This is an experimental study that investigates the performance of a hybrid wind-solar street lighting system and its cost of energy. The site local design conditions of solar irradiation and wind velocity were employed in the design of the system components. HOMER software was also used to determine the Levelized Cost of Energy (LCOE) and energy performance indices, which provides an assessment of the system's economic feasibility. The hybrid power supply system comprised of an integrated two photovoltaic (PV) solar modules and a combined Banki-Darrieus wind turbines. The second PV module was used to extend the battery storage for longer runtime, and the Banki-Darrieus wind turbines were used also to boost the battery charge for times when there is wind but no sunshine, especially in winter and at night. The results indicated that the hybrid system proved to be operating successfully to supply power for a street LED light of 30 watts. A wind power of 113 W was reached for a maximum wind speed that was recorded in the year 2021 of 12.10 m/s. The efficiency of the combined Banki-Darrieus wind turbine is 56.64%. In addition, based on the HOMER optimization analysis of three scenarios, of which, using either a solar PV system or the combined wind turbines each alone, or using the hybrid wind-solar system. The software results showed that the hybrid wind-solar system is the most economically feasible case.
Citation: Nadwan Majeed Ali, Handri Ammari. Design of a hybrid wind-solar street lighting system to power LED lights on highway poles[J]. AIMS Energy, 2022, 10(2): 177-190. doi: 10.3934/energy.2022010
[1] | Fahad Alsharari, Ahmed O. M. Abubaker, Islam M. Taha . On r-fuzzy soft γ-open sets and fuzzy soft γ-continuous functions with some applications. AIMS Mathematics, 2025, 10(3): 5285-5306. doi: 10.3934/math.2025244 |
[2] | Dina Abuzaid, Samer Al-Ghour . Supra soft Omega-open sets and supra soft Omega-regularity. AIMS Mathematics, 2025, 10(3): 6636-6651. doi: 10.3934/math.2025303 |
[3] | Rui Gao, Jianrong Wu . Filter with its applications in fuzzy soft topological spaces. AIMS Mathematics, 2021, 6(3): 2359-2368. doi: 10.3934/math.2021143 |
[4] | Arife Atay . Disjoint union of fuzzy soft topological spaces. AIMS Mathematics, 2023, 8(5): 10547-10557. doi: 10.3934/math.2023535 |
[5] | Ibtesam Alshammari, Islam M. Taha . On fuzzy soft β-continuity and β-irresoluteness: some new results. AIMS Mathematics, 2024, 9(5): 11304-11319. doi: 10.3934/math.2024554 |
[6] | Orhan Göçür . Amply soft set and its topologies: AS and PAS topologies. AIMS Mathematics, 2021, 6(4): 3121-3141. doi: 10.3934/math.2021189 |
[7] | Rehab Alharbi, S. E. Abbas, E. El-Sanowsy, H. M. Khiamy, Ismail Ibedou . Soft closure spaces via soft ideals. AIMS Mathematics, 2024, 9(3): 6379-6410. doi: 10.3934/math.2024311 |
[8] | Tareq M. Al-shami, Zanyar A. Ameen, A. A. Azzam, Mohammed E. El-Shafei . Soft separation axioms via soft topological operators. AIMS Mathematics, 2022, 7(8): 15107-15119. doi: 10.3934/math.2022828 |
[9] | G. Şenel, J. I. Baek, S. H. Han, M. Cheong, K. Hur . Compactness and axioms of countability in soft hyperspaces. AIMS Mathematics, 2025, 10(1): 72-96. doi: 10.3934/math.2025005 |
[10] | Dina Abuzaid, Samer Al Ghour . Three new soft separation axioms in soft topological spaces. AIMS Mathematics, 2024, 9(2): 4632-4648. doi: 10.3934/math.2024223 |
This is an experimental study that investigates the performance of a hybrid wind-solar street lighting system and its cost of energy. The site local design conditions of solar irradiation and wind velocity were employed in the design of the system components. HOMER software was also used to determine the Levelized Cost of Energy (LCOE) and energy performance indices, which provides an assessment of the system's economic feasibility. The hybrid power supply system comprised of an integrated two photovoltaic (PV) solar modules and a combined Banki-Darrieus wind turbines. The second PV module was used to extend the battery storage for longer runtime, and the Banki-Darrieus wind turbines were used also to boost the battery charge for times when there is wind but no sunshine, especially in winter and at night. The results indicated that the hybrid system proved to be operating successfully to supply power for a street LED light of 30 watts. A wind power of 113 W was reached for a maximum wind speed that was recorded in the year 2021 of 12.10 m/s. The efficiency of the combined Banki-Darrieus wind turbine is 56.64%. In addition, based on the HOMER optimization analysis of three scenarios, of which, using either a solar PV system or the combined wind turbines each alone, or using the hybrid wind-solar system. The software results showed that the hybrid wind-solar system is the most economically feasible case.
In this paper, we consider the following Rao-Nakra sandwich beam with time-varying weights and frictional dampings in (x,t)∈(0,L)×(0,∞),
ρ1h1utt−E1h1uxx−k(−u+v+αwx)+α1(t)f1(ut)=0,ρ3h3vtt−E3h3vxx+k(−u+v+αwx)+α2(t)f2(vt)=0,ρhwtt+EIwxxxx−αk(−u+v+αwx)x+α3(t)f3(wt)=0, | (1.1) |
in which u and v denote the longitudinal displacement and shear angle of the bottom and top layers, and w represents the transverse displacement of the beam. The positive constants ρi, hi, and Ei (i=1,3) are physical parameters representing, respectively, density, thickness, and Young's modulus of the i-th layer for i=1,2,3 and ρh=ρ1h1+ρ2h2+ρ3h3. EI=E1I1+E3I3, α=h2+(h1+h32), k=1h2(E22(1+μ)), where μ is the Poisson ratio −1<μ<12. The functions α1(t), α2(t), α3(t) are the time dependent of the nonlinear frictional dampings f1(ut), f2(vt), f3(wt), respectively. For the system (1.1), we consider the following Dirichlet-Neumann boundary conditions
u(0,t)=u(L,t)=0,t∈(0,∞),v(0,t)=v(L,t)=0,t∈(0,∞),w(0,t)=wx(0,t)=0,t∈(0,∞),w(L,t)=wx(L,t)=0,t∈(0,∞), | (1.2) |
and the initial conditions
u(x,0)=u0,ut(x,0)=u1in (0,L),v(x,0)=v0,vt(x,0)=v1in (0,L),w(x,0)=w0,wt(x,0)=w1in (0,L). | (1.3) |
The system (1.1)–(1.3) consists of one Euler-Bernoulli beam equation for the transversal displacement, and two wave equations for the longitudinal displacements of the top and bottom layers.
Our aim is to investigate the asymptotic behavior of solutions for the system (1.1)–(1.3). We study the effect of the three nonlinear dampings on the asymptotic behavior of the energy function. Under nonrestrictive on the growth assumption on the frictional damping terms, we establish exponential and general energy decay rates for this system by using the multiplier approach. The results generalize some earlier decay results on the Rao-Nakra sandwich beam equation.
First, let's review some previous findings about multilayered sandwich beam models. By applying the Riesz basis approach, Wang et al. [1] studied a sandwich beam system with a boundary control and established the exponential stability as well as the exact controllability and observability of the system. The author of [2] employed the multiplier approach to determine the precise controllability of a Rao-Nakra sandwich beam with boundary controls rather than the Riesz basis approach. Hansen and Imanuvilov [3,4] investigated a multilayer plate system with locally distributed control in the boundary and used Carleman estimations to determine the precise controllability results. Özer and Hansen [5,6] succeeded in obtaining, for a multilayer Rao-Nakra sandwich beam, boundary feedback stabilization and perfect controllability. One viscous damping effect on either the beam equation or one of the wave equations was all that was taken into account by Liu et al. [7] when they established the polynomial decay rate using the frequency domain technique. The semigroup created by the system is polynomially stable of order 1/2, according to Wang [8], who analyzed a Rao-Nakra beam with boundary damping only on one end for two displacements using the same methodology. One can find additional results on the multilayer beam in [9,10,11,12,13,14,15].
In this paper, we consider a Rao-Nakra sandwich beam with time-varying weights and frictional dampings, i.e., system (1.1)–(1.3). The main results are twofold:
(I) We establish an exponential decay of the system in the case of linear frictional dampings by using the multiplier approach, and the decay result depends on the time-varying weights αi.
(II) We establish more general decay of the system in the case of nonlinear frictional dampings by using the multiplier approach, and the decay result depends on the time-varying weights αi and the frictional dampings fi. To the best of our knowledge, there is no stability results on the Rao-Nakra sandwich beam with nonlinear frictional dampings. The remainder of the paper is as follows. In Section 2, we introduce some notations and preliminary results. In Section 3, we state the theorem of the stability and give a detailed proof.
In this section, we present some materials needed in the proof of our results. Throughout this paper, c and ε are used to denote generic positive constants. We consider the following assumptions:
(H1) For (i=1,2,3), the functions fi:R→R are C0 nondecreasing satisfying, for c1,c2>0,
s2+f2i(s)|≤F−1i(sfi(s))for all|s|≤ri,c1|s|≤|fi(s)|≤c2|s|for all|s|≥ri, | (2.1) |
where Fi:(0,∞)→(0,∞) (i=1,2,3) are C1 functions, which are linear or strictly increasing and strictly convex C2 functions on (0,ri] with Fi(0)=F′i(0)=0.
(H2) For (i=1,2,3), the time dependent functions αi:[0,∞)→(0,∞) are C1 functions satisfying ∫∞0αi(t)dt=∞.
Remark 2.1. (1) Hypothesis (H1) implies that sfi(s)>0, for all s≠0. This condition (H1) was introduced and employed by Lasiecka and Tataru [16]. It was shown there that the monotonicity and continuity of fi guarantee the existence of the function Fi with the properties stated in (H1).
(2) For more results on the convexity properties on the nonlinear frictional dampings and sharp energy decay rates, we refer to the works by Boussouira and her co-authors [17,18,19].
The following lemmas will be of essential use in establishing our main results.
Lemma 3.1. [20] Let E:R+→R+ be a nonincreasing function and γ:R+→R+ be a strictly increasing C1-function, with γ(t)→+∞ as t→+∞. Assume that there exists c>0 such that
∞∫Sγ′(t)E(t)dt≤cE(S),1≤S<+∞, |
then there exist positive constants k and ω such that
E(t)≤ke−ωγ(t). |
Lemma 3.2. Let E:R+→R+ be a differentiable and nonincreasing function and let χ:R+→R+ be a convex and increasing function such that χ(0)=0. Assume that
∫+∞sχ(E(t))dt≤E(s),∀s≥0, | (3.1) |
then E satisfies the estimate
E(t)≤ψ−1(h(t)+ψ(E(0))),∀t≥0, | (3.2) |
where ψ(t)=∫1t1χ(s)ds for t>0, and
{h(t)=0,0≤t≤E(0)χ(E(0)),h−1(t)=t+ψ−1(t+ψ(E(0)))χ(ψ−1(t+ψ(E(0)))),t>0. |
Proof. Since E′(t)≤0, this implies E(0)≤E(t0) for all t≥t0≥0. If E(t0)=0 for t0≥0, then E(t)=0 for all t≥t0≥0, and there is nothing to prove in this case. As in [21], we assume that E(t)>0 for t≥0 without loss of generality. Let
L(s)=∫∞sχ(E(t))dt,∀s≥0. |
We have L(s)≤E(s),∀s≥0. The functional L is positive, decreasing, and of class C1(0,∞) satisfying
−L′(s)=χ(E(s))≥χ(L(s)),∀s≥0. |
Since the functional χ is decreasing, we have
χ(L(s))′=−L′(s)χ(L(s))≥1,∀s≥0. |
Integrating this differential equation over (0,t), we get
χ(L(t))≥t+ψ(E(0)),∀t≥0. | (3.3) |
Since χ is convex and χ(0)=0, we have
χ(s)≤sχ(1),∀s∈[0,1]andχ(s)≥sχ(1),∀s≥1. |
We find limt→0ψ(t)=∞ and [ψ(E(0)),∞))⊂Image(ψ), then (3.3) imply that
L(t)≤ψ−1(t+ψ(E(0))),∀t≥0. | (3.4) |
Now, using the properties of χ and E, we have
L(s)≥∫tsχ(E(τ))dτ≥(t−s)χ(E(t)),∀t≥s≥0. | (3.5) |
Since limt→0χ(t)=∞,χ(0)=0, and χ is increasing, (3.4) and (3.5) imply that
E(t)≥χ−1(infs∈[0,t)ψ−1(t+ψ(E(0)))t−s),∀t>0. | (3.6) |
Now, let t>E(0)χ(E(0)) and J(s)=ψ−1(t+ψ(E(0)))t−s,s∈[0,t).
The function J is differentiable, then we have
J′(s)=(t−s)−2[ψ−1(s+ψ(E(0)))−(t−s)χ(ψ−1(s+ψ(E(0))))]. | (3.7) |
Thus, J′(s)=0⇔K(s)=t and J′(s)<0⇔K(s)<t, where
K(t)=t+ψ−1(t+ψ(E(0)))χ(ψ−1(t+ψ(E(0)))). |
Since K(0)=E(0)χ(E(0)) and K is increasing (because ψ−1 is decreasing and s→sχ(s),s>0 is nonincreasing thanks to the fact χ is convex), for t>E(0)χ(E(0)), we have
infs∈[0,t)J(K−1(t))=J(h(t)). |
Since h satisfies J′(h(t))=0, we conclude from (3.6) our desired estimate (3.2).
We define the energy associated to the problem (1.1)–(1.3) by the following formula
E(t)=12[ρ1h1∫L0u2tdx+E1h1∫L0u2xdx+ρ3h3∫L0v2tdx+E3h3∫L0v2xdx+ρh∫L0w2tdx+EI∫L0w2xxdx+k∫L0(−u+v+αwx)2dx]. | (3.8) |
Lemma 3.3. The energy E(t) satisfies
E′(t)≤−α1(t)∫L0utf1(ut)dx−α2(t)∫L0vtf2(vt)dx−α3(t)∫L0wtf3(wt)dx≤0. | (3.9) |
Proof. Multiplying (1.1)1 by ut, (1.1)2 by vt, (1.1)3 by wt and integrating each of them by parts over (0,L), we get the desired result.
In this section, we state and prove our main result. For this purpose, we establish some lemmas. From now on, we denote by c various positive constants, which may be different at different occurrences. For simplicity, we consider the case α(t)=α1(t)=α2(t)=α3(t).
Lemma 4.1. (Case: Fi is linear) For T>S≥0, the energy functional of the system (1.1)–(1.3) satisfies
∫TSα(t)E(t)dt≤cE(S). | (4.1) |
Proof. Multiplying (1.1)1 by αu and integrating over (S,T)×(0,L), we obtain
∫TSα(t)∫L0u[ρ1h1utt−E1h1uxx−k(−u+v+αwx)+α(t)f1(ut)]dxdt=0. |
Notice that
uttu=(utu)t−u2t. |
Using integration by parts and the boundary conditions, we get
−∫TSα(t)∫L0ρ1h1u2tdxdt+∫TSα(t)∫L0E1h1u2xdxdt−∫TSα(t)∫L0ku(−u+v+αwx)dxdt=−ρ1h1[α(t)∫L0uutdx]TS−∫TSα2(t)∫L0uf1(ut)dxdt. | (4.2) |
Adding 2∫TSα(t)∫L0ρ1h1u2tdxdt to both sides of the above equation, we have
∫TSα(t)∫L0ρ1h1u2tdxdt+∫TSα(t)∫L0E1h1u2xdxdt−∫TSα(t)∫L0ku(−u+v+αwx)dxdt=−ρ1h1[α(t)∫L0uutdx]TS−∫TSα2(t)∫L0uf1(ut)dxdt+2∫TSα(t)∫L0ρ1h1u2tdxdt. | (4.3) |
Similarly, multiplying (1.1)2 by α(t)v and (1.1)3 by α(t)w, and integrating each of them over (S,T)×(0,L), we obtain
∫TSα(t)∫L0ρ3h3v2tdxdt+∫TSα(t)∫L0E3h3v2xdxdt+∫TSα(t)∫L0kv(−u+v+αwx)dxdt=−ρ3h3[∫L0α(t)vvtdx]TS−∫TSα2(t)∫L0vf2(vt)dxdt+2∫TSα(t)∫L0ρ3h3v2tdxdt, | (4.4) |
and
∫TSα(t)∫L0ρhw2tdxdt+∫TSα(t)∫L0EIw2xxdxdt−∫TSα(t)∫L0kαw(−u+v+αwx)xdxdt=−ρh[∫L0α(t)wwtdx]TS−∫TSα2(t)∫L0wf3(wt)dxdt+2∫TSα(t)∫L0ρhw2tdxdt. | (4.5) |
Recalling the definition of E, and from (4.2)–(4.5), we get
2∫TSα(t)E(t)dt≤−ρ1h1[α(t)∫L0uutdx]TS−ρ3h3[α(t)∫L0vvtdx]TS−ρh[α(t)∫L0wwtdx]TS−∫TSα2(t)∫L0uf1(ut)dxdt−∫TSα2(t)∫L0vf2(vt)dxdt−∫TSα2(t)∫L0wf3(wt)dxdt+2∫TSα(t)∫L0ρ1h1u2tdxdt+2∫TSα(t)∫L0ρ3h3v2tdxdt+2∫TSα(t)∫L0ρhw2tdxdt. | (4.6) |
Now, using Young's and Poincaré inequalities, we get for any εi>0(i=1,2,3),
∫L0uutdx≤ε1∫L0u2dx+14ε1∫L0u2tdx≤cpε1∫L0u2xdx+14ε1∫L0u2tdx≤cE(t),∫L0zztdx≤ε2∫L0z2dx+14ε2∫L0z2tdx≤cpε2∫L0z2dx+14ε2∫L0z2tdx≤cE(t),∫L0wwtdx≤ε3∫L0w2dx+14ε3∫L0w2tdx≤cpε3∫L0w2dx+14ε3∫L0w2tdx≤cE(t), | (4.7) |
which implies that
−[α(t)∫L0uutdx]TS≤cα(S)E(S)−cα(S)E(T)≤cE(S), |
−[α(t)∫L0vvtdx]TS≤cE(S), |
and
−[α(t)∫L0wwtdx]TS≤cE(S). |
Using (H1), the fact that F1 is linear, Hölder and Poincaré inequalities, we obtain
α2(t)∫L0uf1(ut)dx≤α2(t)(∫L0|u|2dx)12(∫L0|f1(ut)|2dx)12≤α32||u||2(α∫L0utf1(ut)dx)12≤cE12(t)(−E′(t))12. | (4.8) |
Applying Young's inequality on the term E12(t)(−E′(t))12, we obtain for ε>0
α2(t)∫L0uf1(ut)dx≤cα(t)(εE(t)−CεE′(t))≤cεα(t)E(t)−CεE′(t), | (4.9) |
which implies that
∫TSα2(t)(∫L0(−uf1(ut))dx)dt≤cε∫TSα(t)E(t)dt+CεE(S). | (4.10) |
In the same way, we have
∫TSα2(t)(∫L0(−vf2(vt))dx)dt≤cε∫TSα(t)E(t)dt+CεE(S), | (4.11) |
and
∫TSα2(t)(∫L0(−wf3(wt))dx)dt≤cε∫TSα(t)E(t)dt+CεE(S). | (4.12) |
Finally, using (H1), and the fact that F1 is linear, we find that
2∫TSα(t)∫L0ρ1h1u2tdxdt≤c∫TSα(t)∫L0utf1(ut)dxdt≤c∫TS(−E′(t))dt≤cE(S). | (4.13) |
Similarly, we get
2∫TSα(t)∫L0ρ3h3v2tdxdt≤cE(S),and2∫TSα(t)∫L0ρhw2tdxdt≤cE(S). | (4.14) |
We combine the above estimates and take ε small enough to get the estimate (4.1).
Lemma 4.2. (Case: Fi are nonlinear) For T>S≥0, the energy functional of the system (1.1)–(1.3) satisfies
∫TSα(t)Λ(E(t))dt≤cΛ(E(S))+c∫TSα(t)Λ(E)E∫L0(|ut|2+|uf1(ut)|)dxdt+c∫TSα(t)Λ(E)E∫L0(|vt|2+|vf2(vt)|)dxdt+c∫TSα(t)Λ(E)E∫L0(|vt|2+|vf3(wt)|)dxdt, | (4.15) |
where Λ is convex, increasing, and of class C1[0,∞) such that Λ(0)=0.
Proof. We multiply (1.1)1 by α(t)Λ(E)Eu and integrate over (0,L)×(S,T) to get
ρ1h1∫TSα(t)Λ(E)E∫L0u2tdxdt+E1h1∫TSα(t)Λ(E)E∫L0u2xdxdt−k∫TSα(t)Λ(E)E∫L0u(−u+v+αwx)dxdt=−ρ1h1∫TSα(t)Λ(E)E∫L0(uut)tdxdt−∫TSα2(t)Λ(E)E∫L0uf1(ut)dxdt+2ρ1h1∫TSα(t)Λ(E)E∫L0u2tdxdt. | (4.16) |
Also, we multiply (1.1)2 by α(t)Λ(E)Ev and integrate over (0,L)×(S,T) to get
ρ3h3∫TSα(t)Λ(E)E∫L0v2tdxdt+E3h3∫TSα(t)Λ(E)E∫L0v2xdxdt+k∫TSα(t)Λ(E)E∫L0v(−u+v+αwx)dxdt=−ρ3h3∫TSα(t)Λ(E)E∫L0(vvt)tdxdt−∫TSα2(t)Λ(E)E∫L0vf2(vt)dxdt+2ρ3h3∫TSα(t)Λ(E)E∫L0v2tdxdt. | (4.17) |
Similarly, we multiply (1.1)3 by α(t)Λ(E)Ew and integrate over (0,L)×(S,T) to get
ρh∫TSα(t)Λ(E)E∫L0w2tdxdt+Eh∫TSα(t)Λ(E)E∫L0w2xxdxdt+αk∫TSα(t)Λ(E)E∫L0wx(−u+v+αwx)dxdt=−ρh∫TSα(t)Λ(E)E∫L0(wwt)tdxdt−∫TSα2(t)Λ(E)E∫L0wf3(wt)dxdt+2ρh∫TSα(t)Λ(E)E∫L0w2tdxdt. | (4.18) |
Integrating by parts in the first term of the righthand side of the Eq (4.16), we find that Eq (4.16) becomes
ρ1h1∫TSα(t)Λ(E)E∫L0u2tdxdt+E1h1∫TSα(t)Λ(E)E∫L0u2xdxdt−k∫TSα(t)Λ(E)E∫L0u(−u+v+αwx)dxdt=−ρ1h1[α(t)Λ(E)E∫L0uutdx]TS+ρ1h1∫TS∫L0ut(α′(t)Λ(E)Eu+α(t)(Λ(E)E)′u)dxdt+2ρ1h1∫TSα(t)Λ(E)E∫L0u2tdxdt−∫TSα2(t)Λ(E)E∫L0uf1(ut)dxdt. |
Using the fact that ∫L0uutdx≤cE(t), the properties of α(t), and the facts that the function s→Λ(s)s is nondecreasing and E is nonincreasing, we have
∫TSα′(t)Λ(E)E∫L0uutdxdt≤c∫TSα′(t)Λ(E)EE(t)dt≤cΛ(E(S))∫TSα′(t)dt≤cΛ(E(S)). | (4.19) |
Similarly, we get
∫TSα(t)(Λ(E)E)′∫L0uutdxdt≤E(S)∫TSα(t)(Λ(E)E)′dt≤E(S)[α(t)Λ(E)E]TS−E(S)∫TSα′(t)Λ(E)Edt≤E(S)(α(T)Λ(E(T))E(T)−α(S)Λ(E(S))E(S))−E(S)Λ(E(S))E(S)∫TSα′(t)dt≤E(S)α(T)Λ(E(T))E(T)−Λ(E(S))(α(T)−α(S))≤E(S)α(S)Λ(E(S))E(S)+Λ(E(S))α(S)≤cΛ(E(S)). | (4.20) |
Combining (4.19)–(4.20), we have
ρ1h1∫TSα(t)Λ(E)E∫L0u2tdxdt+E1h1∫TSα(t)Λ(E)E∫L0u2xdxdt−k∫TSα(t)Λ(E)E∫L0u(−u+v+αwx)dxdt≤cΛ(E(S))+2ρ1h1∫TSα(t)Λ(E)E∫L0u2tdxdt−∫TSα2(t)Λ(E)E∫L0uf1(ut)dxdt. |
Similarly, we have
ρ3h3∫TSα(t)Λ(E)E∫L0v2tdxdt+E3h3∫TSα(t)Λ(E)E∫L0v2xdxdt+k∫TSα(t)Λ(E)E∫L0v(−u+v+αwx)dxdt≤cΛ(E(S))+2ρ3h3∫TSα(t)Λ(E)E∫L0v2tdxdt−∫TSα2(t)Λ(E)E∫L0vf2(vt)dxdt, |
and
ρh∫TSα(t)Λ(E)E∫L0w2tdxdt+Eh∫TSα(t)Λ(E)E∫L0w2xxdxdt+αk∫TSα(t)Λ(E)E∫L0wx(−u+v+αwx)dxdt≤cΛ(E(S))+2ρh∫TSα(t)Λ(E)E∫L0w2tdxdt−∫TSα2(t)Λ(E)E∫L0wf3(wt)dxdt. |
Gathering all the above estimations by using (3.8), we obtain
∫TSα(t)Λ(E(t))dt≤cΛ(E(S))+c∫TSα2(t)Λ(E)E∫L0(|ut|2+|uf1(ut)|)dxdt+c∫TSα2(t)Λ(E)E∫L0(|vt|2+|vf2(vt)|)dxdt+c∫TSα2(t)Λ(E)E∫L0(|wt|2+|wf3(wt)|)dxdt. | (4.21) |
This completes the proof of the estimate (4.15).
In order to finalize the proof of our result, we let
Λ(s)=2ε0sF′i(ε20s), Ψi(s)=Fi(s2), |
where F∗i and Ψ∗i denote the dual functions of the convex functions Fi and Ψi, respectively, in the sense of Young (see Arnold [22], pp. 64).
Lemma 4.3. Suppose Fi(i=1,2,3) are nonlinear, then the following estimates
F∗i(Λ(s)s)≤Λ(s)s(F′i)−1(Λ(s)s) | (4.22) |
and
Ψ∗i(Λ(s)√s)≤ε0Λ(√s), | (4.23) |
hold.
Proof. We prove for i=1, and the remaining are similar. Since F∗1 and Ψ∗1 are the dual functions of the convex functions F1 and Ψ1, respectively, then
F∗1(s)=s(F′1)−1(s)−F1[(F′1)−1(s)]≤s(F′1)−1(s) | (4.24) |
and
Ψ∗1(s)=s(Ψ′1)−1(s)−Ψ1[(Ψ′1)−1(s)]≤s(Ψ′1)−1(s). | (4.25) |
Using (4.24) and the definition of Λ, we obtain (4.22).
For the proof of (4.23), we use (4.25) and the definitions of Ψ1 and Λ to obtain
Λ(s)√s(Ψ′1)−1(Λ(s)√s)≤2ε0√sF′1(ε20s)(Ψ′1)−1(2ε0√sF′1(ε20s))=2ε0√sF′1(ε20s)(Ψ′1)−1(Ψ′1(ε0√s))=2ε20sF′1(ε20s)=ε0Λ(√s). | (4.26) |
Now, we state and prove our main decay results.
Theorem 4.4. Let (u0,u1)×(z0,z1)∈[H20(0,L)×L2(0,L)]2. Assume that (H1) and (H2) hold, then there exist positive constants k and c such that, for t large, the solution of the system (1.1)–(1.3) satisfies
E(t)≤ke−c∫t0α(s)ds,if Fi is linear, | (4.27) |
E(t)≤ψ−1(h(˜α(t))+ψ(E(0))),∀t≥0,if Fi are nonlinear, | (4.28) |
where ˜α(t)=∫t0α(t)dt, ψ(t)=∫1t1χ(s)ds, χ(t)=cΛ(t), and
{h(t)=0,0≤t≤E(0)χ(E(0)),h−1(t)=t+ψ−1(t+ψ(E(0)))χ(ψ−1(t+ψ(E(0)))),t>0. |
Proof. To establish (4.27), we use (4.1), and Lemma 3.1 for γ(t)=∫t0α(s)ds. Consequently, the result follows.
For the proof of (4.28), we re-estimate the terms of (4.15) as follows:
We consider the following partition of the domain (0,L):
Ω1={x∈(0,L):|ut|≥ε1},Ω2={x∈(0,L):|ut|≤ε1}. |
So,
∫TSα(t)Λ(E)E∫Ω1(|ut|2+|uf1(ut)|)dxdt=∫TSα(t)Λ(E)E∫Ω1|ut|2dxdt+∫TSα(t)Λ(E)E∫Ω1|uf1(ut)|dxdt:=I1+I2. |
Using the definition of Ω1, condition (H1), and (3.9), we have
I1≤c∫TSα(t)Λ(E)E∫Ω1utf1(ut)dxdt≤c∫TSΛ(E)E(−E′(t))dt≤cΛ(E(S)). | (4.29) |
After applying Young's inequality, and the condition (H1), we obtain
I2≤ε∫TSα(t)Λ2(E)Edt+c(ε)∫TSα(t)∫Ω1|f1(ut)|2dt. | (4.30) |
The definition of Ω1, the condition (H1), (3.8), (3.9), and (4.30) lead to
I2≤ε∫TSα(t)Λ2(E)Edt+c(ε)∫TSα(t)∫Ω1utf1(ut)dxdt≤ε∫TSα(t)Λ2(E)Edt+c(ε)E(S). | (4.31) |
Using the definition of Λ, and the convexity of F1, (4.31) becomes
I2≤ε∫TSα(t)Λ2(E)Edt+cεE(S)=2εε0∫TSα(t)Λ(E)F′1(ε20E(t))dt+cεE(S)≤2εε0∫TSα(t)Λ(E)F′1(ε20E(0))dt+cεE(S)≤2cεε0∫TSα(t)Λ(E)dt+cεE(S). | (4.32) |
Using Young's inequality, Jensen's inequality, condition (H1), and (3.8), we get
∫TSα(t)Λ(E)E∫Ω2(|ut|2+|uf1(ut)|)dxdt≤∫TSα(t)Λ(E)E∫Ω2F−11(utf1(ut))dxdt+∫TSα(t)Λ(E)E‖ | (4.33) |
We apply the generalized Young inequality
\begin{equation*} AB\le F^*(A)+F(B) \end{equation*} |
to the first term of (4.33) with A = \frac{\Lambda(E)}{E} and B = F_1^{-1}\left(\frac{1}{L}\int_0^L u_t f_1(u_t)dx\right) to get
\begin{equation} \begin{aligned} \frac{\Lambda(E)}{E}F_1^{-1}\left(\frac{1}{L}\int_0^L u_tf_1(u_t)dx\right)\le F_1^*\left(\frac{\Lambda(E)}{E}\right)+ \frac{1}{L}\int_0^L u_t f_1(u_t)dx. \end{aligned} \end{equation} | (4.34) |
We then apply it to the second term of (4.33) with A = \frac{\Lambda(E)}{E} \sqrt{E} and
B = \sqrt{L F_1^{-1}\left(\frac{1}{L}\int_0^L u_t f_1(u_t)dx\right)} to obtain
\begin{equation} \begin{aligned} \frac{\Lambda(E)}{E} \sqrt{E}\; \sqrt{L F_1^{-1}\left(\frac{1}{L}\int_0^L u_t f_1(u_t)dx\right)}\le F_1^*\left( \frac{\Lambda(E)}{E} \sqrt{E} \right) +L F_1^{-1}\left(\frac{1}{L}\int_0^L u_t f_1(u_t)dx\right). \end{aligned} \end{equation} | (4.35) |
Combining (4.33)–(4.35), using (4.22), and (4.23), we arrive at
\begin{equation} \begin{aligned} \int_{S}^{T}\alpha(t) &\frac{\Lambda(E)}{E}\; \int_{\Omega_2}\left(\vert u_t\vert^2+\vert u f_1(u_t)\vert\right)dxdt\\ &\le c \int_{S}^{T} \alpha(t) \left( F_1^*\left(\frac{\Lambda(E)}{E} \sqrt{E}\right)+F_1^*\left( \frac{\Lambda(E)}{E}\right)\right)dt+c\int_{S}^{T}\alpha(t)\int_{\Omega}u_t f_1(u_t)dxdt\\ &\le c \int_{S}^{T} \alpha(t) \left(\varepsilon_0+\frac{(F_1^{\prime})^{-1}\left(\frac{\Lambda(E)}{E}\right)}{E}\right)\Lambda(E)dt+cE(S). \end{aligned} \end{equation} | (4.36) |
Using the fact that s \to (F_1^{\prime})^{-1}(s) is nondecreasing, we deduce that, for 0 < \varepsilon_0\le \sqrt{E(0)} ,
\begin{equation*} \begin{aligned} \int_{S}^{T}\alpha(t) &\frac{\Lambda(E)}{E}\int_{\Omega_2}\left(\vert u_t\vert^2+\vert u f_1(u_t)\vert\right)dxdt\le c\varepsilon_0 \int_{S}^{T}\alpha(t) \Lambda(E)dt+cE(S). \end{aligned} \end{equation*} |
Therefore, combining (4.15), (4.29), and (4.32), we find that
\begin{equation*} \begin{aligned} \int_{S}^{T}\alpha(t) &\frac{\Lambda(E)}{E}\int_0^L \left(\vert u_t\vert^2+\vert u f_1(u_t)\vert\right)dxdt\le c \Lambda\left(E(S)\right)+ c \varepsilon \varepsilon_0 \int_{S}^{T}\alpha(t) \Lambda(E)dt + c \varepsilon E(S), \end{aligned} \end{equation*} |
and similarly,
\begin{equation*} \begin{aligned} \int_{S}^{T}\alpha(t) &\frac{\Lambda(E)}{E}\int_0^L \left(\vert v_t\vert^2+\vert v f_2(v_t)\vert\right)dxdt\le c \Lambda\left(E(S)\right)+ c \varepsilon \varepsilon_0 \int_{S}^{T}\alpha(t) \Lambda(E)dt + c \varepsilon E(S), \end{aligned} \end{equation*} |
and
\begin{equation*} \begin{aligned} \int_{S}^{T}\alpha(t) &\frac{\Lambda(E)}{E}\int_0^L \left(\vert w_t\vert^2+\vert w f_3(w_t)\vert\right)dxdt\le c \Lambda\left(E(S)\right)+ c \varepsilon \varepsilon_0 \int_{S}^{T}\alpha(t) \Lambda(E)dt + c \varepsilon E(S), \end{aligned} \end{equation*} |
Combining all the above estimations with choosing \varepsilon and \varepsilon_0 small enough, we arrive at
\begin{equation*} \begin{aligned} \int_{S}^{T}\alpha(t) \Lambda(E(t))dt\le c \left( 1+\frac{\Lambda(E(S))}{E(S)}\right)E(S). \end{aligned} \end{equation*} |
Using the facts that E is nonincreasing and s \to \frac{\Lambda(s)}{s} is nondecareasing, we can deduce that
\begin{equation*} \int_{S}^{+\infty}\alpha(t) \Lambda(E(t))dt \le cE(S). \end{equation*} |
Now, let \tilde{E} = E\circ \tilde{\alpha}^{-1} , where \tilde{\alpha}(t) = \int_{0}^{t}\alpha(s)ds , then we deduce from this inequality that
\begin{equation*} \begin{aligned} \int_{S}^{\infty} \Lambda(\tilde{E}(t))dt& = \int_{S}^{\infty} \Lambda(E(\tilde{\alpha}^{-1}(t)))dt\\ & = \int_{\tilde{\alpha}^{-1}(S)}^{\infty} \alpha(\eta)\Lambda(E(\eta))d\eta\\ &\le cE\left(\tilde{\alpha}^{-1}(S) \right)\\ &\le c \tilde{E}(S). \end{aligned} \end{equation*} |
Using Lemma 3.1 for \tilde{E} and \chi(s) = c \Lambda(s) , we deduce from (3.1) the following estimate
\begin{equation*} \tilde{E}(t)\le \psi^{-1}\left(h(t)+\psi\left(E(0)\right)\right) \end{equation*} |
which, using the definition of \tilde{E} and the change of variables, gives (4.28).
Remark 4.1. The stability result (4.28) is a decay result. Indeed,
\begin{equation*} \begin{aligned} h^{-1}(t)& = t+\frac{\psi^{-1}\left(t+\psi(E(0))\right)}{\chi\left(\psi^{-1}(t+\psi(E(0)))\right)}\\ & = t+\frac{c}{2\varepsilon_0 c F^{\prime}\left(\varepsilon_0^2 \psi^{-1}(t+r) \right)}\\ &\ge t+\frac{c}{2\varepsilon_0 c F^{\prime}\left(\varepsilon_0^2 \psi^{-1}(r) \right)}\\ &\ge t+\tilde{c}, \end{aligned} \end{equation*} |
where F = \min \{ F_i \} and i = 1, 2, 3. Hence, \lim_{t\to\infty}h^{-1}(t) = \infty , which implies that \lim_{t \to\infty}h(t) = \infty . Using the convexity of F , we have
\begin{equation*} \begin{aligned} \psi(t)& = \int_{t}^{1}\frac{1}{\chi(s)}ds = \int_{t}^{1}\frac{c}{2\varepsilon_0 sF^{\prime}\left(\varepsilon_0^2s\right)}\ge \int_{t}^{1}\frac{c}{sF^{\prime}\left(\varepsilon_0^2\right)}\ge c \left[\ln{\vert s\vert}\right]_{t}^{1} = -c\ln{t}, \end{aligned} \end{equation*} |
where F = \min \{ F_i \} and i = 1, 2, 3. Therefore, \lim_{t\to 0^+}\psi(t) = \infty , which leads to \lim_{t\to \infty}\psi^{-1}(t) = 0 .
Example 1. Let f_i(s) = s^m , (i = 1, 2, 3) , where m\ge 1 , then the function F ( F = \min \{ F_i \} ) is defined in the neighborhood of zero by
F(s) = c s^{\frac{m+1}{2}} |
which gives, near zero,
\chi(s) = \frac{c(m+1)}{2} s^{\frac{m+1}{2}}. |
So,
\begin{equation*} \psi(t) = c \int_{t}^{1}\frac{2}{(m+1)s^{\frac{m+1}{2}}}ds = \left\{ \begin{array}{ll} \frac{c}{t^{\frac{m-1}{2}}}, & if ~~~ {m > 1 ;} \\ \\ -c\ln{t}, & if ~~~ {m = 1 , } \end{array} \right. \end{equation*} |
then in the neighborhood of \infty ,
\begin{equation*} \psi^{-1}(t) = \left\{ \begin{array}{ll} c t^{-\frac{2}{m-1}}, & if ~~~ {m > 1 ;} \\ c e^{-t}, & if ~~~ {m = 1 .} \end{array} \right. \end{equation*} |
Using the fact that h(t) = t as t goes to infinity, we obtain from (4.27) and (4.28):
\begin{equation*} E(t)\le \left\{ \begin{array}{ll} c \left(\int_{0}^{t}\alpha(s)ds\right)^{-\frac{2}{m-1}}, & if ~~~ {m > 1 ;} \\ \\ c e^{-{\int_{0}^{t}\alpha(s)ds}}, & if ~~~ {m = 1 .} \end{array} \right. \end{equation*} |
Example 2. Let f_i(s) = s^m \sqrt{-\ln{s}} , (i = 1, 2, 3) , where m\ge 1 , then the function F is defined in the neighborhood of zero by
F(s) = c s^{\frac{m+1}{2}} \sqrt{-\ln{\sqrt{s}}}, |
which gives, near zero,
\chi(s) = cs^{\frac{m+1}{2}}\left(-\ln{\sqrt{s}}\right)^{-\frac{1}{2}}\left(\frac{m+1}{2}\left(-\ln{\sqrt{s}}\right)-\frac{1}{4}\right). |
Therefore,
\begin{equation*} \begin{aligned} \psi(t) = &c \int_{t}^{1}\frac{1}{ s^{\frac{m+1}{2}}\left(-\ln{\sqrt{s}}\right)^{-\frac{1}{2}}\left(\frac{m+1}{2}\left(-\ln{\sqrt{s}}\right)-\frac{1}{4}\right)}ds\\ = &c\int_{1}^{\frac{1}{\sqrt{t}}}\frac{\tau^{m-2}}{(\ln{\tau})^{-\frac{1}{2}} \left(\frac{m+1}{2}\ln{\tau}-\frac{1}{4} \right)}d\tau\\ = &\left\{ \begin{array}{ll} \frac{c}{t^{\frac{m-1}{2}}\sqrt{-\ln{t} }}, & if ~~~ {m > 1 ;} \\ \\ c\sqrt{-\ln{t}}, & if ~~~ {m = 1 , } \end{array} \right. \end{aligned} \end{equation*} |
then in the neighborhood of \infty ,
\begin{equation*} \psi^{-1}(t) = \left\{ \begin{array}{ll} c t^{-\frac{2}{m-1}}\left( \ln{t} \right)^{-\frac{1}{m-1}}, & if ~~~ {m > 1 ;} \\ \\ c e^{-t^2}, & if ~~~ {m = 1 .} \end{array} \right. \end{equation*} |
Using the fact that h(t) = t as t goes to infinity, we obtain
\begin{equation*} E(t)\le \left\{ \begin{array}{ll} c \left(\int_{0}^{t}\alpha(s)ds\right)^{-\frac{2}{m-1}} \left(\ln{\left(\int_{0}^{t}\alpha(s)ds\right)}\right)^{-\frac{1}{m-1}}, & if ~~~ {m > 1 ;} \\ \\ c e^{- \left(\int_{0}^{t}\alpha(s)ds\right)^2}, & if ~~~ {m = 1 .} \end{array} \right. \end{equation*} |
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors would like to acknowledge the support provided by King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia. The support provided by the Interdisciplinary Research Center for Construction & Building Materials (IRC-CBM) at King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia, for funding this work through Project No. INCB2402, is also greatly acknowledged.
The authors declare that there is no conflict of interest.
[1] |
Khare V, Nema S, Baredar P (2016) Solar-wind hybrid renewable energy system: A review. Renew Sustain Energy Rev 58: 23–33. https://doi.org/10.1016/j.rser.2015.12.223 doi: 10.1016/j.rser.2015.12.223
![]() |
[2] |
Al-Tarawneh L, Alqatawneh A, Tahat A, et al. (2021) Evolution of optical networks: From legacy networks to next-generation networks. J Opt Commun 2020. https://doi.org/10.1515/joc-2020-0108 doi: 10.1515/joc-2020-0108
![]() |
[3] |
Mazzeo D, Herdem MS, Matera N, et al. (2021) Artificial intelligence application for the performance prediction of a clean energy community. Energy 232. https://doi.org/10.1016/j.energy.2021.120999 doi: 10.1016/j.energy.2021.120999
![]() |
[4] |
Elmorshedy MF, Elkadeem MR, Kotb KM, et al. (2021) Optimal design and energy management of an isolated fully renewable energy system integrating batteries and supercapacitors. Energy Convers Manage 245. https://doi.org/10.1016/j.enconman.2021.114584 doi: 10.1016/j.enconman.2021.114584
![]() |
[5] |
Mazzeo D, Matera N, de Luca P, et al. (2021) A literature review and statistical analysis of photovoltaic-wind hybrid renewable system research by considering the most relevant 550 articles: An upgradable matrix literature database. J Clean Prod 295. https://doi.org/10.1016/j.jclepro.2021.126070 doi: 10.1016/j.jclepro.2021.126070
![]() |
[6] | Wadi M, Shobole A, Tur MR, et al. (2018) Smart hybrid wind-solar street lighting system fuzzy based approach: Case study Istanbul-Turkey. In: Proceedings—2018 6th International Istanbul Smart Grids and Cities Congress and Fair, ICSG 2018. https://doi.org/10.1109/SGCF.2018.8408945 |
[7] |
Ricci R, Vitali D, Montelpare S (2015) An innovative wind-solar hybrid street light: Development and early testing of a prototype. Int J Low-Carbon Technol 10: 420–429. https://doi.org/10.1093/ijlct/ctu016 doi: 10.1093/ijlct/ctu016
![]() |
[8] | Georges S, Slaoui FH (2011) Case study of hybrid wind-solar power systems for street lighting. Published in: 2011 21st International Conference on Systems Engineering. https://doi.org/10.1109/ICSEng.2011.22 |
[9] |
AL-SARRAJ A, Salloom HT, Mohammad KK, et al. (2020) Simulation design of hybrid system (Grid/PV/Wind Turbine/battery/diesel) with applying HOMER: A case study in Baghdad, Iraq. Int J Electron Commun Eng 7: 10–18. https://doi.org/10.14445/23488549/IJECE-V7I5P103 doi: 10.14445/23488549/IJECE-V7I5P103
![]() |
[10] |
Badger J, Frank H, Hahmann AN, et al. (2014) Wind-climate estimation based on mesoscale and microscale modeling: Statistical-dynamical downscaling for wind energy applications. J Appl Meteorol Climatol 53: 1901–1919. https://doi.org/10.1175/JAMC-D-13-0147.1 doi: 10.1175/JAMC-D-13-0147.1
![]() |
[11] |
Arramach J, Boutammachte N, Bouatem A, et al. (2020) A novel technique for the calculation of post-stall aerodynamic coefficients for S809 airfoil. FME Trans 48: 117–126. https://doi.org/10.5937/fmet2001117A doi: 10.5937/fmet2001117A
![]() |
[12] |
Morozov VA, Yahin AM, Zhirova AE, et al. (2020) Hardware-software system for studying the effectiveness of propeller-engine groups for unmanned aerial vehicles. J Phys: Conf Ser 1582: 012063. https://doi.org/10.1088/1742-6596/1582/1/012063 doi: 10.1088/1742-6596/1582/1/012063
![]() |
[13] |
Sohoni V, Gupta SC, Nema RK (2016) A critical review on wind turbine power curve modelling techniques and their applications in wind based energy systems. J Energy, 18. https://doi.org/10.1155/2016/8519785 doi: 10.1155/2016/8519785
![]() |
[14] |
Ranjbar MH, Zanganeh H, Gharali K, et al. (2019) Reaching the BETZ Limit experimentally and numerically. Energy Equip Sys 7: 271–278. https://doi.org/10.22059/ees.2019.36563 doi: 10.22059/ees.2019.36563
![]() |
[15] |
Alrwashdeh SS, Alsaraireh FM, Saraireh MA (2018) Solar radiation map of Jordan governorates. Int J Eng Technol, 7. https://doi.org/10.14419/ijet.v7i3.15557 doi: 10.14419/ijet.v7i3.15557
![]() |
[16] | Ingole JN, Choudhary MA, Kanphade RD (2012) PIC based solar charging controller for battery. Int J Eng Sci Technol 4: 384–390. Available from: http://www.ijest.info/abstract.php?file=12-04-02-192. |
1. | Mohammed Abu Saleem, On soft covering spaces in soft topological spaces, 2024, 9, 2473-6988, 18134, 10.3934/math.2024885 |