In this study, fracture parameters of epoxy/glass functionally graded composite were determined experimentally using the digital image correlation (DIC) method. A functionally graded material (FGM) with continuous variation in elastic properties was manufactured by gravity casting in vertical template. A 30% volume fraction of glass spheres was dispersed in a low viscosity resin. A single edge crack specimen was examined in a three-point bending test under mode Ⅰ loading with cracks along the gradient tendency of the material properties. The mechanical properties of FGM were calculated according to ASTM D638. The DIC technique was adopted to obtain the deformation region around the crack tip. William's series was employed to calculate stress intensity factor and T-stress. The experimental results then verified by solving the FE model using ABAQUS program. The comparison between DIC and numerical results illustrated a largely acceptable achievement.
Citation: Ahmed M. Abood, Haider Khazal, Abdulkareem F. Hassan. On the determination of first-mode stress intensity factors and T-stress in a continuous functionally graded beam using digital image correlation method[J]. AIMS Materials Science, 2022, 9(1): 56-70. doi: 10.3934/matersci.2022004
[1] | Mohammed Ahmed Alomair, Ali Muhib . On the oscillation of fourth-order canonical differential equation with several delays. AIMS Mathematics, 2024, 9(8): 19997-20013. doi: 10.3934/math.2024975 |
[2] | H. Salah, M. Anis, C. Cesarano, S. S. Askar, A. M. Alshamrani, E. M. Elabbasy . Fourth-order differential equations with neutral delay: Investigation of monotonic and oscillatory features. AIMS Mathematics, 2024, 9(12): 34224-34247. doi: 10.3934/math.20241630 |
[3] | Osama Moaaz, Wedad Albalawi . Differential equations of the neutral delay type: More efficient conditions for oscillation. AIMS Mathematics, 2023, 8(6): 12729-12750. doi: 10.3934/math.2023641 |
[4] | Abdelkader Moumen, Amin Benaissa Cherif, Fatima Zohra Ladrani, Keltoum Bouhali, Mohamed Bouye . Fourth-order neutral dynamic equations oscillate on timescales with different arguments. AIMS Mathematics, 2024, 9(9): 24576-24589. doi: 10.3934/math.20241197 |
[5] | Fahd Masood, Osama Moaaz, Shyam Sundar Santra, U. Fernandez-Gamiz, Hamdy A. El-Metwally . Oscillation theorems for fourth-order quasi-linear delay differential equations. AIMS Mathematics, 2023, 8(7): 16291-16307. doi: 10.3934/math.2023834 |
[6] | Clemente Cesarano, Osama Moaaz, Belgees Qaraad, Ali Muhib . Oscillatory and asymptotic properties of higher-order quasilinear neutral differential equations. AIMS Mathematics, 2021, 6(10): 11124-11138. doi: 10.3934/math.2021646 |
[7] | Maryam AlKandari . Nonlinear differential equations with neutral term: Asymptotic behavior of solutions. AIMS Mathematics, 2024, 9(12): 33649-33661. doi: 10.3934/math.20241606 |
[8] | Maged Alkilayh . Nonlinear neutral differential equations of second-order: Oscillatory properties. AIMS Mathematics, 2025, 10(1): 1589-1601. doi: 10.3934/math.2025073 |
[9] | Bouharket Bendouma, Fatima Zohra Ladrani, Keltoum Bouhali, Ahmed Hammoudi, Loay Alkhalifa . Solution-tube and existence results for fourth-order differential equations system. AIMS Mathematics, 2024, 9(11): 32831-32848. doi: 10.3934/math.20241571 |
[10] | Ali Muhib, Hammad Alotaibi, Omar Bazighifan, Kamsing Nonlaopon . Oscillation theorems of solution of second-order neutral differential equations. AIMS Mathematics, 2021, 6(11): 12771-12779. doi: 10.3934/math.2021737 |
In this study, fracture parameters of epoxy/glass functionally graded composite were determined experimentally using the digital image correlation (DIC) method. A functionally graded material (FGM) with continuous variation in elastic properties was manufactured by gravity casting in vertical template. A 30% volume fraction of glass spheres was dispersed in a low viscosity resin. A single edge crack specimen was examined in a three-point bending test under mode Ⅰ loading with cracks along the gradient tendency of the material properties. The mechanical properties of FGM were calculated according to ASTM D638. The DIC technique was adopted to obtain the deformation region around the crack tip. William's series was employed to calculate stress intensity factor and T-stress. The experimental results then verified by solving the FE model using ABAQUS program. The comparison between DIC and numerical results illustrated a largely acceptable achievement.
In this article, we study the oscillatory behavior of the fourth-order neutral nonlinear differential equation of the form
{(r(t)Φp1[w′′′(t)])′+q(t)Φp2(u(ϑ(t)))=0,r(t)>0, r′(t)≥0, t≥t0>0, | (1.1) |
where w(t):=u(t)+a(t)u(τ(t)) and the first term means the p-Laplace type operator (1<p<∞). The main results are obtained under the following conditions:
L1: Φpi[s]=|s|pi−2s, i=1,2,
L2: r∈C[t0,∞) and under the condition
∫∞t01r1/(p1−1)(s)ds=∞. | (1.2) |
L3: a,q∈C[t0,∞), q(t)>0, 0≤a(t)<a0<∞, τ,ϑ∈C[t0,∞), τ(t)≤t, limt→∞τ(t)=limt→∞ϑ(t)=∞
By a solution of (1.1) we mean a function u ∈C3[tu,∞), tu≥t0, which has the property r(t)(w′′′(t))p1−1∈C1[tu,∞), and satisfies (1.1) on [tu,∞). We assume that (1.1) possesses such a solution. A solution of (1.1) is called oscillatory if it has arbitrarily large zeros on [tu,∞), and otherwise it is called to be nonoscillatory. (1.1) is said to be oscillatory if all its solutions are oscillatory.
We point out that delay differential equations have applications in dynamical systems, optimization, and in the mathematical modeling of engineering problems, such as electrical power systems, control systems, networks, materials, see [1]. The p-Laplace equations have some significant applications in elasticity theory and continuum mechanics.
During the past few years, there has been constant interest to study the asymptotic properties for oscillation of differential equations with p-Laplacian like operator in the canonical case and the noncanonical case, see [2,3,4,11] and the numerical solution of the neutral delay differential equations, see [5,6,7]. The oscillatory properties of differential equations are fairly well studied by authors in [16,17,18,19,20,21,22,23,24,25,26,27]. We collect some relevant facts and auxiliary results from the existing literature.
Liu et al. [4] studied the oscillation of even-order half-linear functional differential equations with damping of the form
{(r(t)Φ(y(n−1)(t)))′+a(t)Φ(y(n−1)(t))+q(t)Φ(y(g(t)))=0,Φ=|s|p−2s, t≥t0>0, |
where n is even. This time, the authors used comparison method with second order equations.
The authors in [9,10] have established sufficient conditions for the oscillation of the solutions of
{(r(t)|y(n−1)(t)|p−2y(n−1)(t))′+∑ji=1qi(t)g(y(ϑi(t)))=0,j≥1, t≥t0>0, |
where n is even and p>1 is a real number, in the case where ϑi(t)≥υ (with r∈C1((0,∞),R), qi∈C([0,∞),R), i=1,2,..,j).
We point out that Li et al. [3] using the Riccati transformation together with integral averaging technique, focuses on the oscillation of equation
{(r(t)|w′′′(t)|p−2w′′′(t))′+∑ji=1qi(t)|y(δi(t))|p−2y(δi(t))=0,1<p<∞, , t≥t0>0. |
Park et al. [8] have obtained sufficient conditions for oscillation of solutions of
{(r(t)|y(n−1)(t)|p−2y(n−1)(t))′+q(t)g(y(δ(t)))=0,1<p<∞, , t≥t0>0. |
As we already mentioned in the Introduction, our aim here is complement results in [8,9,10]. For this purpose we discussed briefly these results.
In this paper, we obtain some new oscillation criteria for (1.1). The paper is organized as follows. In the next sections, we will mention some auxiliary lemmas, also, we will use the generalized Riccati transformation technique to give some sufficient conditions for the oscillation of (1.1), and we will give some examples to illustrate the main results.
For convenience, we denote
A(t)=q(t)(1−a0)p2−1Mp1−p2(ϑ(t)), B(t)=(p1−1)εϑ2(t)ζϑ′(t)r1/(p1−1)(t), ϕ1(t)=∫∞tA(s)ds,R1(t):=(p1−1)μt22r1/(p1−1)(t),ξ(t):=q(t)(1−a0)p2−1Mp2−p11ε1(ϑ(t)t)3(p2−1),η(t):=(1−a0)p2/p1Mp2/(p1−2)2∫∞t(1r(δ)∫∞δq(s)ϑp2−1(s)sp2−1ds)1/(p1−1)dδ,ξ∗(t)=∫∞tξ(s)ds, η∗(t)=∫∞tη(s)ds, |
for some μ∈(0,1) and every M1,M2 are positive constants.
Definition 1. A sequence of functions {δn(t)}∞n=0 and {σn(t)}∞n=0 as
δ0(t)=ξ∗(t), and σ0(t)=η∗(t),δn(t)=δ0(t)+∫∞tR1(t)δp1/(p1−1)n−1(s)ds, n>1σn(t)=σ0(t)+∫∞tσp1/(p1−1)n−1(s)ds, n>1. | (2.1) |
We see by induction that δn(t)≤δn+1(t) and σn(t)≤σn+1(t) for t≥t0, n>1.
In order to discuss our main results, we need the following lemmas:
Lemma 2.1. [12] If the function w satisfies w(i)(ν)>0, i=0,1,...,n, and w(n+1)(ν)<0 eventually. Then, for every ε1∈(0,1), w(ν)/w′(ν)≥ε1ν/n eventually.
Lemma 2.2. [13] Let u(t) be a positive and n-times differentiable function on an interval [T,∞) with its nth derivative u(n)(t) non-positive on [T,∞) and not identically zero on any interval of the form [T′,∞), T′≥T and u(n−1)(t)u(n)(t)≤0, t≥tu then there exist constants θ, 0<θ<1 and ε>0 such that
u′(θt)≥εtn−2u(n−1)(t), |
for all sufficient large t.
Lemma 2.3 [14] Let u∈Cn([t0,∞),(0,∞)). Assume that u(n)(t) is of fixed sign and not identically zero on [t0,∞) and that there exists a t1≥t0 such that u(n−1)(t)u(n)(t)≤0 for all t≥t1. If limt→∞u(t)≠0, then for every μ∈(0,1) there exists tμ≥t1 such that
u(t)≥μ(n−1)!tn−1|u(n−1)(t)| for t≥tμ. |
Lemma 2.4. [15] Assume that (1.2) holds and u is an eventually positive solution of (1.1). Then, (r(t)(w′′′(t))p1−1)′<0 and there are the following two possible cases eventually:
(G1) w(k)(t)>0, k=1,2,3,(G2) w(k)(t)>0, k=1,3, and w′′(t)<0. |
Theorem 2.1. Assume that
liminft→∞1ϕ1(t)∫∞tB(s)ϕp1(p1−1)1(s)ds>p1−1pp1(p1−1)1. | (2.2) |
Then (1.1) is oscillatory.
proof. Assume that u be an eventually positive solution of (1.1). Then, there exists a t1≥t0 such that u(t)>0, u(τ(t))>0 and u(ϑ(t))>0 for t≥t1. Since r′(t)>0, we have
w(t)>0, w′(t)>0, w′′′(t)>0, w(4)(t)<0 and (r(t)(w′′′(t))p1−1)′≤0, | (2.3) |
for t≥t1. From definition of w, we get
u(t)≥w(t)−a0u(τ(t))≥w(t)−a0w(τ(t))≥(1−a0)w(t), |
which with (1.1) gives
(r(t)(w′′′(t))p1−1)′≤−q(t)(1−a0)p2−1wp2−1(ϑ(t)). | (2.4) |
Define
ϖ(t):=r(t)(w′′′(t))p1−1wp1−1(ζϑ(t)). | (2.5) |
for some a constant ζ∈(0,1). By differentiating and using (2.4), we obtain
ϖ′(t)≤−q(t)(1−a0)p2−1wp2−1(ϑ(t)).wp1−1(ζϑ(t))−(p1−1)r(t)(w′′′(t))p1−1w′(ζϑ(t))ζϑ′(t)wp1(ζϑ(t)). |
From Lemma 2.2, there exist constant ε>0, we have
ϖ′(t)≤−q(t)(1−a0)p2−1wp2−p1(ϑ(t))−(p1−1)r(t)(w′′′(t))p1−1εϑ2(t)w′′′(ϑ(t))ζϑ′(t)wp1(ζϑ(t)). |
Which is
ϖ′(t)≤−q(t)(1−a0)p2−1wp2−p1(ϑ(t))−(p1−1)εr(t)ϑ2(t)ζϑ′(t)(w′′′(t))p1wp1(ζϑ(t)), |
by using (2.5) we have
ϖ′(t)≤−q(t)(1−a0)p2−1wp2−p1(ϑ(t))−(p1−1)εϑ2(t)ζϑ′(t)r1/(p1−1)(t)ϖp1/(p1−1)(t). | (2.6) |
Since w′(t)>0, there exist a t2≥t1 and a constant M>0 such that
w(t)>M. |
Then, (2.6), turns to
ϖ′(t)≤−q(t)(1−a0)p2−1Mp2−p1(ϑ(t))−(p1−1)εϑ2(t)ζϑ′(t)r1/(p1−1)(t)ϖp1/(p1−1)(t), |
that is
ϖ′(t)+A(t)+B(t)ϖp1/(p1−1)(t)≤0. |
Integrating the above inequality from t to l, we get
ϖ(l)−ϖ(t)+∫ltA(s)ds+∫ltB(s)ϖp1/(p1−1)(s)ds≤0. |
Letting l→∞ and using ϖ>0 and ϖ′<0, we have
ϖ(t)≥ϕ1(t)+∫∞tB(s)ϖp1/(p1−1)(s)ds. |
This implies
ϖ(t)ϕ1(t)≥1+1ϕ1(t)∫∞tB(s)ϕp1/(p1−1)1(s)(ϖ(s)ϕ1(s))p1/(p1−1)ds. | (2.7) |
Let λ=inft≥Tϖ(t)/ϕ1(t) then obviously λ≥1. Thus, from (2.2) and (2.7) we see that
λ≥1+(p1−1)(λp1)p1/(p1−1) |
or
λp1≥1p1+(p1−1)p1(λp1)p1/(p1−1), |
which contradicts the admissible value of λ≥1 and (p1−1)>0.
Therefore, the proof is complete.
Theorem 2.2. Assume that
liminft→∞1ξ∗(t)∫∞tR1(s)ξp1/(p1−1)∗(s)ds>(p1−1)pp1/(p1−1)1 | (2.8) |
and
liminft→∞1η∗(t)∫∞t0η2∗(s)ds>14. | (2.9) |
Then (1.1) is oscillatory.
proof. Assume to the contrary that (1.1) has a nonoscillatory solution in [t0,∞). Without loss of generality, we let u be an eventually positive solution of (1.1). Then, there exists a t1≥t0 such that u(t)>0, u(τ(t))>0 and u(ϑ(t))>0 for t≥t1. From Lemma 2.4 there is two cases (G1) and (G2).
For case (G1). Define
ω(t):=r(t)(w′′′(t))p1−1wp1−1(t). |
By differentiating ω and using (2.4), we obtain
ω′(t)≤−q(t)(1−a0)p2−1wp2−1(ϑ(t))wp1−1(t)−(p1−1)r(t)(w′′′(t))p1−1wp1(t)w′(t). | (2.10) |
From Lemma 2.1, we get
w′(t)w(t)≤3ε1t. |
Integrating again from t to ϑ(t), we find
w(ϑ(t))w(t)≥ε1ϑ3(t)t3. | (2.11) |
It follows from Lemma 2.3 that
w′(t)≥μ12t2w′′′(t), | (2.12) |
for all μ1∈(0,1) and every sufficiently large t. Since w′(t)>0, there exist a t2≥t1 and a constant M>0 such that
w(t)>M, | (2.13) |
for t≥t2. Thus, by (2.10), (2.11), (2.12) and (2.13), we get
ω′(t)+q(t)(1−a0)p2−1Mp2−p11ε1(ϑ(t)t)3(p2−1)+(p1−1)μt22r1/(p1−1)(t)ωp1/(p1−1)(t)≤0, |
that is
ω′(t)+ξ(t)+R1(t)ωp1/(p1−1)(t)≤0. | (2.14) |
Integrating (2.14) from t to l, we get
ω(l)−ω(t)+∫ltξ(s)ds+∫ltR1(s)ωp1/(p1−1)(s)ds≤0. |
Letting l→∞ and using ω>0 and ω′<0, we have
ω(t)≥ξ∗(t)+∫∞tR1(s)ωp1/(p1−1)(s)ds. | (2.15) |
This implies
ω(t)ξ∗(t)≥1+1ξ∗(t)∫∞tR1(s)ξp1/(p1−1)∗(s)(ω(s)ξ∗(s))p1/(p1−1)ds. | (2.16) |
Let λ=inft≥Tω(t)/ξ∗(t) then obviously λ≥1. Thus, from (2.8) and (2.16) we see that
λ≥1+(p1−1)(λp1)p1/(p1−1) |
or
λp1≥1p1+(p1−1)p1(λp1)p1/(p1−1), |
which contradicts the admissible value of λ≥1 and (p1−1)>0.
For case (G2). Integrating (2.4) from t to m, we obtain
r(m)(w′′′(m))p1−1−r(t)(w′′′(t))p1−1≤−∫mtq(s)(1−a0)p2−1wp2−1(ϑ(s))ds. | (2.17) |
From Lemma 2.1, we get that
w(t)≥ε1tw′(t) and hence w(ϑ(t))≥ε1ϑ(t)tw(t). | (2.18) |
For (2.17), letting m→∞and using (2.18), we see that
r(t)(w′′′(t))p1−1≥ε1(1−a0)p2−1wp2−1(t)∫∞tq(s)ϑp2−1(s)sp2−1ds. |
Integrating this inequality again from t to ∞, we get
w′′(t)≤−ε1(1−a0)p2/p1wp2/p1(t)∫∞t(1r(δ)∫∞δq(s)ϑp2−1(s)sp2−1ds)1/(p1−1)dδ, | (2.19) |
for all ε1∈(0,1). Define
y(t)=w′(t)w(t). |
By differentiating y and using (2.13) and (2.19), we find
y′(t)=w′′(t)w(t)−(w′(t)w(t))2≤−y2(t)−(1−a0)p2/p1M(p2/p1)−1∫∞t(1r(δ)∫∞δq(s)ϑp2−1(s)sp2−1ds)1/(p1−1)dδ, | (2.20) |
hence
y′(t)+η(t)+y2(t)≤0. | (2.21) |
The proof of the case where (G2) holds is the same as that of case (G1). Therefore, the proof is complete.
Theorem 2.3. Let δn(t) and σn(t) be defined as in (2.1). If
limsupt→∞(μ1t36r1/(p1−1)(t))p1−1δn(t)>1 | (2.22) |
and
limsupt→∞λtσn(t)>1, | (2.23) |
for some n, then (1.1)is oscillatory.
proof. Assume to the contrary that (1.1) has a nonoscillatory solution in [t0,∞). Without loss of generality, we let u be an eventually positive solution of (1.1). Then, there exists a t1≥t0 such that u(t)>0, u(τ(t))>0 and u(ϑ(t))>0 for t≥t1. From Lemma 2.4 there is two cases.
In the case (G1), proceeding as in the proof of Theorem 2.2, we get that (2.12) holds. It follows from Lemma 2.3 that
w(t)≥μ16t3w′′′(t). | (2.24) |
From definition of ω(t) and (2.24), we have
1ω(t)=1r(t)(w(t)w′′′(t))p1−1≥1r(t)(μ16t3)p1−1. |
Thus,
ω(t)(μ1t36r1/(p1−1)(t))p1−1≤1. |
Therefore,
limsupt→∞ω(t)(μ1t36r1/(p1−1)(t))p1−1≤1, |
which contradicts (2.22).
The proof of the case where (G2) holds is the same as that of case (G1). Therefore, the proof is complete.
Corollary 2.1. Let δn(t) and σn(t) be defined as in (2.1). If
∫∞t0ξ(t)exp(∫tt0R1(s)δ1/(p1−1)n(s)ds)dt=∞ | (2.25) |
and
∫∞t0η(t)exp(∫tt0σ1/(p1−1)n(s)ds)dt=∞, | (2.26) |
for some n, then (1.1) is oscillatory.
proof. Assume to the contrary that (1.1) has a nonoscillatory solution in [t0,∞). Without loss of generality, we let u be an eventually positive solution of (1.1). Then, there exists a t1≥t0 such that u(t)>0, u(τ(t))>0 and u(ϑ(t))>0 for t≥t1. From Lemma 2.4 there is two cases (G1) and (G2).
In the case (G1), proceeding as in the proof of Theorem 2, we get that (2.15) holds. It follows from (2.15) that ω(t)≥δ0(t). Moreover, by induction we can also see that ω(t)≥δn(t) for t≥t0, n>1. Since the sequence {δn(t)}∞n=0 monotone increasing and bounded above, it converges to δ(t). Thus, by using Lebesgue's monotone convergence theorem, we see that
δ(t)=limn→∞δn(t)=∫∞tR1(t)δp1/(p1−1)(s)ds+δ0(t) |
and
δ′(t)=−R1(t)δp1/(p1−1)(t)−ξ(t). | (2.27) |
Since δn(t)≤δ(t), it follows from (2.27) that
δ′(t)≤−R1(t)δ1/(p1−1)n(t)δ(t)−ξ(t). |
Hence, we get
δ(t)≤exp(−∫tTR1(s)δ1/(p1−1)n(s)ds)(δ(T)−∫tTξ(s)exp(∫sTR1(δ)δ1/(p1−1)n(δ)dδ)ds). |
This implies
∫tTξ(s)exp(∫sTR1(δ)δ1/(p1−1)n(δ)dδ)ds≤δ(T)<∞, |
which contradicts (2.25). The proof of the case where (G2) holds is the same as that of case (G1). Therefore, the proof is complete.
Example 2.1. Consider the differential equation
(u(t)+12u(t2))(4)+q0t4u(t3)=0, | (2.28) |
where q0>0 is a constant. Let p1=p2=2, r(t)=1, a(t)=1/2, τ(t)=t/2, ϑ(t)=t/3 and q(t)=q0/t4. Hence, it is easy to see that
A(t)=q(t)(1−a0)(p2−1)Mp2−p1(ϑ(t))=q02t4, B(t)=(p1−1)εϑ2(t)ζϑ′(t)r1/(p1−1)(t)=εt227 |
and
ϕ1(t)=q06t3, |
also, for some ε>0, we find
liminft→∞1ϕ1(t)∫∞tB(s)ϕp1/(p1−1)1(s)ds>(p1−1)pp1/(p1−1)1.liminft→∞6εq0t3972∫∞tdss4>14q0>121.5ε. |
Hence, by Theorem 2.1, every solution of Eq (2.28) is oscillatory if q0>121.5ε.
Example 2.2. Consider a differential equation
(u(t)+a0u(τ0t))(n)+q0tnu(ϑ0t)=0, | (2.29) |
where q0>0 is a constant. Note that p=2, t0=1, r(t)=1, a(t)=a0, τ(t)=τ0t, ϑ(t)=ϑ0t and q(t)=q0/tn.
Easily, we see that condition (2.8) holds and condition (2.9) satisfied.
Hence, by Theorem 2.2, every solution of Eq (2.29) is oscillatory.
Remark 2.1. Finally, we point out that continuing this line of work, we can have oscillatory results for a fourth order equation of the type:
{(r(t)|y′′′(t)|p1−2y′′′(t))′+a(t)f(y′′′(t))+∑ji=1qi(t)|y(σi(t))|p2−2y(σi(t))=0,t≥t0, σi(t)≤t, j≥1,, 1<p2≤p1<∞. |
The paper is devoted to the study of oscillation of fourth-order differential equations with p-Laplacian like operators. New oscillation criteria are established by using a Riccati transformations, and they essentially improves the related contributions to the subject.
Further, in the future work we get some Hille and Nehari type and Philos type oscillation criteria of (1.1) under the condition ∫∞υ01r1/(p1−1)(s)ds<∞.
The authors express their debt of gratitude to the editors and the anonymous referee for accurate reading of the manuscript and beneficial comments.
The author declares that there is no competing interest.
[1] |
Pei G, Asaro RJ (1997) Cracks in functionally graded materials. Int J Solids Struct 34: 1–17. https://doi.org/10.1016/0020-7683(95)00289-8 doi: 10.1016/0020-7683(95)00289-8
![]() |
[2] | Miyamoto Y, Kaysser WA, Rabin BH, et al. (2013) Functionally Graded Materials: Design, Processing and Applications, New York: Springer Science & Business Media. |
[3] |
Farouq W, Khazal H, Hassan AKF (2019) Fracture analysis of functionally graded material using digital image correlation technique and extended element-free Galerkin method. Opt Laser Eng 121: 307–322. https://doi.org/10.1016/j.optlaseng.2019.04.021 doi: 10.1016/j.optlaseng.2019.04.021
![]() |
[4] |
Jin ZH, Batra RC (1996) Some basic fracture mechanics concepts in functionally graded materials. J Mech Phys Solids 44: 1221–1235. https://doi.org/10.1016/0022-5096(96)00041-5 doi: 10.1016/0022-5096(96)00041-5
![]() |
[5] |
Dolbow JE, Gosz M (2002) On the computation of mixed-mode stress intensity factors in functionally graded materials. Int J Solids Struct 39: 2557–2574. https://doi.org/10.1016/S0020-7683(02)00114-2 doi: 10.1016/S0020-7683(02)00114-2
![]() |
[6] |
Butcher RJ, Rousseau CE, Tippur HV (1998) A functionally graded particulate composite: preparation, measurements and failure analysis. Acta Mater 47: 259–268. https://doi.org/10.1016/S1359-6454(98)00305-X doi: 10.1016/S1359-6454(98)00305-X
![]() |
[7] |
Rousseau CE, Tippur HV (2002) Evaluation of crack tip fields and stress intensity factors in functionally graded elastic materials: cracks parallel to elastic gradient. Int J Fracture 114: 87–112. https://doi.org/10.1023/A:1014889628080 doi: 10.1023/A:1014889628080
![]() |
[8] |
Rousseau CE, Tippur HV (2000) Compositionally graded materials with cracks normal to the elastic gradient. Acta Mater 48: 4021–4033. https://doi.org/10.1016/S1359-6454(00)00202-0 doi: 10.1016/S1359-6454(00)00202-0
![]() |
[9] |
Rousseau CE, Tippur HV (2002) Influence of elastic variations on crack initiation in functionally graded glass-filled epoxy. Eng Fract Mech 69: 1679–1693. https://doi.org/10.1016/S0013-7944(02)00056-5 doi: 10.1016/S0013-7944(02)00056-5
![]() |
[10] |
Jain N, Rousseau CE, Shukla A (2004) Crack-tip stress fields in functionally graded materials with linearly varying properties. Theor Appl Fract Mec 42: 155–170. https://doi.org/10.1016/j.tafmec.2004.08.005 doi: 10.1016/j.tafmec.2004.08.005
![]() |
[11] |
Nakamura T, Wang T, Sampath S (2000) Determination of properties of graded materials by inverse analysis and instrumented indentation. Acta Mater 48: 4293–4306. https://doi.org/10.1016/S1359-6454(00)00217-2 doi: 10.1016/S1359-6454(00)00217-2
![]() |
[12] |
Kim JH, Paulino GH (2002) Finite element evaluation of mixed mode stress intensity factors in functionally graded materials. Int J Numer Methods Eng 53: 1903–1935. https://doi.org/10.1002/nme.364 doi: 10.1002/nme.364
![]() |
[13] |
Kirugulige MS, Tippur HV (2006) Mixed-mode dynamic crack growth in functionally graded glass-filled epoxy. Exp Mech 46: 269–281. https://doi.org/10.1007/s11340-006-5863-4 doi: 10.1007/s11340-006-5863-4
![]() |
[14] |
Khazal H, Hassan AKF, Farouq W, et al. (2019) Computation of fracture parameters in stepwise functionally graded materials using digital image correlation technique. Mater Perform Charac 8: 344–354. https://doi.org/10.1520/MPC20180175 doi: 10.1520/MPC20180175
![]() |
[15] |
Yao XF, Xiong TC, Xu W, et al. (2006) Experimental investigations on deformation and fracture behavior of glass sphere filled epoxy functionally graded materials. Appl Compos Mater 13: 407–420. https://doi.org/10.1007/s10443-006-9026-7 doi: 10.1007/s10443-006-9026-7
![]() |
[16] |
Jin X, Wu L, Guo L, et al. (2009) Experimental investigation of the mixed-mode crack propagation in ZrO2/NiCr functionally graded materials. Eng Fract Mech 76: 1800–1810. https://doi.org/10.1016/j.engfracmech.2009.04.003 doi: 10.1016/j.engfracmech.2009.04.003
![]() |
[17] |
Yates JR, Zanganeh M, Tai YH (2010) Quantifying crack tip displacement fields with DIC. Eng Fract Mech 77: 2063–2076. https://doi.org/10.1016/j.engfracmech.2010.03.025 doi: 10.1016/j.engfracmech.2010.03.025
![]() |
[18] |
Jones SA, Tomlinson RA (2015) Investigating mixed-mode (I/II) fracture in epoxies using digital image correlation: Composite GIIc performance from resin measurements. Eng Fract Mech 149: 368–374. https://doi.org/10.1016/j.engfracmech.2015.08.041 doi: 10.1016/j.engfracmech.2015.08.041
![]() |
[19] |
Khazal H, Bayesteh H, Mohammadi S, et al. (2016) An extended element free Galerkin method for fracture analysis of functionally graded materials. Mech Adv Mater Struc 23: 513–528. https://doi.org/10.1080/15376494.2014.984093 doi: 10.1080/15376494.2014.984093
![]() |
[20] |
Khazal H, Saleh NA (2019) XEFGM for crack propagation analysis of functionally graded materials under mixed-mode and non-proportional loading. Mech Adv Mater Struc 26: 975–983. https://doi.org/10.1080/15376494.2018.1432786 doi: 10.1080/15376494.2018.1432786
![]() |
[21] |
Mousa S, Abd-Elhady AA, Abu-Sinna A, et al. (2019) Mixed mode crack growth in functionally graded material under three-point bending. Pro Struc Int 17: 284–291. https://doi.org/10.1016/j.prostr.2019.08.038 doi: 10.1016/j.prostr.2019.08.038
![]() |
[22] |
Fatima NS, Rowlands RE (2020) SIF determination in finite double-edge cracked orthotropic composite using J-integral and digital image correlation. Eng Fract Mech 235: 107099. https://doi.org/10.1016/j.engfracmech.2020.107099 doi: 10.1016/j.engfracmech.2020.107099
![]() |
[23] |
Quanjin M, Rejab MRM, Halim Q, et al. (2020) Experimental investigation of the tensile test using digital image correlation (DIC) method. Mater Today 27: 757–763. https://doi.org/10.1016/j.matpr.2019.12.072 doi: 10.1016/j.matpr.2019.12.072
![]() |
[24] |
Abshirini M, Dehnavi MY, Beni MA, et al. (2014) Interaction of two parallel U-notches with tip cracks in PMMA plates under tension using digital image correlation. Theor Appl Fract Mec 70: 75–82. https://doi.org/10.1016/j.tafmec.2014.02.001 doi: 10.1016/j.tafmec.2014.02.001
![]() |
[25] |
Golewski GL (2021) Evaluation of fracture processes under shear with the use of DIC technique in fly ash concrete and accurate measurement of crack path lengths with the use of a new crack tip tracking method. Measurement 181: 109632. https://doi.org/10.1016/j.measurement.2021.109632 doi: 10.1016/j.measurement.2021.109632
![]() |
[26] |
Golewski GL (2021) Validation of the favorable quantity of fly ash in concrete and analysis of crack propagation and its length–Using the crack tip tracking (CTT) method–In the fracture toughness examinations under Mode II, through digital image correlation. Constr Build Mater 296: 122362. https://doi.org/10.1016/j.conbuildmat.2021.122362 doi: 10.1016/j.conbuildmat.2021.122362
![]() |
[27] |
Golewski GL, Gil DM (2021) Studies of fracture toughness in concretes containing fly ash and silica fume in the first 28 days of curing. Mater 14: 319. https://doi.org/10.3390/ma14020319 doi: 10.3390/ma14020319
![]() |
[28] |
Eshraghi I, Dehnavi MRY, Soltani N (2014) Effect of subset parameters selection on the estimation of mode-I stress intensity factor in a cracked PMMA specimen using digital image correlation. Polym Test 37: 193–200. https://doi.org/10.1016/j.polymertesting.2014.05.017 doi: 10.1016/j.polymertesting.2014.05.017
![]() |
1. | Omar Saber Qasim, Ahmed Entesar, Waleed Al-Hayani, Solving nonlinear differential equations using hybrid method between Lyapunov's artificial small parameter and continuous particle swarm optimization, 2021, 0, 2155-3297, 0, 10.3934/naco.2021001 | |
2. | Fahd Masood, Osama Moaaz, Shyam Sundar Santra, U. Fernandez-Gamiz, Hamdy A. El-Metwally, Oscillation theorems for fourth-order quasi-linear delay differential equations, 2023, 8, 2473-6988, 16291, 10.3934/math.2023834 | |
3. | Peng E, Tingting Xu, Linhua Deng, Yulin Shan, Miao Wan, Weihong Zhou, Solutions of a class of higher order variable coefficient homogeneous differential equations, 2025, 20, 1556-1801, 213, 10.3934/nhm.2025011 |