. Program., 2020 (2020), article ID 6385281. https://doi.org/10.1155/2020/6385281 doi: 10.1155/2020/6385281
![]() |
[55] |
W. W. R. Almeida, F. A. Andaló, R. Padilha, G. Bertocco, W. Dias, R. S. Torres, et al., Detecting face presentation attacks in mobile devices with a patch-based CNN and a sensor aware loss function, PLoS One, (2020), 1–24. https://doi.org/10.1155/2020/6385 doi: 10.1155/2020/6385
![]() |