Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article Special Issues

Existence and stability of traveling wavefronts for discrete three species competitive-cooperative systems

  • The purpose of this work is to investigate the existence and stability of traveling wavefronts for competitive-cooperative systems with three species. The existence result can be derived by using the technique of monotone method with the help of a pair of explicit supersolution and subsolution. Moreover, some su cient conditions ensure the linear determinacy for the minimal speed is given. Then, applying the weighted energy method, we prove that the traveling wavefronts are asymptotically stable in the weighted Banach spaces provided that the initial perturbations of the traveling wavefronts also belong to the same spaces.

    Citation: Cheng-Hsiung Hsu, Jian-Jhong Lin, Shi-Liang Wu. Existence and stability of traveling wavefronts for discrete three species competitive-cooperative systems[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4151-4181. doi: 10.3934/mbe.2019207

    Related Papers:

    [1] Guangrui Li, Ming Mei, Yau Shu Wong . Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Mathematical Biosciences and Engineering, 2008, 5(1): 85-100. doi: 10.3934/mbe.2008.5.85
    [2] Sergei Trofimchuk, Vitaly Volpert . Traveling waves in delayed reaction-diffusion equations in biology. Mathematical Biosciences and Engineering, 2020, 17(6): 6487-6514. doi: 10.3934/mbe.2020339
    [3] Xixia Ma, Rongsong Liu, Liming Cai . Stability of traveling wave solutions for a nonlocal Lotka-Volterra model. Mathematical Biosciences and Engineering, 2024, 21(1): 444-473. doi: 10.3934/mbe.2024020
    [4] Ming Mei, Yau Shu Wong . Novel stability results for traveling wavefronts in an age-structured reaction-diffusion equation. Mathematical Biosciences and Engineering, 2009, 6(4): 743-752. doi: 10.3934/mbe.2009.6.743
    [5] Sung Woong Cho, Sunwoo Hwang, Hyung Ju Hwang . The monotone traveling wave solution of a bistable three-species competition system via unconstrained neural networks. Mathematical Biosciences and Engineering, 2023, 20(4): 7154-7170. doi: 10.3934/mbe.2023309
    [6] Maoxiang Wang, Fenglan Hu, Meng Xu, Zhipeng Qiu . Keep, break and breakout in food chains with two and three species. Mathematical Biosciences and Engineering, 2021, 18(1): 817-836. doi: 10.3934/mbe.2021043
    [7] Tong Li, Zhi-An Wang . Traveling wave solutions of a singular Keller-Segel system with logistic source. Mathematical Biosciences and Engineering, 2022, 19(8): 8107-8131. doi: 10.3934/mbe.2022379
    [8] Li-Jun Du, Wan-Tong Li, Jia-Bing Wang . Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1187-1213. doi: 10.3934/mbe.2017061
    [9] Ruirui Du, Lihua Fang, Binhui Guo, Yinyu Song, Huirong Xiao, Xinliang Xu, Xingdao He . Simulated biomechanical effect of aspheric transition zone ablation profiles after conventional hyperopia refractive surgery. Mathematical Biosciences and Engineering, 2021, 18(3): 2442-2454. doi: 10.3934/mbe.2021124
    [10] Haiyan Wang, Shiliang Wu . Spatial dynamics for a model of epidermal wound healing. Mathematical Biosciences and Engineering, 2014, 11(5): 1215-1227. doi: 10.3934/mbe.2014.11.1215
  • The purpose of this work is to investigate the existence and stability of traveling wavefronts for competitive-cooperative systems with three species. The existence result can be derived by using the technique of monotone method with the help of a pair of explicit supersolution and subsolution. Moreover, some su cient conditions ensure the linear determinacy for the minimal speed is given. Then, applying the weighted energy method, we prove that the traveling wavefronts are asymptotically stable in the weighted Banach spaces provided that the initial perturbations of the traveling wavefronts also belong to the same spaces.


    This paper is concerned with the existence and stability of traveling wavefronts for the following discrete three species competitive-cooperative systems of Lotka-Volterra type:

    {ut=d1D[u](t,x)+u(r1b11ub12v+b13w),vt=d2D[v](t,x)+v(r2b21ub22vb23w),wt=d3D[w](t,x)+w(r3+b31ub32vb33w),(t,x)R+×R, (1.1)
    and{ui(t)=d1[ui](t)+ui(r1b11uib12vi+b13wi),vi(t)=d2[vi](t)+vi(r2b21uib22vib23wi),wi(t)=d3[wi](t)+wi(r3+b31uib32vib33wi),(t,i)R+×Z. (1.2)

    Here D[u](t,x) and [ui](t) mean the discrete diffusive operators given by

    and D[u](t,x):=u(t,x+1)+u(t,x1)2u(t,x)Δ[ui](t):=ui+1(t)+ui1(t)2ui(t).

    Systems (1.1) and (1.2) can be considered as discrete versions of the following continuous system:

     {ut=d1uxx+u(r1b11ub12v+b13w),vt=d2vxx+v(r2b21ub22vb23w),wt=d3wxx+w(r3+b31ub32vb33w),(t,x)R+×R. (1.3)

    In system (1.3), u(),v() and w() represent the population density of the species. Each di>0(i=1,2,3) stands for the diffusion rate of each species, and ri>0(i=1,2,3) is the growth rate of species. The parameter bii>0(i=1,2,3) means the intraspecific competition rates of a species, and b12,b21,b23,b32>0 describe the interspecific competition rates between species. Noting that b13 and b31 maybe positive or negative constants. If b13 and b31<0 then (1.3) is a competitive system among three species and any two of the three species u, v and w are in a competitive manner. On the other hand, if b13 and b31>0, then (1.3) becomes the competitive-cooperative system of three species. That is, u and v compete and w and v also compete with each other, while u and w are in a cooperative way to help each other.

    Due to different signs of the parameters, the interacting behavior between the species of (1.3) are quite complicated and different. In biology, one of the important issue is to investigate the invasion phenomenon for system (1.3). Thus it is very nature to study the propagation of traveling wave solutions. The concept of traveling wave solutions was introduced by Fisher [1] in 1937 in reaction diffusion equations, which represents a segregated spatial pattern propagating through the spatial domain at a constant speed. In addition, such solutions are natural phenomena ubiquitously for many reaction-diffusion systems, e.g., biophysics, population genetics, mathematical ecology, chemistry, chemical physics, and so on. In past years, there have many progresses on this topic in various fields. Here we only illustrate some literature for system (1.3) in the sequel.

    For the competitive case, Chen et al. [2,3] and Mimura and Tohma [4] used numerical approaches or the construction of exact traveling wave solutions to establish many kinds of pattern formulations. In addition, when the diffusion coefficients are small, Ikeda [5,6] considered traveling wave solutions and dynamics of weakly interacting front and back waves. Other related works, we refer Kan-on and Mimura [7], Miller [8] and Mimura and Fife [9]. On the other hand, for the competitive-cooperative case, one can see that system (1.3) is a monotone system which has some ordering structures. Based on the monotone structure, Guo et al. [10] proved the existence of traveling wave solutions under the assumption b13=b31=0. Hung [11] further considered the existence of traveling wave solutions in the case b13,b31>0, d1=d2=d3 and r1=r2=r3. Recently, Chang [12] improved the results of [10,11] to more general parameters. Motivated by the above mentioned literature, it is natural and important to study the same problems for the discrete systems (1.1) and (1.2). In this paper, we first establish the existence of traveling wavefronts for discrete systems (1.1) and (1.2). However, when these solutions are disturbed under small perturbations, only stable such solutions can be visualized in the real world. Therefore, it is quite important to study the stability problem of the traveling wavefronts. We also focus on the stability problem in this work.

    Since there are many parameters appearing in the above systems, we first rescale the systems (1.1)–(1.2) into the following simpler forms:

    {ut=d1D[u](t,x)+u(r1uc12v+c13w),vt=d2D[v](t,x)+v(r2c21uvc23w),wt=d3D[w](t,x)+w(r3+c31uc32vw),(t,x)R+×R, (1.4)
    and {ui(t)=d1[ui](t)+ui(r1uic12vi+c13wi),vi(t)=d2[vi](t)+vi(r2c21uivic23wi),wi(t)=d3[wi](t)+wi(r3+c31uic32viwi).(t,i)R+×Z. (1.5)

    Furthermore, replacing (u,v,w) and (ui,vi,wi) by (u,r2v,w) and (ui,r2vi,wi) respectively, we can transform systems (1.4)–(1.5) into the following systems

    {ut=d1D[u](t,x)+u(r1c12r2u+c12v+c13w),vt=d2D[v](t,x)+(vr2)(c21u+vc23w),wt=d3D[w](t,x)+w(r3c32r2+c31u+c32vw),(t,x)R+×R, (1.6)
    and{ui(t)=d1[ui](t)+ui(r1c12r2ui+c12vi+c13wi),vi(t)=d2[vi](t)+(vir2)(c21ui+vic23wi),  (t,i)R+×Z.wi(t)=d3[wi](t)+wi(r3c32r2+c31ui+c32viwi), (1.7)

    Since systems (1.6)–(1.7) are monotone systems, for simplicity, hereinafter we will consider our subject on the systems (1.6)–(1.7). By elementary computations, systems (1.6) or (1.7) have the following eight equilibria:

    E1=(0,0,0), E2=(u,r2,w)=(r1+r3c131c31c13,r2,r1c31+r31c31c13), E3=(r1,r2,0),E4=(0,r2,0), E5=(0,r2,r3), E6=(0,c23(r3c32r2)1c23c32,r3c32r21c23c32),E7=(r1c12r21c12c21,c21(r1c12r2)1c12c21,0), E8=(e1,e2,e3),where  e1:=[(r1c12r2)+c13(r3c32r2)c23(r1c32r3c12)]/Θ,e2:=[(c21+c31c23)(r1c12r2)+(c23+c21c13)(r3c32r2)]/Θ,e3:=[(r3c32r2)+c31(r1c12r2)+c21(r1c32r3c12)]/Θ,Θ:=c13c31+c12c23c31+c21c13c32+c12c21+c23c321.

    A traveling wave solution (u(t,x),v(t,x),w(t,x)) for (1.6) means that

    (u(t,x),v(t,x),w(t,x))=(ϕ1(x+ct),ϕ2(x+ct),ϕ3(x+ct))

    for some smooth functions ϕi(), i=1,2,3 with wave speed cR. If Φ()=(ϕ1(),ϕ2(),ϕ3()) is monotone, then it is called a traveling wavefront. Then, taking the moving coordinate ξ:=x+ct, we see the profile function (ϕ1(ξ),ϕ2(ξ),ϕ3(ξ)) for system (1.6) satisfy the system

    {cϕ1(ξ)=d1D[ϕ1](ξ)+ϕ1(r1c12r2ϕ1+c12ϕ2+c13ϕ3),cϕ2(ξ)=d2D[ϕ2](ξ)+(ϕ2r2)(c21ϕ1+ϕ2c23ϕ3),cϕ3(ξ)=d3D[ϕ3](ξ)+ϕ3(r3c32r2+c31ϕ1+c32ϕ2ϕ3),ξR, (1.8)

    where

    D[ϕi](ξ):=ϕi(ξ+1)+ϕi(ξ1)2ϕi(ξ), i=1,2,3.

    Different to system (1.6), a traveling wave solution (ui(t),vi(t),wi(t)) for (1.7) means that

    (ui(t),vi(t),wi(t))=(ϕ1(i+ct),ϕ2(i+ct),ϕ3(i+ct))

    for some smooth functions ϕi(), i=1,2,3 with wave speed cR. Then, taking the moving coordinate ξ:=i+ct, we see the profile function (ϕ1(ξ),ϕ2(ξ),ϕ3(ξ)) for system (1.7) is the same as system (1.8). From the viewpoint of biology, we are interested in the existence and stability of solutions for system (1.8) connecting the trivial equilibria E1 and positive co-exist equilibrium E2, that is satisfy the following conditions:

    limξ(ϕ1(ξ),ϕ2(ξ),ϕ3(ξ))=E1 and limξ(ϕ1(ξ),ϕ2(ξ),ϕ3(ξ))=E2. (1.9)

    It is easy to see that E20 when c31c13<1. Here and in the sequel, we always use the usual notations for the standard ordering in R3.

    In this article we first consider the existence problem of traveling wavefronts for systems (1.6) and (1.7), i.e., looking for solutions of (1.8) satisfying the condition (1.9). Since (1.8) is a monotone system, the existence problem could be reduced to find a pair of supersolution and subsolution of system (1.8). To this end, throughout this article, we assume the following assumption:

    (H1) d1d3d2, c32<1<c21+c23 and (c21+c23)r2r3c32r2r1c12r2.

    (H2) (c21+c31c23)r1+(c23+c21c13)r3>r2(1c13c31)>0.

    Note that (H2) holds when r2 is small enough. The assumption (H1) will be used in proving the existence of traveling wavefronts. In addition, one can verify that

    e2u2=(c21+c31c23)r1+(c23+c21c13)r3r2(1c13c31)Θ.

    If Θ>0 then (H2) implies that e2<u2. On the other hand, if Θ<0 then (H2) implies that e2>u2. Hence, under the assumptions (H1)–(H2), we know that E8[0,E2].

    Based on the above assumptions, we can establish a pair of supersolution and subsolution of system (1.8). Then, applying the monotone iteration method, we show that (1.8) admits a strictly increasing solution satisfying (1.9) as long as the wave speed is greater than the minimum wave speed (see Theorem 3.1). That is the existence of monotonic traveling wave solutions connecting two equilibria for systems (1.1) and (1.2). In addition, we show that (H1) and (H2) are sufficient conditions which ensure the linear determinacy for the minimal speed is given, i.e., the minimal speed is determined by the linearization of the problem at some unstable equilibrium.

    Next, we consider the stability of traveling wavefronts derived in Theorem 3.1. In past years, there have been extensive investigations on the stability of traveling wave solutions for reaction-diffusion systems, see e.g., [13,14,15], the monographs [16,17], the survey paper [18] and the references therein. For examples, Mei et al. [14] used the weighted energy method and the Green function technique to study the global stability of monostable traveling wave solutions for nonlocal time-delayed reaction-diffusion equations. Recently, by using the monotone scheme and spectral analysis, Chang [12] considered the existence and stability of traveling wave solutions for system (1.3). More precisely, the author showed that the traveling wave solutions of (1.3) are essentially unstable in the uniform continuous function space. On the other hand, if the initial perturbations of the traveling wave solutions belong to certain exponentially weighted Banach space, then the traveling wave solutions are asymptotically stable in the weighted Banach space. However, due to the discrete diffusion operator in (1.8), the method of spectral analysis used in Chang [12] no longer works in investigating the stability problems of the discrete systems (1.6) and (1.7). Motivated by the works [14,19], we will establish the comparison principle for systems (1.6) and (1.7). And then use the the weighted energy method (see [19,20,21,22,14]) to show that the traveling wave solutions of (1.6) and (1.7) with large wave speed are exponentially stable when the initial perturbation around them decay exponentially as the spatial variable tending to (see Theorems 4.1 and 5.1). Moreover, using different weighted functions, we improve the stability results of Theorems 4.1 and 5.1 to any wave speed greater than the minimum wave speed (see Theorems 6.1 and 6.2).

    For convenience, we write E2=(u1,u2,u3) in this section, and F(u,v,w):=(f1(u,v,w), f2(u,v,w),f3(u,v,w)) where

    f1(u,v,w):=u(r1c12r2u+c12v+c13w),f2(u,v,w):=(vr2)(c21u+vc23w),f3(u,v,w):=w(r3c32r2+c31u+c32vw).

    Then the profile system (1.8) can be written into the form:

    cϕi(ξ)=diD[ϕi](ξ)+fi(ϕ1(ξ),ϕ2(ξ),ϕ3(ξ)), for i=1,2,3. (2.1)

    To establish the existence of solutions for system (2.1) by using the technique of sub-super solutions, we first give the following definition.

    Definition 2.1. A continuous function (ϕ1(ξ),ϕ2(ξ),ϕ3(ξ)) is called a subsolution or supersolution of (2.1), if each ϕi(ξ) is continuously differentiable in R except at finite points and satisfies (resp.)

    cϕi(ξ)diD[ϕi](ξ)+fi(ϕ1(ξ),ϕ2(ξ),ϕ3(ξ)), a.e. ξR, (2.2)
    orcϕi(ξ)diD[ϕi](ξ)+fi(ϕ1(ξ),ϕ2(ξ),ϕ3(ξ)), a.e. ξR. (2.3)

    Before constructing a pair of sub-super solutions for system (1.8), we first consider the characteristic polynomials of system (1.8) at E1 given by

    det[Γ1(μ;c)00c21r2Γ2(μ;c)c23r200Γ3(μ;c)]=Γ1(μ;c)Γ2(μ;c)Γ3(μ;c),

    where

    Γ1(μ;c):=d1(eμ+eμ2)cμ+r1c12r2,Γ2(μ;c):=d2(eμ+eμ2)cμr2,Γ3(μ;c):=d3(eμ+eμ2)cμ+r3c32r2.

    It is clear that Γ2(μ;c)=0 have a positive root for any c>0. For Γ1(μ;c) and Γ3(μ;c), we have the following properties.

    Lemma 2.1. There exist c1c3>0 such that (for i=1,3)

    (1) if c>ci, there exist 0<μi<μ+i such that

    Γi(μ±i;c)=0,Γi(μ;c)<0,μ(μi,μ+i)andΓi(μ;c)>0,μ[μi,μ+i]c;

    (2) if c=ci, there exists a unique μi(μi,μ+i) such that

    Γi(μi;ci)=0andΓi(μ;ci)>0,μμi;

    (3) if 0<c<ci, then Γi(μ;c)>0 for all μR.

    In addition, we have μ3μ1<μ+1μ+3 when c>c1.

    By Lemma 2.1, we can construct a pair of sub-super solutions for (1.8) in the sequel.

    Lemma 2.2. Assume c>c1. Let's set

    ˆu1(ξ):={eμ1ξ+qu1eημ1ξ,ifξ<ξ1,u1,ifξξ1,and ˆui(ξ):={eμ3ξ+quieημ1ξ,ifξ<ξi,ui,ifξξi,

    for i=2,3, where ˆui(ξi)=ui(i=1,2,3), q and η are positive constants with

    μ1<ημ1<min{μ+1,μ+3,μ1+μ3}. (2.4)

    Then ˆU(ξ)=(ˆu1(ξ),ˆu2(ξ),ˆu3(ξ)) is a supersolution of (1.8) when q is large enough.

    Proof. Let us write ξi=ξi(q) (i=1,2,3) as a function of q. Since ˆui(ξi)=ui, one can easily verify that

    limqξi(q)=, for i=1,2,3. (2.5)

    Then, for ξξ1(q), it is clear that

    d1D[ˆu1](ξ)cˆu1(ξ)+f1(ˆU(ξ))f1(E2)=0. (2.6)

    If ξ<ξ1(q), by (2.4) and (2.5) and elementary computations, we have

    d1D[ˆu1](ξ)cˆu1(ξ)+f1(ˆU(ξ))=qu1eημ1ξΓ1(ημ1;c)+ˆu1(ξ)(ˆu1(ξ)+c12ˆu2(ξ)+c13ˆu3(ξ))qu1eημ1ξΓ1(ημ1;c)+ˆu1(ξ)(eμ1ξ+(c12+c13)eμ3ξ+q(u1+c12u2+c13u3)eημ1ξ)qu1eημ1ξΓ1(ημ1;c)+(eμ1ξ+qu1eημ1ξ)(c12+c13)eμ3ξ0, (2.7)

    provided that q is large enough.

    Next, we set

    u:=max{u1,u2,u3} and ˆu(ξ):=eμ3ξ+queημ1ξ.

    Then, for all ξR, it is clear that max{ˆu1(ξ),ˆu2(ξ),ˆu3(ξ)}ˆu(ξ) and

    f2(ˆU(ξ))=(ˆu2(ξ)r2)(c21ˆu1(ξ)+ˆu2(ξ)c23ˆu3(ξ))(ˆu2(ξ)r2)(c21ˆu(ξ)+ˆu2(ξ)c23ˆu(ξ))r2(c21c23)ˆu(ξ). (2.8)

    Assuming that q is large enough, we have ξ2(q)<0. For ξ>ξ2(q), it is clear that

    d2D[ˆu2](ξ)cˆu2(ξ)+f2(ˆU(ξ))f2(E2)=0. (2.9)

    If ξ<ξ2(q), by the fact ˆu2(ξ)r2, (2.4), (2.8) and (H1), we can obtain

    d2D[ˆu2](ξ)cˆu2(ξ)+f2(ˆU(ξ))d2D[ˆu2](ξ)cˆu2(ξ)r2(c21c23)ˆu(ξ)=eμ1ξ[d2(eμ1+eμ12)cμ1+r2(c21+c23)]+queημ1ξ[d2(eημ1+eημ12)cημ1]+qur2(c21+c23)eημ1ξeμ3ξΓ3(μ3;c)+queημ1ξ(d3(eημ1+eημ12)cημ1+r2(c21+c23))queημ1ξΓ3(ημ1;c)0. (2.10)

    Finally, for ξ>ξ3(q), it is clear that

    d3D[ˆu3](ξ)cˆu3(ξ)+f3(ˆU(ξ))f3(E2)=0. (2.11)

    If ξ<ξ3(q), then (2.4) implies that

    d3D[ˆu3](ξ)cˆu3(ξ)+f3(ˆU(ξ))=eμ3ξΓ3(μ3;c)+qu3eημ1ξΓ3(ημ1;c)+ˆu3(ξ)(c31ˆu1(ξ)+c32ˆu2(ξ)ˆu3(ξ))qu3eημ1ξΓ1(ημ1;c)+ˆu3(ξ)(c31eμ1ξ+c32eμ3ξeμ3ξ+q(c31u1+c21u2u1)eημ1ξ)qu3eημ1ξΓ1(ημ1;c)+c31(eμ3ξ+qu3eημ1ξ)eμ1ξ0, (2.12)

    provided that q is large enough. Hence, it follows from (2.6)–(2.12) that ˆU(ξ) is a supersolution of system (1.8) when q is large enough. The proof is complete.

    Lemma 2.3. Assume c>c1. Let's set ˉu2(ξ):≡0,

    ˉu1(ξ):={eμ1ξqu1eημ1ξ,ifξ<ˉξ1,0,ifξˉξ1,andˉu3(ξ):={eμ3ξqu3eημ3ξ,ifξ<ˉξ3,0,ifξˉξ3,

    where ˉui(ˉξi)=0 for i=1,3; q and η are positive constants with

    1<η<min{μ+3/μ3,μ+1/μ1,2}. (2.13)

    Then ˉU(ξ)=(ˉu1(ξ),ˉu2(ξ),ˉu3(ξ)) is a subsolution of (1.8) when q is large enough.

    Proof. Let us also write ˉξi=ˉξi(q) as a function of q. Similarly, ˉξi()=, for i=1,3. According to the definition of ˉui(ξ), we only need to consider the cases ξ<ˉξ1(q) and ξ<ˉξ3(q) for ˉu1(ξ) and ˉu3(ξ), respectively.

    If ξ<ˉξ1(q), by (2.13), we have

    d1D[ˉu1](ξ)cˉu1(ξ)+f1(ˉU(ξ))=eμ1ξΓ1(μ1;c)qu1eημ1ξΓ1(ημ1;c)+ˉu1(ξ)(ˉu1(ξ)+c13ˉu3(ξ))eμ1ξΓ1(μ1;c)qu1eημ1ξΓ1(ημ1;c)ˉu1(ξ)ˉu1(ξ)=qu1eημ1ξΓ1(ημ1;c)(eμ1ξqu1eημ1ξ)(eμ1ξqu1eημ1ξ)qu1eημ1ξΓ1(ημ1;c)(eμ1ξqu1eημ1ξ)eμ1ξ0, (2.14)

    provided that q is large enough.

    For ξ<ξ3(q), by (2.13) again, one can see that

    d3D[ˉu3](ξ)cˉu3(ξ)+f3(ˉU(ξ))=eμ3ξΓ3(μ3;c)qu3eημ3ξΓ3(ημ3;c)+ˉu3(ξ)(c31ˉu1(ξ)ˉu3(ξ))eμ3ξΓ3(μ3;c)qu3eημ3ξΓ3(ημ3;c)ˉu3(ξ)ˉu3(ξ)=qu3eημ3ξΓ3(ημ3;c)(eμ3ξqu3eημ3ξ)(eμ3ξqu3eημ3ξ)qu3eημ3ξΓ3(ημ3;c)(eμ3ξqu3eημ3ξ)eμ3ξ0, (2.15)

    if q is large enough. Hence, it follows from (2.14) and (2.15) that ˉU(ξ) is a subsolution of (1.8) when q is large enough. The proof is complete.

    Based on the supersolution and subsolution derived in previous section, we can apply the the monotone iteration method to obtain the following existence result.

    Theorem 3.1. Given any cc1, system (1.8) admits a strictly increasing traveling wave solution Φ(ξ)=(ϕ1(ξ),ϕ2(ξ),ϕ3(ξ)) satisfying (1.9) and with wave speed c.

    Proof. Let c>c1 and ˆU(ξ) and ˉU(ξ) be the supersolution and subsolution constructed in Lemmas 2 and 3 respectively. Since (1.8) is a monotone system on [E1,E2], by the monotone iteration method, system (1.8) admits a non-decreasing solution Φ(ξ)=(ϕ1(ξ),ϕ2(ξ),ϕ3(ξ)) satisfying

    ˉU(ξ)Φ(ξ)=(ϕ1(ξ),ϕ2(ξ),ϕ3(ξ))ˆU(ξ), for all ξR.

    Since ˉU()=ˆU()=E1, it follows that Φ()=E1. Moreover, we have Φ()=E=(E1,E2,E3) for some equilibrium EE2. By the non-decreasing property of Φ(ξ) and the fact ˉu10 and ˉu30, we see that E1>0 and E2>0, and hence E{E2,E8}. Since E8[0,E2], we conclude that E=E2. Hence Φ(ξ) satisfies the condition (1.9).

    Next, we consider the case c=c1. Let {n} be a sequence with n>c1 for all nN, which converges to c1. Denoting Φn(ξ) by the non-decreasing solution of (1.8) satisfying (1.9) with c=n. Then, by the limiting arguments (cf. [23]), {Φn(ξ)} has a convergent subsequence which converges to a function Φ(ξ) which satisfies (1.8) and (1.9) with c=c1.

    Finally, we show that Φ(ξ)0 for all ξR. We first claim that Φ(ξ)0 for all ξR. Note that ϕ1(+)=u. If there exists ξ1R such that ϕ1(ξ1)=0, we may assume that ϕ1(ξ)>0 for all ξ>ξ1. Since ϕ1()0, we have ϕ1(ξ1)=0 and hence it follows the first equation of (1.8) that ϕ1(ξ1+1)=0, which contradicts to the definition of ξ1. Thus, ϕ1(ξ)>0 for all ξR. Similarly, we can show that ϕ3(ξ)>0 for all ξR. Suppose that there exists ξ2R such that ϕ2(ξ2)=0 and ϕ2(ξ)>0 for all ξ>ξ2. By the second equation of (1.8), we have

    0=ϕ2(ξ2)=d2[ϕ2(ξ2+1)+ϕ2(ξ21)+r2[c21ϕ1(ξ2)+c23ϕ3(ξ2)]0,

    which implies that ϕ2(ξ2+1)=0. This contradiction shows that ϕ2(ξ)>0 for all ξR. Hence the claim holds.

    According to (1.8), we know that

    Φ(ξ)=eξξesH(Φ(s))ds, (3.1)

    where is a positive constant and

    H(Φ(ξ))=(H1(Φ(ξ)),H2(Φ(ξ)),H3(Φ(ξ))):=Φ(ξ)+F(Φ(ξ)).

    Choosing large enough, we know that H(Ψ) is monotone increasing for any Ψ[E1,E2]. Since Φ(ξ) is non-decreasing in ξ, by differentiating (3.1) with respect to ξ, we have

    Φ(ξ)=eξξes[H(Φ(s))H(Φ(ξ))]ds0. (3.2)

    Suppose that ϕi(ξi)=0 for some ξiR (i=1,2, or 3), then (3.2) implies that Hi(Φ(s))=Hi(Φ(ξi)) for all sξi. Taking s, it follows that

    ϕi(ξi)+ϕi(ξi)=Hi(Φ(ξi))=Hi(Φ())=0.

    which implies that ϕi(ξi)=0. This contradiction implies that Φ(ξ)>0, ξR. The proof is complete.

    Next, we investigate the linear determinacy for the problem (1.8). The definition of linear determinacy was first introduced in [24], which means that the minimal speed is determined by the linearization of the problem at some unstable equilibrium. In the following theorem, we show that c1 is the minimal speed of system (1.8).

    Theorem 3.2. Assume c<c1. System (1.8) has no strictly increasing solution Φ(ξ)=(ϕ1(ξ),ϕ2(ξ),ϕ3(ξ))[E1,E2] satisfying the condition (1.9).

    Proof. Suppose that (1.8) admits a strictly increasing solution Φ(ξ)=(ϕ1(ξ),ϕ2(ξ),ϕ3(ξ))[E1,E2] satisfying (1.9) with c<c1. Then we define ψ(ξ):=ϕ1(ξ)/ϕ1(ξ). From (1.8), one can verify that ψ(ξ) satisfies the equation

    cψ(ξ)=d1[eξ1ξψ(s)ds+eξ+1ξψ(s)ds]2d1+f1(Φ(ξ))/ϕ1(ξ). (3.3)

    Since Φ()=0, we have

    limξ[2d1+f1(Φ(ξ))/ϕ1(ξ)]=2d1+r1c12r2.

    According to (3.3) and [10, Proposition 3], the limit ψ() exists and satisfies

    Γ1(ψ();c)=0. (3.4)

    Then it follows from the proof of Lemma 2.1 that cc1, which gives a contradiction. This completes the proof.

    In this section, we will apply the weighted energy method to study the stability of traveling wavefronts for (1.6). Inspired by [14,19], we first introduce the following definition.

    Definition 4.1. Let I be an interval and ω(x):RR be a differentiable function.

    (1) Let L2(I) be the space of square integrable functions defined on I. We denote L2ω(I) by the weighted L2-space with the weight function ω(x), which endows with the norm

    {\rm(2)} Let H^k(I) ( k \ge 0 ) be the Sobolev space of the L^2 -functions f(x) defined on I whose i th-derivative also belong to L^2(I) for i = 1, \cdots, k . We denote H_\omega ^k (I) by the weighted Sobolev space with the weight function \omega (x) , which endows with the norm

    \begin{equation*} \|f(x)\| _{H_\omega ^k (I)} = \big( {\sum\limits_{i = 0}^k { \int_I {\omega (x)\big| {\frac{d^if(x)}{dx^i}} \big|^2dx} } } \big)^{\frac{1}{2}}. \end{equation*}

    {\rm(3)} Let T > 0 and \mathbb{B} be a Banach space. We denote C([0, T]; \mathbb{B}) by the space of the \mathbb{B} -valued continuous functions defined on [0, T] , and L^2([0, T];\mathbb{B}) is regarded as the space of \mathbb{B} -valued L^2 -function on [0, T] . The corresponding spaces of the \mathbb{B} -valued function on [0, \infty) can be defined similarly.

    Note that we always assume (H1) and (H2) throughout this article. Moreover, we assume the parameters satisfying the following assumption:

    \begin{equation*} \qquad{\rm(S1)}\quad \begin{array}{ll} \ell_1: = -2r_1+(4-c_{12}-c_{13})u_*-(2c_{13}+c_{31})w_* \gt 0, \\ \ell_2: = -4r_2+(2c_{21}-c_{12})u_*+(2c_{23}-c_{32})w_* \gt 0,\\ \ell_3: = -2r_3+(4-c_{31}-c_{32})w_*-(2c_{31}+c_{13})u_* \gt 0. \end{array}\qquad\qquad\qquad\qquad\qquad \end{equation*}

    First, we establish the following global existence and uniqueness of solutions, and the comparison theorem for system (1.6) with initial data

    U_0(x) = (u(0,x),v(0,x),w(0,x)): = (u_0(x),v_0(x),w_0(x))

    satisfying the following condition:

    {\rm(S2)}\quad (u_0(x), v_0(x), w_0(x))\in[{\bf E}_1, {\bf E}_2], \; \forall x\in \mathbb{R} \; {\rm{and}} \; U_0(x)-\Phi (x)\in H_\omega ^1 (\mathbb{R}) .

    Here we assume that the weight function \omega (\xi) in (S2) is given by

    \begin{equation} \omega (\xi ): = \left\{ \begin{array}{rl} e^{-\sigma (\xi -\xi _0 )},&\xi \le \xi _0, \\ 1,&\xi \gt \xi _0 ,\\ \end{array} \right. \end{equation} (4.1)

    for some positive constants \sigma and \xi _0 which will be determined later.

    Lemma 4.1. (See also [19].) Assume (S1)–(S2). Then the following statements are valid.

    {\rm(1)} There exists a unique solution U (t, x) = (u(t, x), v(t, x), w(t, x)) of (1.6) with initial data U_0(x) such that {\bf E}_1\le U (t, x)\le {\bf E}_2, \forall t > 0, \ x\in \mathbb{R}. In addition,

    \begin{equation} {U(t,x)-\Phi (x+ct)}\in C([0,+\infty );H_\omega ^1 (\mathbb{R}))\cap L^2([0,+\infty );H_\omega ^1 (\mathbb{R})). \end{equation} (4.2)

    {\rm(2)} Let U^\pm(t, x) be solutions of (1.6) with U^\pm(0, x) = (u^\pm(x), v^\pm(x), w^\pm(x)) , respectively. If {\bf E}_1\le U^- (0, x)\le U^+ (0, x)\le {\bf E}_2, \ \forall x\in \mathbb{R}, then

    \begin{equation} {\bf E}_1\le U^- (t,x)\le U^+(t,x)\le {\bf E}_2,\ \forall(t,x)\in \mathbb{R}^+\times \mathbb{R}. \end{equation} (4.3)

    Proof. (1) The assertion can be derived by the theory of abstract functional differential equation, see [25]. Also the standard energy method and continuity extension method, see [26]. Here we skip the details.

    (2) The proof of this part is the same as that of [27,Lemma 3.2] and omitted.

    Then, applying the technique of weighted energy estimate, we have the following stability result.

    Theorem 4.1. Assume that (S1)–(S2) hold. Let \Phi (x+ct) be a traveling wave front of (1.6) satisfying (1.9) and with speed c > \max\{{c}_1^{*}, c_1, c_2, c_3\} (Note that c_i , i = 1, 2, 3 are defined in (4.23)–(4.25)). Let U(t, x) = (u(t, x), v(t, x), w(t, x)) be the unique solution of the initial value problem (1.6). In addition, there exist small \sigma = \sigma_0 > 0 and large \xi_0 > 0 such that

    \begin{equation} U(t,x)-\Phi (x+ct)\in C([0,+\infty );H_\omega ^1 (\mathbb{R}))\cap L^2([0,+\infty );H_\omega ^1 (\mathbb{R})) \end{equation} (4.4)

    and

    \begin{equation} \sup\limits_{x\in \mathbb{R}} \| U(t,x)-\Phi (x+ct)\| \le Ce^{-\mu t},\ \forall t \gt 0, \end{equation} (4.5)

    for some positive constants C and \mu .

    To prove the result of Theorem 4.1 by using the weighted energy method, we need to establish a priori estimate for the difference of solutions of systems (1.6) and (1.8). For convenience, we denote U(t, x) = (u(t, x), v(t, x), w(t, x)) by the solution of system (1.6) with initial data U_{0}(x) = (u_0(x), v_0(x), w_0(x)) satisfying (S2). Then, \forall x\in \mathbb{R} , we set

    \begin{align*} U_{0}^{-} (x): = &(\min \{u_0(x),\phi_1 (x)\},\min \{v_0(x),\phi_2 (x)\},\min \{w_0(x),\phi_3 (x)\}),\\ U_{0}^{+} (x): = &(\max\{u_0(x),\phi_1 (x)\},\max \{v_0(x),\phi_2 (x)\},\max \{w_0(x),\phi_3 (x)\}). \end{align*}

    It is clear that U^{\pm}_0 (x) satisfy

    \begin{equation} {\bf E}_1\le U^- _0(x)\le {U_{0}(x)},\Phi (x)\le U^+_0 (x)\le {\bf E}_2,\ \forall x\in \mathbb{ R}. \end{equation} (4.6)

    Let U^\pm(t, x) be solutions of (1.6) with initial data U_0^\pm(x) , by Lemma 4.1, we have

    \begin{equation} {\bf E}_1\le U^- (t,x)\le U (t,x),\Phi (x+ct)\le U^+ (t,x)\le {\bf E}_2,\ \forall(t,x)\in \mathbb{R}^+\times\mathbb{R}. \end{equation} (4.7)

    Then it follows from (4.7) that

    \begin{equation*} \|U (t,x)-\Phi (x+ct)\|\le {\max\{ \|U^+ (t,x)-\Phi (x+ct)\|,\|U^-(t,x)-\Phi (x+ct)\|\}}, \end{equation*}

    for (t, x)\in \mathbb{R}^+\times \mathbb{R}^. Therefore, to derive a priori estimate of U (t, x)-\Phi (x+ct) , it suffices to estimate the functions U^\pm (t, x)-\Phi (x+ct) .

    For convenience, let's denote

    V^\pm(t,x) : = U^\pm(t,x)-\Phi (x+ct)\quad\mbox{and}\quad V_{0}^\pm (x) : = U^\pm (0,x)-\Phi (x), \; \forall(t,x)\in \mathbb{R}^+\times {\mathbb{R}}.

    Then it follows from (4.6) and (4.7) that

    {\bf E}_1\le V_0^\pm(x)\le {\bf E}_2\quad \text{and}\quad {\bf E}_1\le V^\pm(t,x)\le {\bf E}_2,\ \forall(t,x)\in \mathbb{R}^+\times {\mathbb{R}}.

    In the sequel, we only estimate V^+(t, x) , since V^-(t, x) can also be discussed in the same way. For convenience, we drop the sign "+" for V^+(t, x) , U^+(t, x) and set

    \begin{align*} &V(t,\xi) = (V_1(t,\xi),V_2(t,\xi),V_3(t,\xi)) = V^+(t,x): = U^+(t,x)-\Phi (\xi), \\ &V_0(\xi) = (V_1^0(\xi),V_2^0(\xi),V_3^0(\xi)): = V(0,\xi) = V_{0}^+ (x),\ \forall(t,x)\in \mathbb{R}^+\times {\mathbb{R}}. \end{align*}

    By systems (1.6) and (1.8), we can obtain

    \begin{align} V_{1t}+cV_{1\xi} = d_1D[V_1]+& [r_1-c_{12}r_2-2\phi_1+c_{12}(V_2+\phi_2)+c_{13}(V_3+\phi_3)]V_1+\\ &c_{12}\phi_1V_2+c_{13}\phi_1V_3-V_1^2, \end{align} (4.8)
    \begin{align} V_{2t}+cV_{2\xi} = d_2D[V_2]+& [-r_2+2\phi_2-c_{21}(V_1+\phi_1)-c_{23}(V_3+\phi_3)]V_2+\\ &c_{21}(r_2-\phi_2)V_1+c_{23}(r_2-\phi_2)V_3+V_2^2, \end{align} (4.9)
    \begin{align} V_{3t}+cV_{3\xi} = d_3D[V_3]+& [r_3-c_{32}r_2-2\phi_3+c_{31}(V_1+\phi_1)+c_{32}(V_2+\phi_2)]V_3+\\ &c_{31}\phi_3V_1+c_{32}\phi_3V_2-V_3^2. \end{align} (4.10)

    It is easy to see that V_i^0(\xi) \in H_\omega ^1 (\mathbb{R}) , then we have V_i (t, \xi)\in C([0, +\infty), H_\omega ^1 (\mathbb{R})) , for i = 1, 2, 3 . To employing the technique of energy estimate to the equations (4.8), (4.9) and (4.10), it is necessary to assure that the solutions V_i (t, \xi) have sufficient regularity. To this end, we mollify the initial condition setting

    \begin{split} V_{i}^{0\varepsilon } (\xi ) &: = (J_\varepsilon \ast V_{i}^{0} ) (\xi ) = \int_\mathbb{R} {J_\varepsilon (\xi -s)V_{i}^{0} (s)ds} \in H_\omega ^2 (\mathbb{ R}),\ i = 1,2,3, \\ \end{split}

    where J_\varepsilon (\xi) is the usual mollifier. Let V^{\varepsilon } (t, \xi) be the solutions of (4.8), (4.9) and (4.10) with this mollified initial condition V^{0\varepsilon } (\xi) = (V_{1}^{0\varepsilon } (\xi), {V_{2}^{0\varepsilon } (\xi)}, V_{3}^{0\varepsilon } (\xi)) . Then, we have

    V_{i}^{\varepsilon } (t,\xi)\in C([0,+\infty ),H_\omega ^2 (\mathbb{R})), \ i = 1, 2,3.

    Letting \varepsilon \to 0 , it follows that V^\varepsilon (t, \xi)\to V (t, \xi) uniformly for all (t, \xi)\in \mathbb{R}^+\times {\mathbb{R}} . Therefore, without loss of generality, we may assume V_{i} (t, \xi)\in C([0, +\infty), H_\omega ^2 (\mathbb{R})) , for i = 1, 2, 3 in establishing the following energy estimates (cf. [14]).

    First, let's multiply both sides of (4.8), (4.9) and (4.10) by e^{2\mu t}\omega (\xi) V_i (\xi, t) with i = 1, 2, 3, respectively, where \mu > 0 will be determined later. Direct computations give

    \begin{align} &\big(\frac{1}{2}e^{2\mu t}\omega V_1^2\big)_t +\big(\frac{c}{2}e^{2\mu t}\omega V_1^2\big)_\xi-d_1e^{2\mu t}\omega V_1 [V_1(t,\xi+1)+V_1(t,\xi-1)]\\ = &e^{2\mu t}\omega V_1^2 Q_1(t,\xi) +e^{2\mu t}\omega V_1[c_{12}\phi_1V_2+c_{13}\phi_1V_3-V_1^2], \qquad\qquad\qquad\quad \end{align} (4.11)
    \begin{align} &\big(\frac{1}{2}e^{2\mu t}\omega V_2^2\big)_t +\big(\frac{c}{2}e^{2\mu t}\omega V_2^2\big)_\xi-d_2e^{2\mu t}\omega V_2 [V_2(t,\xi+1)+V_2(t,\xi-1)]\\ = &e^{2\mu t}\omega V_2^2Q_2(t,\xi)+ e^{2\mu t}\omega V_2[c_{21}(r_2-\phi_2)V_1+c_{23}(r_2-\phi_2)V_3+V_2^2], \end{align} (4.12)
    \begin{align} &\big(\frac{1}{2}e^{2\mu t}\omega V_3^2\big)_t +\big(\frac{c}{2}e^{2\mu t}\omega V_3^2\big)_\xi-d_3e^{2\mu t}\omega V_3 [V_3(t,\xi+1)+V_3(t,\xi-1)]\\ = &e^{2\mu t}\omega V_3^2Q_3(t,\xi)+ e^{2\mu t}\omega V_3[c_{31}\phi_3V_1+c_{32}\phi_3V_2-V_3^2], \end{align} (4.13)

    where

    \begin{align*} Q_1(t,\xi): = &\mu-2d_1+\frac{c}{2}\frac{\omega_\xi}{\omega}+[r_1-2\phi_1+c_{12}(V_2+\phi_2-r_2)+c_{13}(V_3+\phi_3)],\\ Q_2(t,\xi): = &\mu-2d_2+\frac{c}{2}\frac{\omega_\xi}{\omega} +[-r_2+2\phi_2-c_{21}(V_1+\phi_1)-c_{23}(V_3+\phi_3)],\\ Q_3(t,\xi): = &\mu-2d_3+\frac{c}{2}\frac{\omega_\xi}{\omega} +[r_3-2\phi_3+c_{31}(V_1+\phi_1)+c_{32}(V_2+\phi_2-r_2)]. \end{align*}

    Applying the Cauchy–Schwarz inequality 2xy\le x^2+y^2 , we can obtain

    \begin{align} 2\int_0^t { \int_\mathbb{R} {e^{2\mu s}\omega V_i V_i (\xi \pm1,s)d\xi ds} } \le & \int_0^t {e^{2\mu s} \int_\mathbb{ R} {\omega \big(V_i^2 +V_i^2 (\xi \pm1,s)\big)d\xi ds} } \\ = &\int_0^t {e^{2\mu s}\big[ { \int_\mathbb{ R} {\omega V_i^2 d\xi } + \int_\mathbb{ R} {\frac{\omega (\xi \mp1)}{\omega }\omega V_i^2 d\xi } } \big]ds},\ \end{align} (4.14)
    \begin{align} 2\int_0^t \int_\mathbb{R} e^{2\mu s}\omega V_i V_j d\xi ds \le & \int_0^t \int_\mathbb{ R}e^{2\mu s} \omega (V_i^2 +V_j^2)d\xi ds,\ i,j = 1,2,3. \end{align} (4.15)

    Since V_i (t, \xi)\in H_\omega ^1 , we have \left. {\left\{ e^{2\mu t}\omega V_i^2 \right\}} \right|_{\xi = -\infty }^{\xi = \infty } = 0, \ \mbox{for }i = 1, 2, 3. Therefore, integrating both sides of (4.11), (4.12) and (4.13) over \mathbb{R}\times [0, t] with respect to \xi and t and using (4.14), we can obtain

    \begin{align} e^{2\mu t}\|V_1 (t,\xi)\|_{L_\omega ^2 }^2 \le &\| V_{1} (0,\xi)\|_{L_\omega ^2 }^2+d_1\int_0^t\int_\mathbb{ R} e^{2\mu s} \omega[2+\frac{\omega (\xi +1)}{\omega }+\frac{\omega (\xi -1)}{\omega }]V_1^2 d\xi ds+\\ &2\int_0^t \int_\mathbb{R}e^{2\mu s}\omega Q_1(s,\xi)V_1^2d\xi ds+ \int_0^t \int_\mathbb{R}e^{2\mu s}\omega c_{12}\phi_1(V_1^2+V_2^2)d\xi ds+\\ & \int_0^t \int_\mathbb{R}e^{2\mu s}\omega {c_{13}}\phi_1(V_1^2+V_3^2)d\xi ds, \end{align} (4.16)
    \begin{align} e^{2\mu t}\|V_2 (t,\xi)\|_{L_\omega ^2 }^2 \le &\| V_{2} (0,\xi)\|_{L_\omega ^2 }^2+d_2\int_0^t\int_\mathbb{ R} e^{2\mu s}\omega[2+\frac{\omega (\xi +1)}{\omega }+\frac{\omega (\xi -1)}{\omega }]V_2^2 d\xi ds+\\ &2\int_0^t \int_\mathbb{R}e^{2\mu s}\omega Q_2(s,\xi)V_2^2d\xi ds+ \int_0^t \int_\mathbb{R}e^{2\mu s}\omega c_{21}(r_2-\phi_2)(V_1^2+V_2^2)d\xi ds+\\ &\int_0^t \int_\mathbb{R}e^{2\mu s}\omega c_{23}(r_2-\phi_2)(V_2^2+V_3^2)d\xi ds+ 2\int_0^t \int_\mathbb{R}e^{2\mu s}\omega V_2^3d\xi ds, \end{align} (4.17)
    \begin{align} e^{2\mu t}\|V_3 (t,\xi)\|_{L_\omega ^2 }^2 \le &\| V_{3} (0,\xi)\|_{L_\omega ^2 }^2+d_3\int_0^t\int_\mathbb{ R} e^{2\mu s}\omega[2+\frac{\omega (\xi +1)}{\omega }+\frac{\omega (\xi -1)}{\omega }]V_3^2 d\xi ds+\\ &2\int_0^t \int_\mathbb{R}e^{2\mu s}\omega Q_3(s,\xi)V_3^2d\xi ds+\int_0^t \int_\mathbb{R}e^{2\mu s}\omega c_{31}\phi_3(V_1^2+V_3^2)d\xi ds+\\ &\int_0^t \int_\mathbb{R}e^{2\mu s}\omega c_{32}\phi_3(V_2^2+V_3^2)d\xi ds. \end{align} (4.18)

    Noting that r_2-\phi_2 > 0 . Summing up the inequalities (4.16)–(4.18), we can derive

    \begin{align} \sum\limits_{i = 1}^3e^{2\mu t}\|V_i (t,\xi)\|_{L_\omega ^2 }^2+\int_0^t \int_\mathbb{R}e^{2\mu s} \omega \sum\limits_{i = 1}^3 R^{\mu}_i(s,\xi)V_i^2d\xi ds \le\sum\limits_{i = 1}^3\| V_{i} (0,\xi)\|_{L_\omega ^2 }^2, \end{align} (4.19)

    where

    \begin{align*} R_1^\mu(t,\xi): = &-d_1[2+\frac{\omega (\xi +1)}{\omega(\xi) }+\frac{\omega (\xi -1)}{\omega (\xi)}]-2Q_1 -(c_{12}+c_{13})\phi_1 -c_{21}(r_2-\phi_2)-c_{31}\phi_3,\\ R_2^\mu(t,\xi): = &-d_2[2+\frac{\omega (\xi +1)}{\omega(\xi) }+\frac{\omega (\xi -1)}{\omega(\xi) }]-2Q_2-c_{12}\phi_1-(c_{21}+c_{23})(r_2-\phi_2)-c_{32}\phi_3-2V_2,\\ R_3^\mu(t,\xi): = &-d_3[2+\frac{\omega (\xi +1)}{\omega(\xi) }+\frac{\omega (\xi -1)}{\omega(\xi) }]-2Q_3-(c_{31}+c_{32})\phi_3 -c_{23}(r_2-\phi_2)-c_{13}\phi_1. \end{align*}

    For convenience to estimate R_1^\mu(t, \xi) , we further set

    \begin{align*} \Lambda_1(\xi): = &-2r_1+4\phi_1(\xi)-2c_{13}w_*-(c_{12}+c_{13})u_*-c_{21}(r_2-\phi_2(\xi))-c_{31}w_*,\\ \Lambda_2(\xi): = &-4r_2+(2c_{21}-c_{12})u_*+(2c_{23}-c_{32})w_*-(c_{21}+c_{23})(r_2-\phi_2(\xi)),\\ \Lambda_3(\xi): = &-2r_3+4\phi_3(\xi)-2c_{31}u_*-(c_{31}+c_{32})w_*-c_{23}(r_2-\phi_2(\xi))-c_{13}u_*,\\ D_i(\sigma): = &d_i[-2+e^{\sigma}+e^{-\sigma}], \ \mbox{for } i = 1,2,3. \end{align*}

    Then we have the following properties.

    Lemma 4.2. Assume that {\rm(S1)} holds. There exist small \sigma_0 > 0 and large \xi_0 > 0 such that, for i = 1, 2, 3 ,

    \Lambda_i(\xi) \gt 0 \; and \; d_i[e^{-\sigma_0}-1] -D_i(\sigma_0)+\Lambda_i(\xi) \gt 0,\; for \; all \;\xi\ge\xi_0.

    Proof. By (S1) and the fact

    \begin{align*} \lim\limits_{\sigma\to 0}[D_i(\sigma)-{d_i (e^{-\sigma}-1)}] = 0,\ \mbox{for }i = 1,2,3, \end{align*}

    there exists a small \sigma_0 > 0 such that

    \begin{align} \ell_i \gt &D_i (\sigma_0){-d_i (e^{-\sigma_0}-1)},\ \mbox{for }i = 1,2,3. \end{align} (4.20)

    Fixing this \sigma_0 , then it follows from (1.9) and (4.20) that \lim\limits_{\xi\to\infty}\Lambda_i(\xi) = \ell_i > 0\ \mbox{and }

    \begin{align*} \lim\limits_{\xi\to\infty}(d_i[e^{-\sigma_0}-1] -D_i(\sigma_0)+\Lambda_i(\xi)) = d_i[e^{-\sigma_0}-1] -D_i(\sigma_0)+\ell_i \gt 0,\ \mbox{for }i = 1,2,3. \end{align*}

    Hence, this assertion holds by the continuity argument.

    Let's choose \omega(\xi) as the form (4.1), where \sigma = \sigma_0 and \xi_0 are the positive constants derived in Lemma 4.2. It's easy to see that

    \begin{align} &\frac{{\omega }'(\xi )}{\omega (\xi )} = \left\{ \begin{array}{rl} -\sigma_0, &\mbox{if }{\xi \lt \xi_0},\\ 0,&\mbox{if }{\xi \gt \xi_0}, \end{array} \right. \quad \frac{\omega (\xi+1)}{\omega (\xi )} = \left\{ \begin{array}{rl} e^{-\sigma_0}, &\mbox{if }\xi \lt \xi _0 -1,\\ e^{\sigma_0(\xi-\xi_0)},&\mbox{if }\xi _0 -1 \lt \xi\le \xi_0 , \\ 1,&\mbox{if }\xi _0 \lt \xi , \end{array} \right. \end{align} (4.21)
    \begin{align} &{\frac{\omega (\xi -1)}{\omega (\xi )}} = \left\{ \begin{array}{rl} e^{\sigma_0}, &\mbox{if }\xi\le \xi_0,\\ e^{-\sigma_0(\xi-1-\xi_0)},&\mbox{if }\xi_0\le\xi \lt \xi_0+1,\\ 1,&\mbox{if }\xi_0+1\le \xi. \end{array} \right. \end{align} (4.22)

    Furthermore, let's fix three wave speeds c_i > 0 such that

    \begin{align} c_1\sigma_0: = &D_1(\sigma_0)+d_1+2r_1+2c_{13}w_*+(c_{12}+c_{13})u_*+r_2c_{21}+c_{31}w_*, \end{align} (4.23)
    \begin{align} c_2\sigma_0: = &D_2(\sigma_0)+d_2+4r_2+c_{12}u_*+r_2(c_{21}+c_{23})+c_{32}w_*, \end{align} (4.24)
    \begin{align} c_3\sigma_0: = &D_3(\sigma_0)+d_3+2r_3+2c_{31}u_*+(c_{31}+c_{32})w_*+r_2c_{23}+c_{13}u_*. \end{align} (4.25)

    Then we estimate R_i^\mu(t, \xi) , i = 1, 2, 3 in the following lemma.

    Lemma 4.3. Assume that \rm(S1) –{\rm(S2)} hold and c > \max\{ c_1^*, c_1, c_2, c_3\} . Then there exists a small \mu > 0 such that the following statements hold:

    {\rm(1)} There exists a positive constant C_0 such that

    \begin{align} &R_i^\mu(t,\xi)\ge C_0, \ \forall {(t,\xi)\in\mathbb{R}^+\times\mathbb{R}}, i = 1,2,3. \end{align} (4.26)

    {\rm(2)} There exists a positive constant C_1 such that

    \begin{equation} \sum\limits_{i = 1}^3\| V_i (\cdot,t)\| _{L_\omega ^2 }^2 + \int_0^t e^{-2\mu (t-s)}\sum\limits_{i = 1}^3\|V_i(\cdot,s)\|_{L_\omega ^2 }^2 ds \le C_1 e^{-2\mu t} \sum\limits_{i = 1}^3\|V_{i}(\cdot,0)\|_{L_\omega ^2 }^2. \end{equation} (4.27)

    Proof. (1) Noting that (0, 0, 0) < (V_1+\phi_1, V_2+\phi_2, V_3+\phi_3) < (u_*, r_2, w_*) . Let's prove the assertion by considering the following four cases.

    Case 1: \xi < \xi _0 -1 . By Lemma 4.2 and (4.21)–(4.25), we have

    \begin{align*} R_1^0(t,\xi) = &-D_1(\sigma_0)+{c}\sigma_0 -2[r_1-2\phi_1+c_{12}(V_2+\phi_2-r_2)+c_{13}(V_3+\phi_3)]\\ &-(c_{12}+c_{13})\phi_1 -c_{21}(r_2-\phi_2)-c_{31}\phi_3\\ \gt &{c_1}\sigma_0-D_1(\sigma_0)-d_1-2r_1-2c_{13}w_*-(c_{12}+c_{13})u_*-r_2c_{21}-c_{31}w_* = 0,\\ R_2^0(t,\xi) = &-D_2(\sigma_0)+{c}\sigma_0 -2[-r_2+2\phi_2-c_{21}(V_1+\phi_1)-c_{23}(V_3+\phi_3)]\\ &-c_{12}\phi_1-(c_{21}+c_{23})(r_2-\phi_2)-c_{32}\phi_3-2V_2,\\ \gt &{c_2}\sigma_0-D_2(\sigma_0)-d_2-4r_2-c_{12}u_*-r_2(c_{21}+c_{23})-c_{32}w_* = 0,\\ R_3^0(t,\xi) \gt &{c_3}\sigma_0-D_3(\sigma_0)-d_3-2r_3-2c_{31}u_*-(c_{31}+c_{32})w_*-r_2c_{23}-c_{13}u_* = 0. \end{align*}

    Case 2: \xi _0 -1 < \xi\le \xi_0 . In this case, d_ie^{-\sigma_0}+d_i(1-e^{\sigma_0(\xi-\xi_0)}) > 0 , for i = 1, 2, 3 . By Lemma 4.2 and (4.21)–(4.25), we have

    \begin{align*} R_1^0(t,\xi) = &-d_1[-2+e^{\sigma_0(\xi-\xi_0)}+e^{\sigma_0}]+{c}\sigma_0-2[r_1-2\phi_1+c_{12}(V_2+\phi_2-r_2)+c_{13}(V_3+\phi_3)]\\ &-(c_{12}+c_{13})\phi_1 -c_{21}(r_2-\phi_2)-c_{31}\phi_3\\ \gt &{d_1e^{-\sigma_0}+d_1(1-e^{\sigma_0(\xi-\xi_0)})}+\nonumber\\ &{c_1}\sigma_0-D_1(\sigma_0)-d_1-2r_1-2c_{13}w_*-(c_{12}+c_{13})u_*-r_2c_{21}-c_{31}w_* \gt 0,\\ R_2^0(t,\xi) = &-d_2[-2+e^{\sigma_0(\xi-\xi_0)}+e^{\sigma_0}]+{c}\sigma_0 -2[-r_2+2\phi_2-c_{21}(V_1+\phi_1)-c_{23}(V_3+\phi_3)]\\ &-c_{12}\phi_1-(c_{21}+c_{23})(r_2-\phi_2)-c_{32}\phi_3-2V_2,\\ \gt &{d_2e^{-\sigma_0}+d_2(1-e^{\sigma_0(\xi-\xi_0)})}+\\ &{c_2}\sigma_0-D_2(\sigma_0)-d_2-4r_2-c_{12}u_*-r_2(c_{21}+c_{23})-c_{32}w_* \gt 0,\\ R_3^0(t,\xi) = &-d_3[-2+e^{\sigma_0(\xi-\xi_0)}+e^{\sigma_0}]+{c}\sigma_0-2[r_3-2\phi_3+c_{31}(V_1+\phi_1)+c_{32}(V_2+\phi_2-r_2)]\\ &-(c_{31}+c_{32})\phi_3 -c_{23}(r_2-\phi_2)-c_{13}\phi_1\\ \gt &{d_3e^{-\sigma_0}+d_3(1-e^{\sigma_0(\xi-\xi_0)})} +\\ &{c_3}\sigma_0-D_3(\sigma_0)-d_3-2r_3-2c_{31}u_*-(c_{31}+c_{32})w_*-r_2c_{23}-c_{13}u_* \gt 0. \end{align*}

    Case 3: \xi _0 < \xi \le \xi _0 +1 . In this case, one can see that d_1[e^{\sigma_0}-e^{-\sigma_0(\xi-\xi_0-1)}] \leq 0 . By Lemma 4.2, (4.21) and (4.22), we have

    \begin{align*} R_1^0(t,\xi) = &-d_1[-1+e^{-\sigma_0(\xi-\xi_0-1)}] -2[r_1-2\phi_1+c_{12}(V_2+\phi_2-r_2)+c_{13}(V_3+\phi_3)]\\ &-(c_{12}+c_{13})\phi_1 -c_{21}(r_2-\phi_2)-c_{31}\phi_3\\ \ge& d_1[e^{-\sigma_0}-1] -D_1(\sigma_0) +\Lambda_1(\xi) \gt 0, \ \ \ \\ {R_2^0(t,\xi)} = &-d_2[-1+e^{-\sigma_0(\xi-\xi_0-1)}] -2[-r_2+2\phi_2-c_{21}(V_1+\phi_1)-c_{23}(V_3+\phi_3)]\\ &-c_{12}\phi_1-(c_{21}+c_{23})(r_2-\phi_2)-c_{32}\phi_3-2V_2,\\ \ge& d_2[e^{-\sigma_0}-1] -D_2(\sigma_0)+ \Lambda_2(\xi) \gt 0,\\ R_3^0(t,\xi) = &-d_3[-1+e^{-\sigma_0(\xi-\xi_0-1)}]-2[r_3-2\phi_3+c_{31}(V_1+\phi_1)+c_{32}(V_2+\phi_2-r_2)]\\ &-(c_{31}+c_{32})\phi_3 -c_{23}(r_2-\phi_2)-c_{13}\phi_1\\ \ge& d_3[e^{-\sigma_0}-1]-D_3(\sigma_0) +\Lambda_3(\xi) \gt 0. \end{align*}

    Case 4: \xi > \xi _0 +1 . In this case, by Lemma 4.2, (4.21) and (4.22), we have

    \begin{align*} R_1^0(t,\xi) = &-2[r_1-2\phi_1+c_{12}(V_2+\phi_2-r_2)+c_{13}(V_3+\phi_3)]\\ &-(c_{12}+c_{13})\phi_1 -c_{21}(r_2-\phi_2)-c_{31}\phi_3\\ \ge & \Lambda_1(\xi) \gt 0,\\ {R_2^0(t,\xi)} = &-2[-r_2+2\phi_2-c_{21}(V_1+\phi_1)-c_{23}(V_3+\phi_3)]\\ &-c_{12}\phi_1-(c_{21}+c_{23})(r_2-\phi_2)-c_{32}\phi_3-2V_2,\\ \ge& \Lambda_2(\xi) \gt 0,\\ R_3^0(t,\xi) = &-2[r_3-2\phi_3+c_{31}(V_1+\phi_1)+c_{32}(V_2+\phi_2-r_2)]\\ &-(c_{31}+c_{32})\phi_3 -c_{23}(r_2-\phi_2)-c_{13}\phi_1\\ \ge& \Lambda_3(\xi) \gt 0. \end{align*}

    According to the above four cases, we may choose a small \mu > 0 such that (4.26) holds for some positive constant C_0 .

    (2) The inequality (4.27) is a direct consequence of (4.19) and (4.26).

    Now we consider the derivative estimates of system (4.8). By differentiating (4.8), (4.9) and (4.10) with respect to \xi , it follows that

    \begin{align} V_{1t\xi}+cV_{1\xi\xi} = &d_1D[V_{1\xi}]+[r_1-c_{12}r_2-2\phi_1+c_{12}(V_2+\phi_2)+c_{13}(V_3+\phi_3)]V_{1\xi}+\\ &[-2\phi_{1\xi}+c_{12}(V_{2\xi}+\phi_{2\xi})+c_{13}(V_{3\xi}+\phi_{3\xi})]V_1+\\ &c_{12}[\phi_{1\xi}V_2+\phi_{1}V_{2\xi}]+c_{13}[\phi_{1\xi}V_3+\phi_{1}V_{3\xi}]-2V_1V_{1\xi}, \end{align} (4.28)
    \begin{align} V_{2t\xi}+cV_{2\xi\xi} = &d_2D[V_{2\xi}]+[-r_2+2\phi_2-c_{21}(V_1+\phi_1)-c_{23}(V_3+\phi_3)]V_{2\xi}+\\ &[2\phi_{2\xi}-c_{21}(V_{1\xi}+\phi_{1\xi})-c_{23}(V_{3\xi}+\phi_{3\xi})]V_2+\\ &c_{21}(r_2V_{1\xi}-\phi_{2\xi}V_1-\phi_2V_{1\xi}) +c_{23}(r_2V_{3\xi}-\phi_{2\xi}V_3-\phi_2V_{3\xi})+2V_2V_{2\xi}, \end{align} (4.29)
    \begin{align} V_{3t\xi}+cV_{3\xi\xi} = &d_3D[V_{3\xi}]+[r_3-c_{32}r_2-2\phi_3+c_{31}(V_1+\phi_1)+c_{32}(V_2+\phi_2)]V_{3\xi}+\\ &[-2\phi_{3\xi}+c_{31}(V_{1\xi}+\phi_{1\xi})+c_{32}(V_{2\xi}+\phi_{2\xi})]V_{3}+\\ &c_{31}(\phi_{3\xi}V_1+\phi_3V_{1\xi})+c_{32}(\phi_{3\xi}V_2+\phi_3V_{2\xi})-2V_3V_{3\xi}. \end{align} (4.30)

    Multiplying (4.28)–(4.30) by e^{2\mu t}\omega (\xi)V_{i\xi } (t, \xi) with i = 1, 2, 3 , respectively, we can obtain

    \begin{align} &\big( {\frac{1}{2}e^{2\mu t}\omega V_{1\xi }^2 } \big)_t +\big( {\frac{c}{2}e^{2\mu t}\omega V_{1\xi }^2 } \big)_\xi-d_1e^{2\mu t}\omega V_{1\xi }[V_{1\xi}(t,\xi+1)+V_{1\xi}(t,\xi-1)] \\ = &e^{2\mu t}\omega Q_1(t,\xi) V_{1\xi }^2+e^{2\mu t}\omega [-2\phi_{1\xi}+c_{12}(V_{2\xi}+\phi_{2\xi})+c_{13}(V_{3\xi}+\phi_{3\xi})]V_1V_{1\xi }+\\ &e^{2\mu t}\omega[-2V_1V_{1\xi}+c_{12}(\phi_{1\xi}V_2+\phi_{1}V_{2\xi})+c_{13}(\phi_{1\xi}V_3+\phi_{1}V_{3\xi})]V_{1\xi }, \end{align} (4.31)
    \begin{align} &\big(\frac{1}{2}e^{2\mu t}\omega V_{2\xi}^2\big)_t +\big(\frac{c}{2}e^{2\mu t}\omega V_{2\xi}^2\big)_\xi-d_2e^{2\mu t}\omega V_2 [V_{2\xi}(t,\xi+1)+V_{2\xi}(t,\xi-1)]\\ = &e^{2\mu t}\omega Q_2(t,\xi) V_{2\xi }^2+e^{2\mu t}\omega [2\phi_{2\xi}-c_{21}(V_{1\xi}+\phi_{1\xi})-c_{23}(V_{3\xi}+\phi_{3\xi})]V_2 V_{2\xi}+\\ &e^{2\mu t}\omega [2V_2V_{2\xi}+c_{21}(r_2V_{1\xi}-\phi_{2\xi}V_1-\phi_2V_{1\xi}) +c_{23}(r_2V_{3\xi}-\phi_{2\xi}V_3-\phi_2V_{3\xi})] V_{2\xi}, \end{align} (4.32)
    \begin{align} &\big(\frac{1}{2}e^{2\mu t}\omega V_{3\xi}^2\big)_t +\big(\frac{c}{2}e^{2\mu t}\omega V_{3\xi}^2\big)_\xi-d_2e^{2\mu t}\omega V_3 [V_{3\xi}(t,\xi+1)+V_{3\xi}(t,\xi-1)]\\ = &e^{2\mu t}\omega Q_3(t,\xi) V_{3\xi }^2+e^{2\mu t}\omega [-2\phi_{3\xi}+c_{31}(V_{1\xi}+\phi_{1\xi})+c_{32}(V_{2\xi}+\phi_{2\xi})]V_{3}V_{3\xi}+\\ &e^{2\mu t}\omega [-2V_3V_{3\xi}+c_{31}(\phi_{3\xi}V_1+\phi_3V_{1\xi})+c_{32}(\phi_{3\xi}V_2+\phi_3V_{2\xi})]V_{3\xi}. \end{align} (4.33)

    Then, applying the Cauchy–Schwarz inequality, it follows that

    \begin{align} 2\int_0^t { \int_\mathbb{R} {e^{2\mu s}\omega V_{i \xi}V_{i \xi}(s,\xi \pm1)d\xi ds} } \le & \int_0^t {e^{2\mu s} \int_\mathbb{ R} {\omega \big(V_{i \xi}^2 +V_{i \xi}^2 (s,\xi \pm1)\big)d\xi ds} } \\ = &\int_0^t {e^{2\mu s}\big[ { \int_\mathbb{ R} {\omega V_{i \xi}^2 d\xi } + \int_\mathbb{ R} {\frac{\omega (\xi \mp1)}{\omega }\omega V_{i \xi}^2 d\xi } } \big]ds},\ \end{align} (4.34)
    \begin{align} 2\int_0^t \int_\mathbb{R} e^{2\mu s}\omega V_{i \xi}V_{j \xi} d\xi ds \le & \int_0^t \int_\mathbb{ R}e^{2\mu s} \omega (V_{i \xi}^2 +V_{j \xi}^2)d\xi ds,\ i,j = 1,2,3. \end{align} (4.35)

    Since V_i \in H_\omega ^2 , we know that \{e^{2\mu t}\omega {V_{i\xi }^2 }\} \big|_{\xi = -\infty }^{\xi = \infty } = 0, \ \mbox{for }i = 1, 2, 3. Therefore, by (4.34), (4.35) and integrating both sides of (4.31)–(4.33) over [0, t]\times\mathbb{R} with respect to t and \xi , we have

    \begin{align} e^{2\mu t}\|V_{1\xi} (t,\xi)\|_{L_\omega ^2 }^2 \le &\| V_{1\xi} (0,\xi)\|_{L_\omega ^2 }^2+d_1\int_0^t\int_\mathbb{ R} e^{2\mu s} \omega[2+\frac{\omega (\xi +1)}{\omega }+\frac{\omega (\xi -1)}{\omega }]V_{1\xi}^2 d\xi ds+\\ &2\int_0^t \int_\mathbb{R}e^{2\mu s}\omega Q_1(s,\xi)V_{1\xi}^2d\xi ds+ \int_0^t\int_\mathbb{ R}e^{2\mu t}\omega (c_{12}+c_{13})(V_1+\phi_1)V_{1\xi}^2d\xi ds+ \\ &\int_0^t\int_\mathbb{ R}e^{2\mu t}\omega c_{12}(V_1+\phi_1)V_{2\xi}^2d\xi ds+ \int_0^t\int_\mathbb{ R}e^{2\mu t}\omega c_{13}(V_1+\phi_1)V_{3\xi}^2d\xi ds + \\ &2\int_0^t\int_\mathbb{ R}e^{2\mu t}\omega [-2\phi_{1\xi}+c_{12}\phi_{2\xi}+c_{13}\phi_{3\xi}]V_1V_{1\xi }ds+ \\ &2\int_0^t\int_\mathbb{ R}e^{2\mu t}\omega[c_{12}\phi_{1\xi}V_2+c_{13}\phi_{1\xi}V_3]V_{1\xi }ds, \end{align} (4.36)
    \begin{align} e^{2\mu t}\|V_{2\xi} (t,\xi)\|_{L_\omega ^2 }^2 \le &\| V_{2\xi} (0,\xi)\|_{L_\omega ^2 }^2+d_2\int_0^t\int_\mathbb{ R} e^{2\mu s} \omega[2+\frac{\omega (\xi +1)}{\omega }+\frac{\omega (\xi -1)}{\omega }]V_{2\xi}^2 d\xi ds+\\ &2\int_0^t \int_\mathbb{R}e^{2\mu s}\omega Q_2(s,\xi)V_{2\xi}^2d\xi ds+ \int_0^t \int_\mathbb{R}e^{2\mu t}\omega c_{21}(r_2-\phi_2-V_2)V_{1\xi}^2ds+\\ &\int_0^t \int_\mathbb{R}e^{2\mu t}\omega (4V_2+c_{21}(r_2-\phi_2{-V_2})+c_{23}(r_2-\phi_2{-V_2}))V_{2\xi}^2ds+ \end{align} (4.37)
    \begin{align} &\int_0^t \int_\mathbb{R}e^{2\mu t}\omega c_{23}(r_2-\phi_2-V_2)V_{3\xi}^2ds+\\ &2\int_0^t \int_\mathbb{R}e^{2\mu t}\omega [2\phi_{2\xi}-c_{21}\phi_{1\xi}-c_{23}\phi_{3\xi}]V_2 V_{2\xi}ds+\\ &2\int_0^t \int_\mathbb{R}e^{2\mu t}\omega [-c_{21}\phi_{2\xi}V_1- c_{23}\phi_{2\xi}V_3] V_{2\xi}ds, \end{align} (4.38)
    \begin{align} e^{2\mu t}\|V_{3\xi} (t,\xi)\|_{L_\omega ^2 }^2 \le &\| V_{3\xi} (0,\xi)\|_{L_\omega ^2 }^2+d_3\int_0^t\int_\mathbb{ R} e^{2\mu s} \omega[2+\frac{\omega (\xi +1)}{\omega }+\frac{\omega (\xi -1)}{\omega }]V_{3\xi}^2 d\xi ds+\\ &2\int_0^t \int_\mathbb{R}e^{2\mu s}\omega Q_3(s,\xi)V_{3\xi}^2d\xi ds+ \int_0^t \int_\mathbb{R}e^{2\mu s}\omega c_{31}(V_3+\phi_3)V_{1\xi}^2ds+\\ &\int_0^t \int_\mathbb{R}e^{2\mu s}\omega c_{32}(V_3+\phi_3)V_{2\xi}^2ds+ \int_0^t \int_\mathbb{R}e^{2\mu s}\omega (c_{31}+c_{32})(V_3+\phi_3)V_{3\xi}^2ds+\\ &2\int_0^t \int_\mathbb{R}e^{2\mu s}\omega [-2\phi_{3\xi}+c_{31}\phi_{1\xi}+c_{32}\phi_{2\xi})]V_{3}V_{3\xi}ds+\\ &2\int_0^t \int_\mathbb{R}e^{2\mu s}\omega [c_{31}\phi_{3\xi}V_1+c_{32}\phi_{3\xi}V_2]V_{3\xi}ds. \end{align} (4.39)

    Summing up the inequalities (4.36)–(4.39), we can derive

    \begin{align} &\sum\limits_{i = 1}^3e^{2\mu t}\|V_{i\xi} (t,\xi)\|_{L_\omega ^2 }^2+\int_0^t \int_\mathbb{R}e^{2\mu s} \omega(\xi)\sum\limits_{i = 1}^3 \widehat{R}^{\mu}_i(s,\xi)V_{i\xi}^2d\xi ds\\ \le &\sum\limits_{i = 1}^3\| V_{i\xi} (0,\xi)\|_{L_\omega ^2 }^2+2\int_0^t \int_\mathbb{R}e^{2\mu s}\omega(\xi) H(s,\xi)d\xi ds, \end{align} (4.40)

    where

    \begin{align*} \widehat{R}_1^\mu(t,\xi): = &-d_1[2+\frac{\omega (\xi +1)}{\omega (\xi)}+\frac{\omega (\xi -1)}{\omega (\xi)}] -2Q_1\nonumber\\ &-(c_{12}+c_{13})(V_1+\phi_1)-c_{21}(r_2-\phi_2-V_2)-c_{31}(V_3+\phi_3),\\ \widehat{R}_2^\mu(t,\xi): = &-d_2[2+\frac{\omega (\xi +1)}{\omega(\xi) }+\frac{\omega (\xi -1)}{\omega (\xi)}] -2Q_2\nonumber\\ &-c_{12}(V_1+\phi_1)-4V_2-(c_{21}+c_{23})(r_2-\phi_2{-V_2})-c_{32}(V_3+\phi_3),\\ \widehat{R}_3^\mu(t,\xi): = &-d_3[2+\frac{\omega (\xi +1)}{\omega (\xi)}+\frac{\omega (\xi -1)}{\omega (\xi)}]-2Q_3\nonumber\\ &-c_{13}(V_1+\phi_1)-c_{23}(r_2-\phi_2-V_2)-(c_{31}+c_{32})(V_3+\phi_3),\\ H(t,\xi): = &[c_{12}\phi_{1\xi}V_2+c_{13}\phi_{1\xi}V_3]V_{1\xi }- [c_{21}\phi_{2\xi}V_1+c_{23}\phi_{2\xi}V_3] V_{2\xi}+[c_{31}\phi_{3\xi}V_1+c_{32}\phi_{3\xi}V_2]V_{3\xi}+\\ &[-2\phi_{1\xi}+c_{12}\phi_{2\xi}+c_{13}\phi_{3\xi}]V_1V_{1\xi }+ [2\phi_{2\xi}-c_{21}\phi_{1\xi}-c_{23}\phi_{3\xi}]V_2 V_{2\xi}+\\ &[-2\phi_{3\xi}+c_{31}\phi_{1\xi}+c_{32}\phi_{2\xi})]V_{3}V_{3\xi}. \end{align*}

    Similar to the discussion of Lemma 4.3, we have the following lemma.

    Lemma 4.4. Assume \rm(S1) –{\rm(S2)} and c > \max\{{c_1^*}, c_1, c_2, c_3\} . There exists a small \mu > 0 such that the following statements hold:

    {\rm(1)} There exists a positive constant \widehat{C}_0 such that

    \begin{align} \widehat{R}_i^\mu(t,\xi)\ge \widehat{C}_0, \ \forall (t,\xi)\in\mathbb{R}^ +\times\mathbb{R},\ i = 1,2,3. \end{align} (4.41)

    {\rm(2)} There exists a positive constant \widehat{C}_1 such that

    \begin{equation} \sum\limits_{i = 1}^3\| V_{i\xi} (t,\cdot)\| _{L_\omega ^2 }^2 + \int_0^t e^{-2\mu (t-s)}\sum\limits_{i = 1}^3\|V_{i\xi}(s,\cdot)\|_{L_\omega ^2 }^2 ds \le \widehat{C}_1 e^{-2\mu t} \sum\limits_{i = 1}^3\|V_{i\xi}(0,\cdot)\|_{L_\omega ^2 }^2. \end{equation} (4.42)

    Proof. (1) Using the same definitions of \Lambda_i(\xi) and c_j ( i = 1, \cdots, 6 , j = 1, 2, 3 ), the proof of this assertion is similar to that of part (1) in Lemma 4.3 and omitted.

    (2) According to (4.40), we first consider the following integral:

    \begin{equation} 2\int_0^t \int_\mathbb{R}e^{2\mu s}\omega H(s,\xi)d\xi ds. \end{equation} (4.43)

    Based on the properties of the traveling wavefront (\phi _1 (\xi), \phi _2 (\xi), \phi _3 (\xi)) , we can know that ({\phi }'_1 (\xi), {\phi }'_2 (\xi), {\phi }'_3 (\xi)) is bounded for all \xi \in \mathbb{R} . Thus, by the Young-inequality 2xy\le \varepsilon^{-1} x^2+{\varepsilon }y^2 with \varepsilon > 0 , we have

    \begin{align*} |H(s,\xi)|\le & C_2 (V_1+V_2+V_3)(|V_{1\xi }|+|V_{2\xi}|+|V_{3\xi}|)\\ \le & \bar{C}_2 \big[{\varepsilon}^{-1} \sum\limits_{i = 1}^3V_i^2(s,\xi)+\varepsilon\sum\limits_{i = 1}^3V_{i\xi}^2(s,\xi) \big], \ \forall (s,\xi)\in(0,\infty)\times\mathbb{R}, \end{align*}

    for some constant \bar{C}_2 > 0 . Then, by (4.27), one has

    \begin{align*} \int_0^t \int_\mathbb{R}e^{2\mu s}\omega H(s,\xi)d\xi ds \le& \bar{C}_2 \varepsilon^{-1} \int_0^t e^{2\mu s} \sum\limits_{i = 1}^3\|{V_i(s,\cdot)} \|^2_{L^2_\omega}ds+ \bar{C}_2\varepsilon \int_0^te^{2\mu s} \sum\limits_{i = 1}^3\|V_{i\xi}(s,\cdot) \|^2_{L^2_\omega} ds \\ \le& \bar{C}_2 \varepsilon^{-1}C_1{\sum\limits_{i = 1}^3\|V_i(0,\cdot) \|^2_{L^2_\omega} }+ \bar{C}_2\varepsilon \int_0^te^{2\mu s} \sum\limits_{i = 1}^3\|V_{i\xi}(s,\cdot) \|^2_{L^2_\omega} ds. \end{align*}

    Choosing \varepsilon small enough, it follows from (4.40) and (4.41) that the inequality (4.42) holds. The proof is complete.

    Based on Lemmas 6 and 7, we know that there exist positive constant C_3 and small \mu = \mu^+ > 0 such that

    \begin{equation} \|V_i(t,\cdot)\| _{H_\omega ^1 } \le C_3e^{-\mu^+ t} \big(\sum\limits_{i = 1}^3 \|V_{i}(0,\cdot)\|_{H_\omega ^1 }^2\big)^{1/2},\ \forall t \gt 0,\ i = 1,2,3. \end{equation} (4.44)

    Since \omega (\xi)\ge 1 , we have H_\omega ^1 (\mathbb{ R})\hookrightarrow H^1(\mathbb{ R})\hookrightarrow C(\mathbb{ R}) . Thus,

    \mathop {\sup }\limits_{x\in \mathbb{ R}} |V_i (t,\xi)| \le C_4\| V_i (t,\cdot)\| _{H^1}^2 \le C_4\|V_i (t,\cdot)\|_{H_\omega ^1 }^2 ,\ i = 1,2,3,

    for some C_4 > 0 . Hence, it follows from (4.44) that there exists a positive constant C^+ such that

    \sup\limits_{x\in \mathbb{R}} \| U^+(t,x)-\Phi (x+ct)\| \le C^+e^{-\mu^+ t},\text{ for }t \gt 0.

    Similar to the previous discussions, there exist positive constant C^- and small \mu = \mu^- > 0 such that

    \sup\limits_{x\in \mathbb{R}} \| U^-(t,x)-\Phi (x+ct)\| \le C^-e^{-\mu^- t},\text{ for }t \gt 0.

    Hence, we can conclude that

    \begin{equation*} \sup\limits_{x\in \mathbb{R}} \| u(t,x)-\Phi (x+ct)\| \le Ce^{-\mu t},\ \forall t \gt 0, \end{equation*}

    for some positive constants C and \mu . The proof of Theorem 4.1 is complete.

    In this section, we will also apply the weighted energy method to study the stability of traveling wavefronts obtained in Theorem 3.1. However, due to the lattice structure of system (1.7), we should adopt different weighted spaces to derive the weighted energy estimates. Therefore, we first introduce the following notations.

    Definition 5.1. Let \omega(\cdot)\in C(\mathbb{R}) be a given weighted function, for any fixed t\ge 0 and c > {c}_1^* , we denote the spaces \ell^2 and weighted spaces \ell^2_\omega by

    \begin{align*} {and }\begin{array}{ll} \ell^2: = \{v = \{v_i\}_{i\in\mathbb{Z}}|\ v_i\in\mathbb{R}\ {and}\ \sum\limits_{i\in \mathbb{Z}} v_i^2 \lt \infty\}\\ \ell^2_\omega(t): = \{v = \{v_i\}_{i\in\mathbb{Z}}|\ v_i\in\mathbb{R}\ {and}\ \sum\limits_{i\in \mathbb{Z}} \omega(i+ct)v_i^2 \lt \infty\}, \end{array} \end{align*}

    which are endowed with the following norms:

    \begin{equation*} \begin{array}{ll} \|v\|_{\ell^2}: = \big(\sum\limits_{i\in \mathbb{Z}} v_i^2\big)^{1/2}\text{ for }v\in \ell^2\ \mbox{and}\ \|v\|_{\ell^2_\omega(t)}: = \big(\sum\limits_{i\in \mathbb{Z}} \omega(i+ct)v_i^2\big)^{1/2}\text{ for }v\in \ell^2_\omega(t). \end{array} \end{equation*}

    According to Definition 5.1, let us consider the initial value problem of (1.7) with initial data and \{u_i(0)\}_{i\in\mathbb{Z}}, \ \{v_i(0)\}_{i\in\mathbb{Z}}, \ \{w_i(0)\}_{i\in\mathbb{Z}} satisfying the assumption

    {\rm(L1)} (u_i(0), v_i(0), w_i(0))\in[{\bf E}_1, {\bf E}_2] for all i\in\mathbb{Z} and

    \{u_i(0)-\phi_1(i)\}_{i\in\mathbb{Z}}, \ \{v_i(0)-\phi_2(i)\}_{i\in\mathbb{Z}}, \ \{w_i(0)-\phi_3(i)\}_{i\in\mathbb{Z}}\in\ell^2_{\omega}(0).

    Then we can obtain the following stability result.

    Theorem 5.1. Assume that {\rm(S1)}, {\rm(S2)} and {\rm(L1)} hold. Let \Phi (i+ct) be a traveling wavefront of (1.7) satisfying (1.9) and with speed c > \max\{{c}_1^{*}, c_1, c_2, c_3\} . Then the initial value problem of (1.7) admits a unique solution \{u_i(t)\}_{i\in\mathbb{Z}}, \ \{v_i(t)\}_{i\in\mathbb{Z}}, \ \{w_i(t)\}_{i\in\mathbb{Z}} satisfying (u_i(t), v_i(t), w_i(t))\in[{\bf E}_1, {\bf E}_2] for all t > 0, \ i\in \mathbb{Z} . In addition, for t > 0 , we have

    \begin{align*} & \{u_i(i)-\phi_1(i+ct)\}_{i\in\mathbb{Z}}\in \ell^2_{\omega}(t),\ \sup\limits_{i\in\mathbb{Z}}|u_i(i)-\phi_1(i+ct)|\le Ce^{-\mu t};\\ & \{v_i(t)-\phi_2(i+ct)\}_{i\in\mathbb{Z}}\in \ell^2_{\omega}(t),\ \sup\limits_{i\in\mathbb{Z}}|v_i(i)-\phi_2(i+ct)|\le Ce^{-\mu t};\\ &\{w_i(t)-\phi_3(i+ct)\}_{i\in\mathbb{Z}}\in \ell^2_{\omega}(t),\ \sup\limits_{i\in\mathbb{Z}}|w_i(i)-\phi_3(i+ct)|\le Ce^{-\mu t}, \end{align*}

    for some positive constants C and \mu .

    Proof. The proof is similar to that of Theorem 4.1 by replacing the weighted spaces L^2 and L^2_{\omega} as \ell^2 and \ell^2_{\omega} respectively, we sketch it in the sequel.

    Step 1. Let \{U_i(t)\}_{i\in\mathbb{Z}} = \{(u_i(t), v_i(t), w_i(t))\}_{i\in\mathbb{Z}} be the solution of system (1.7) with initial data \{U_{i}(0)\}_{i\in\mathbb{Z}} = \{(u_i(0), v_i(0), w_i(0))\}_{i\in\mathbb{Z}} satisfying (L1). Then, \forall i\in \mathbb{Z} , we set

    \begin{align*} U_{i}^{-} (0): = &(\min \{u_i(0),\phi_1 (i)\},\min \{v_i(0),\phi_2 (i)\},\min \{w_i(0),\phi_3 (i)\}),\\ U_{i}^{+} (0): = &(\max\{u_i(0),\phi_1 (i)\},\max \{v_i(0),\phi_2 (i)\},\max \{w_i(0),\phi_3 (i)\}). \end{align*}

    Based on assumption (A2), it is clear that U^{\pm}_i (0) satisfy

    \begin{equation} {\bf E}_1\le U^- _i(0)\le U_{i}(0),\Phi (i)\le U^+_i (0)\le {\bf E}_2,\ \forall i\in \mathbb{Z}. \end{equation} (5.1)

    Let \{U_i^\pm(t)\}_{i\in\mathbb{Z}} be the solutions of (1.7) with initial data \{U_i^\pm(0)\}_{i\in\mathbb{Z}} , then we have

    \begin{equation} {\bf E}_1\le U_i^- (t)\le U_i(t),\Phi (i+ct)\le U_i^+ (t)\le {\bf E}_2,\ \forall(t,i)\in \mathbb{R}^+\times\mathbb{Z}. \end{equation} (5.2)

    Then it follows from (4.7) that

    \begin{equation} \|U_i (t)-\Phi (i+ct)\|\le {\max\{\|U_i^+ (t)-\Phi (i+ct)\|,\|U_i^- (t)-\Phi (i+ct)\|\}}, \end{equation} (5.3)

    for any (t, i)\in \mathbb{R}^+\times \mathbb{Z}. Therefore, to derive a priori estimate of U_i (t)-\Phi (i+ct) , it suffices to estimate the functions U_i^\pm (t)-\Phi (i+ct) . For convenience, let's denote

    V_i^\pm(t) : = U_i^\pm(t)-\Phi (i+ct)\quad\mbox{and}\quad V_{i}^\pm (0) : = U_i^\pm (0)-\Phi (i), \; \forall(t,i)\in \mathbb{R}^+\times {\mathbb{Z}}.

    Then it follows that

    {\bf E}_1\le V_i^\pm(0)\le {\bf E}_2\quad \text{and}\quad {\bf E}_1\le {V_i^\pm(t)}\le {\bf E}_2,\ \forall(t,i)\in \mathbb{R}^+\times {\mathbb{Z}}.

    Hence, we only need to estimate \{V_i^+(t)\}_{i\in\mathbb{Z}} , since \{V_i^-(t)\}_{i\in\mathbb{Z}} can also be discussed in the same way. For convenience, we drop the sign "+" for \{V_i^+(t)\}_{i\in\mathbb{Z}} , \{U_i^+(t)\}_{i\in\mathbb{Z}} and set

    \begin{align*} V_i(t) = (X_i(t),Y_i(t),Z_i(t)): = U_i(t)-\Phi (i+ct),\ \forall(t,i)\in \mathbb{R}^+\times{\mathbb{Z}}. \end{align*}

    Step 2. Similar to (4.8)–(4.10), V_i(t) satisfies

    \begin{align} X_{it} = d_1D[X_i]+& [r_1-c_{12}r_2-2\phi_1+c_{12}(Y_i+\phi_2)+c_{13}(Z_i+\phi_3)]X_i+\\ &c_{12}\phi_1Y_i+c_{13}\phi_1Z_i-X_i^2, \end{align} (5.4)
    \begin{align} Y_{it} = d_2D[Y_i]+& [-r_2+2\phi_2-c_{21}(X_i+\phi_1)-c_{23}(Z_i+\phi_3)]Y_i+\\ &c_{21}(r_2-\phi_2)X_i+c_{23}(r_2-\phi_2)Z_i+Y_i^2, \end{align} (5.5)
    \begin{align} Z_{it} = d_3D[Z_i]+& [r_3-c_{32}r_2-2\phi_3+c_{31}(X_i+\phi_1)+c_{32}(Y_i+\phi_2)]Z_i+\\ &c_{31}\phi_3X_i+c_{32}\phi_3Y_i-Z_i^2. \end{align} (5.6)

    Step 3. Multiplying both sides of (5.4), (5.5) and (5.6) by e^{2\mu t}\omega (\xi) X_i(t), \, e^{2\mu t}\omega (\xi) Y_i(t) and e^{2\mu t}\omega (\xi) Z_i(t) respectively, we can obtain

    \begin{align} &\big(\frac{1}{2}e^{2\mu t}\omega X_i^2\big)_t -d_1e^{2\mu t}\omega X_i [X_{i+1}+X_{i-1}]\\ = &e^{2\mu t}\omega X_i^2 \hat{Q}_{i}(t) +e^{2\mu t}\omega X_i[c_{12}\phi_1Y_i+c_{13}\phi_1Z_i-X_i^2], \qquad\qquad\qquad\quad \end{align} (5.7)
    \begin{align} &\big(\frac{1}{2}e^{2\mu t}\omega Y_i^2\big)_t -d_2e^{2\mu t}\omega Y_i [Y_{i+1}+Y_{i-1}]\\ = &e^{2\mu t}\omega Y_i^2\bar{Q}_{i}(t)+ e^{2\mu t}\omega Y_i[c_{21}(r_2-\phi_2)X_i+c_{23}(r_2-\phi_2)Z_i+Y_i^2], \end{align} (5.8)
    \begin{align} &\big(\frac{1}{2}e^{2\mu t}\omega Z_i^2\big)_t -d_3e^{2\mu t}\omega Z_i [Z_{i+1}+Z_{i-1}]\\ = &e^{2\mu t}\omega Z_i^2\tilde{Q}_{i}(t)+ e^{2\mu t}\omega Z_i[c_{31}\phi_3X_i+c_{32}\phi_3Y_i-Z_i^2], \end{align} (5.9)

    where

    \begin{align*} \hat{Q}_{i}(t): = &\mu-2d_1+[r_1-2\phi_1+c_{12}(Y_i+\phi_2-r_2)+c_{13}(Z_i+\phi_3)],\\ \bar{Q}_{i}(t): = &\mu-2d_2+[-r_2+2\phi_2-c_{21}(X_i+\phi_1)-c_{23}(Z_i+\phi_3)],\\ \tilde{Q}_{i}(t): = &\mu-2d_3+[r_3-2\phi_3+c_{31}(X_i+\phi_1)+c_{32}(Y_i+\phi_2-r_2)]. \end{align*}

    Step 4. Let us set X(t) = \{X_i(t)\}_{i\in\mathbb{Z}}, Y(t) = \{Y_i(t)\}_{i\in\mathbb{Z}} and Z(t) = \{Z_i(t)\}_{i\in\mathbb{Z}}. Summing over all i\in\mathbb{Z} for (5.7)–(5.9), integrating them over [0, t] and applying the Cauchy-Schwarz inequality, we have

    \begin{align} e^{2\mu t}\|X(t)\|_{\ell_\omega ^2 }^2 \le &\| X(0)\|_{\ell_\omega ^2 }^2+d_1\int_0^t\sum\limits_{i\in\mathbb{Z}} e^{2\mu s} \omega[2+\frac{\omega (\xi +1)}{\omega }+\frac{\omega (\xi -1)}{\omega }]X_i^2 ds+\\ &2\int_0^t \sum\limits_{i\in\mathbb{Z}}e^{2\mu s}\omega \hat{Q}_i(s)X_i^2ds+ \int_0^t \sum\limits_{i\in\mathbb{Z}}e^{2\mu s}\omega c_{12}\phi_1(X_i^2+Y_i^2)ds+\\ & \int_0^t \sum\limits_{i\in\mathbb{Z}}e^{2\mu s}\omega {c_{13}}\phi_1(X_i^2+Z_i^2)ds, \end{align} (5.10)
    \begin{align} e^{2\mu t}\|Y(t)\|_{\ell_\omega ^2 }^2 \le &\|Y(0)\|_{\ell_\omega ^2 }^2+d_2\int_0^t\sum\limits_{i\in\mathbb{Z}} e^{2\mu s}\omega[2+\frac{\omega (\xi +1)}{\omega }+\frac{\omega (\xi -1)}{\omega }]Y_i^2 ds+\\ &2\int_0^t \sum\limits_{i\in\mathbb{Z}}e^{2\mu s}\omega \bar{Q}_i(s)Y_i^2 ds+ \int_0^t \sum\limits_{i\in\mathbb{Z}}e^{2\mu s}\omega c_{21}(r_2-\phi_2)(X_i^2+Y_i^2) ds+\\ &\int_0^t \sum\limits_{i\in\mathbb{Z}}e^{2\mu s}\omega c_{23}(r_2-\phi_2)(Y_i^2+Z_i^2) ds+ 2\int_0^t \sum\limits_{i\in\mathbb{Z}}e^{2\mu s}\omega Y_i^3 ds, \end{align} (5.11)
    \begin{align} e^{2\mu t}\|Z (t)\|_{\ell_\omega ^2 }^2 \le &\| Z(0)\|_{\ell_\omega ^2 }^2+d_3\int_0^t\sum\limits_{i\in\mathbb{Z}}e^{2\mu s}\omega[2+\frac{\omega (\xi +1)}{\omega }+\frac{\omega (\xi -1)}{\omega }]Z_i^2 ds+\\ &2\int_0^t \sum\limits_{i\in\mathbb{Z}}e^{2\mu s}\omega \tilde{Q}_i(s)Z_i^2 ds+\int_0^t \sum\limits_{i\in\mathbb{Z}}e^{2\mu s}\omega c_{31}\phi_3(X_i^2+Z_i^2) ds+\\ &\int_0^t \sum\limits_{i\in\mathbb{Z}}e^{2\mu s}\omega c_{32}\phi_3(Y_i^2+Z_i^2) ds. \end{align} (5.12)

    Summing up the inequalities (5.10)–(5.12), we can derive

    \begin{align} &e^{2\mu t}(\|X(t)\|_{\ell_\omega ^2 }^2+\|Y(t)\|_{\ell_\omega ^2 }^2+\|Z(t)\|_{\ell_\omega ^2 }^2)+\int_0^t \sum\limits_{i\in\mathbb{Z}}e^{2\mu s} \omega ( \hat{R}^{\mu}_i(s)X_i^2+ \bar{R}^{\mu}_i(s)Y_i^2+\tilde{R}^{\mu}_i(s)Z_i^2)ds\\ \le&(\|X(0)\|_{\ell_\omega ^2 }^2+\|Y(0)\|_{\ell_\omega ^2 }^2+\|Z(0)\|_{\ell_\omega ^2 }^2), \end{align} (5.13)

    where

    \begin{align*} \hat{R}_i^\mu(t): = &-d_1[2+\frac{\omega (\xi +1)}{\omega(\xi) }+\frac{\omega (\xi -1)}{\omega (\xi)}]-2\hat{Q}_i(t) -(c_{12}+c_{13})\phi_1 -c_{21}(r_2-\phi_2)-c_{31}\phi_3,\\ \bar{R}_i^\mu(t): = &-d_2[2+\frac{\omega (\xi +1)}{\omega(\xi) }+\frac{\omega (\xi -1)}{\omega(\xi) }]-2\bar{Q}_i(t)-c_{12}\phi_1-(c_{21}+c_{23})(r_2-\phi_2)-c_{32}\phi_3-2Y_i,\\ \tilde{R}_i^\mu(t): = &-d_3[2+\frac{\omega (\xi +1)}{\omega(\xi) }+\frac{\omega (\xi -1)}{\omega(\xi) }]-2\tilde{Q}_i(t)-(c_{31}+c_{32})\phi_3 -c_{23}(r_2-\phi_2)-c_{13}\phi_1. \end{align*}

    Step 5. Similar to Lemma 4.3, there exists \tilde{C}_0 > 0 such that

    \begin{equation*} \hat{R}_i^\mu(t), \bar{R}_i^\mu(t), \tilde{R}_i^\mu(t) \gt \tilde{C}_0,\ \forall i\in\mathbb{Z}\ \mbox{and }t \gt 0. \end{equation*}

    Then, for t\ge 0 , (5.13) implies that there exists a positive constant \tilde{C}_1 such that

    \begin{align} &(\|X(t)\|_{\ell_\omega ^2 }^2+\|Y(t)\|_{\ell_\omega ^2 }^2+\|Z(t)\|_{\ell_\omega ^2 }^2) + \int_0^t e^{-2\mu (t-s)}(\|X(s)\|_{\ell_\omega ^2 }^2+\|Y(s)\|_{\ell_\omega ^2 }^2+\|Z(s)\|_{\ell_\omega ^2 }^2)ds\\ \le &\tilde{C}_1 e^{-2\mu t} (\|X(0)\|_{\ell_\omega ^2 }^2+\|Y(0)\|_{\ell_\omega ^2 }^2+\|Z(0)\|_{\ell_\omega ^2 }^2). \end{align} (5.14)

    Step 6. Since \omega(\xi)\ge 1 , we have \|\cdot\|_{\ell^2}\le\|\cdot\|_{\ell_\omega^2}. By the Sobolev's embedding inequality \ell^2\hookrightarrow\ell^\infty , we have

    \begin{align*} &\sup\limits_{i\in\mathbb{Z}}|X_i(t)|\le C\|X(t)\|_{\ell^2}\le C\|X(t)\|_{\ell^2_\omega},\\ &\sup\limits_{i\in\mathbb{Z}}|Y_i(t)|\le C\|Y(t)\|_{\ell^2}\le C\|Y(t)\|_{\ell^2_\omega},\\ &\sup\limits_{i\in\mathbb{Z}}|Z_i(t)|\le C\|Z(t)\|_{\ell^2}\le C\|Z(t)\|_{\ell^2_\omega}, \end{align*}

    for some constant C > 0 . Then it follows from (5.14) that

    \begin{equation*} \sup\limits_{i\in\mathbb{Z}}\|U^+_i(t)-\Phi (i+ct)\|\le C_1^+ e^{-\mu t}, \ \end{equation*}

    for some constant C_1^+ > 0 . By (5.3) and similar arguments, we have

    \begin{equation*} \|U_i (t)-\Phi (i+ct)\|\le {\sup\limits_{i\in\mathbb{Z}}\max\{ \|U_i^+ (t)-\Phi (i+ct)\|,\|U_i^- (t)-\Phi (i+ct)\|\}}\le C_2e^{-\mu t}, \end{equation*}

    \forall(t, i)\in \mathbb{R}^+\times \mathbb{Z}, for some constant C_2 > 0 . The proof is complete.

    In this section, we will improve the stability results of Theorem 4.1 and Theorem 5.1 to any c > c^*_1 . Different to (4.1), we consider the weighted function

    \begin{equation} \omega^* (\xi ): = e^{-\mu^*_1 \xi},\ \forall\xi \in \mathbb{R}. \end{equation} (6.1)

    Note that \mu_1^* > 0 is a constant given in Lemma 2.1 such that

    \begin{equation} c^*_1\mu_1^* = {d_1(e^{\mu_1^*}+e^{-\mu_1^*}-2)+r_1-c_{12}r_2}. \end{equation} (6.2)

    Furthermore, we impose the following assumption:

    {\rm (S3)} r_1 > 2(c_{12}+c_{13}+c_{31})u_*+(3c_{12}+2c_{21}+4+2c_{23})r_2+2(c_{31}+c_{32})w_*.

    {\rm (S4)} \hat{\mu}: = \min\{\frac{1}{2}[\min\{u_*-c_{12}r_2-c_{13}w_*, w_*-c_{31}u_*-c_{32}r_2\}-\max\{c_{13}u_*, c_{31}w_*\}], -2r_2+{2c_{21}u_*+2c_{23}w_*}\} > 0 .

    Example 6.1. Assume that

    r_1 = 6,\, r_2 = 0.1,\, r_3 = 6,\, c_{12} = c_{13} = c_{31} = c_{32} = 0.01,\, c_{21} = c_{23} = 1.

    Then the parameters satisfy the assumptions \rm(H1), (H2), (S1), (S3) and \rm(S4) . In addition, we have

    {\bf E}_2 = (6.\overline{06},0.1,6.\overline{06})\; and \;(\ell_1,\ell_2,\ell_3)\simeq(11.817,12.734,11.817).

    Similar to (4.19), we can obtain the following estimation:

    \begin{align} \sum\limits_{i = 1}^3e^{2\mu t}\|V_i (t,\xi)\|_{L_{\omega^*} ^2 }^2+\int_0^t \int_\mathbb{R}e^{2\mu s} \omega^* \sum\limits_{i = 1}^3 {\mathcal R}^{\mu}_i(s,\xi)V_i^2d\xi ds \le\sum\limits_{i = 1}^3\| V_{i} (0,\xi)\|_{L_{\omega^*} ^2 }^2, \end{align} (6.3)

    where each {\mathcal R}^{\mu}_i(t, \xi) has the same form as {R}^{\mu}_i(t, \xi) but replacing \omega(\cdot) as \omega^*(\cdot) . Similar and simpler than Lemma 4.3, we have the following result.

    Lemma 6.1. Assume that \rm(S3) holds and c > c^*_1 . Then there exists a small \mu > 0 such that the following statements hold:

    {\rm(1)} There exists a positive constant C_0 such that

    \begin{align} &\sum\limits_{i = 1}^3{\mathcal R}_i^\mu(t,\xi)\ge {C}_0, \ \forall (t,\xi)\in{\mathbb{R}^+\times\mathbb{R}}, i = 1,2,3. \end{align} (6.4)

    {\rm(2)} There exists a positive constant {C}_1 such that

    \begin{equation} \sum\limits_{i = 1}^3\| V_i (\cdot,t)\| _{L_{\omega^*} ^2 }^2 + \int_0^t e^{-2\mu (t-s)}\sum\limits_{i = 1}^3\|V_i(\cdot,s)\|_{L_{\omega^*} ^2 }^2 ds \le C_1 e^{-2\mu t} \sum\limits_{i = 1}^3\|V_{i}(\cdot,0)\|_{L_{\omega^*} ^2 }^2. \end{equation} (6.5)

    Proof. (1) Noting that (0, 0, 0) < (V_1+\phi_1, V_2+\phi_2, V_3+\phi_3) < (u_*, r_2, w_*) . Since d_1\ge d_2, d_3 , it follows from (6.2) that

    \begin{equation} {c\mu^*_1}\ge {d_i(e^{\mu_1^*}+e^{-\mu_1^*}-2)+r_1-c_{12}r_2},\ \mbox{for }i = 1,2,3. \end{equation} (6.6)

    By (6.6) and elementary computations, we have

    \begin{align*} {\mathcal R}_1^0(t,\xi) = &-D_1(\mu_1^*)+{c}\mu_1^*-2[r_1-c_{12}r_2-2\phi_1+c_{12}(V_2+\phi_2)+c_{13}(V_3+\phi_3)]\\ &-(c_{12}+c_{13})\phi_1 -c_{21}(r_2-\phi_2)-c_{31}\phi_3\\ \gt &-(r_1-c_{12}r_2)-2c_{12}r_2-2c_{13}w_*-(c_{12}+c_{13})u_*-c_{21}r_2-c_{31}w_*,\\ {\mathcal R}_2^0(t,\xi) = &-D_2(\mu_1^*)+{c}\mu_1^* -2[-r_2+2\phi_2-c_{21}(V_1+\phi_1)-c_{23}(V_3+\phi_3)]\\ &-c_{12}\phi_1-(c_{21}+c_{23})(r_2-\phi_2)-c_{32}\phi_3-2V_2 \\ \gt &r_1-c_{12}r_2-4r_2-c_{12}u_*-(c_{21}+c_{23})r_2-c_{32}w_*,\\ {\mathcal R}_3^0(t,\xi) \gt &r_1-c_{12}r_2-2r_3-2c_{31}u_*-(c_{31}+c_{32})w_*-c_{23}r_2-{c_{13}u_* }. \end{align*}

    Then it follows from (S3) that

    \begin{equation*} \sum\limits_{i = 1}^3{\mathcal R}_i^0(t,\xi) \gt r_1-2(c_{12}+c_{13}+c_{31})u_*-(3c_{12}+2c_{21}+4+2c_{23})r_2-2(c_{31}+c_{32})w_* \gt 0. \end{equation*}

    Therefore, we may choose a small \mu > 0 such that (6.4) holds for some {C}_0 > 0 .

    (2) The proof of this part is the same as Lemma 4.3 and skipped. Similar to Lemmas 7 and, we have

    Lemma 6.2. Assume \rm(S3) and c > c^*_1 . There exists a small \mu > 0 such that the following statements hold:

    {\rm(1)} There exists a positive constant \widehat{C}_0 such that

    \begin{align} \widehat{\mathcal R}_i^\mu(t,\xi)\ge \widehat{C}_0, \ \forall (t,\xi)\in\mathbb{R}^ +\times\mathbb{R},\ i = 1,2,3. \end{align} (6.7)

    {\rm(2)} There exists a positive constant \widehat{C}_1 such that

    \begin{equation} \sum\limits_{i = 1}^3\| V_{i\xi} (t,\cdot)\| _{L_{\omega^*} ^2 }^2 + \int_0^t e^{-2\mu (t-s)}\sum\limits_{i = 1}^3\|V_{i\xi}(s,\cdot)\|_{L_{\omega^*} ^2 }^2 ds \le \widehat{C}_1 e^{-2\mu t} \sum\limits_{i = 1}^3\|V_{i\xi}(0,\cdot)\|_{L_{\omega^*} ^2 }^2.\qquad \end{equation} (6.8)

    Note that each \widehat{\mathcal R}^{\mu}_i(t, \xi) has the same form as \widehat{R}^{\mu}_i(t, \xi) but replacing \omega(\cdot) as \omega^*(\cdot) . as a consequence Lemmas 8 and 9, we know that there exist positive constant \tilde{C} and small \mu = \tilde{\mu} > 0 such that

    \begin{equation} \|V_i(t,\cdot)\| _{H_{\omega^*} ^1 } \le \tilde{C}e^{-\tilde{\mu} t} \big(\sum\limits_{i = 1}^3 \|V_{i}(0,\cdot)\|_{H_{\omega ^*}^1 }^2\big)^{1/2},\ \forall t \gt 0,\ i = 1,2,3. \end{equation} (6.9)

    Since \omega^*(\xi)\rightarrow 0 as \xi\rightarrow \infty , it is not true that H_{\omega^*} ^1(\mathbb{R})\hookrightarrow C(\mathbb{R}) . However, for any I = (-\infty, \bar{\xi}] for some large \bar{\xi}\gg 1 , we can obtain H_{\omega^*} ^1(I)\hookrightarrow C(I) . Thus, (6.9) implies the following lemma.

    Lemma 6.3. For all t > 0 , i = 1, 2, 3 , it holds that

    \begin{align} \mathop {\sup }\limits_{\xi\in I} \vert V_i (\xi,t)\vert\le \widehat{C}_1e^{-\tilde{\mu} t}\big( \sum\limits_{i = 1}^3 {\| V_{i0} (0)\| _{H_{\omega^*} ^1 }^2 }\big)^{ {1 \over 2}},\ \forall \xi\in I = (-\infty,\bar{\xi}], \end{align} (6.10)

    for some \tilde{\mu} > 0 and large \bar{\xi}\gg 1 .

    To extend the result of Lemma 6.3 to the whole space (-\infty, \infty) , we have to prove the convergence of V_i(\xi, t) as \xi\to\infty .

    Lemma 6.4. Assume that \rm(S4) holds. There exists some constant C > 0 such that

    \begin{align} \lim\limits_{\xi\to \infty} V_i(\xi,t) \le Ce^{-\hat{\mu} t},\ i = 1,2,3. \end{align} (6.11)

    Note that \hat\mu is given in {\rm(S4)}.

    Proof. It's easy to see that V_{i\xi } (\infty, t) = 0 and d_i {D}[V_i ](+\infty) = 0 for i = 1, 2, 3 . Based on (4.8)–(4.10) and the boundedness of \mathcal{V}_i(t): = V_i (\infty, t) for all \xi \in (-\infty, \infty) , letting \xi \to \infty , one immediately obtains

    \begin{align} \mathcal{V}_{1t}(t) = & -[u_*+\mathcal{V}_1(t)-c_{12}\mathcal{V}_2(t)-c_{13}\mathcal{V}_3(t)]\mathcal{V}_1(t)+c_{12}u_*\mathcal{V}_2(t)+c_{13}u_*\mathcal{V}_3(t),\\ \le&-[u_*-c_{12}r_2-c_{13}w_*]\mathcal{V}_1(t)+c_{12}u_*\mathcal{V}_2(t)+c_{13}u_*\mathcal{V}_3(t), \end{align} (6.12)
    \begin{align} \mathcal{V}_{2t}(t) = & -[-r_2+c_{21}u_*+c_{23}w_*+c_{21}\mathcal{V}_1(t)+c_{23}\mathcal{V}_3(t)]{\mathcal{V}_2(t)}+\mathcal{V}_2^2(t),\\ \le&-[-2r_2+{2c_{21}u_*+2c_{23}w_*}]{\mathcal{V}_2(t)}, \end{align} (6.13)
    \begin{align} \mathcal{V}_{3t}(t) = & -[w_*+\mathcal{V}_3(t)-c_{31}\mathcal{V}_1(t)-c_{32}\mathcal{V}_2(t)]\mathcal{V}_3(t)+ c_{31}\phi_3\mathcal{V}_1(t)+c_{32}\phi_3\mathcal{V}_2(t)\\ \le&-[w_*-c_{31}u_*-c_{32}r_2]\mathcal{V}_3(t)+ c_{31}w_*\mathcal{V}_1(t)+c_{32}w_*\mathcal{V}_2(t). \end{align} (6.14)

    Let's set

    A_1: = u_*-c_{12}r_2-c_{13}w_*, A_2: = -2r_2+{2c_{21}u_*+2c_{23}w_*} and A_3: = w_*-c_{31}u_*-c_{32}r_2.

    By the assumption \rm(S4) , we see that A_2 > 0 . Integrating (6.13) over [0, t] , we have

    \begin{equation*} {\mathcal V}_2 (t)\le \mathcal{V}_2 (0) e^{-A_2t},\ \forall t \gt 0. \end{equation*}

    Then it follows from (6.12) and (6.14) that

    \begin{align*} {\mathcal V}_{1t} (t)+{\mathcal V}_{3t} (t) \le&-{\mathcal A}[{\mathcal V}_{1} (t)+{\mathcal V}_{3} (t)]+ (c_{12}u_*+c_{32}w_* )\mathcal{V}_2 (0) e^{-A_2t},\ \forall t \gt 0, \end{align*}

    where \mathcal{A}: = \min\{A_1, A_3\}-\max\{c_{12}u_*, c_{32}w_*\} . We claim that there exists some positive constant \hat{ C} such that

    {\mathcal V}_{1} (t)+{\mathcal V}_{3} (t) \le\hat{ C} e^{-\hat{\mu}t},\ \forall t \gt 0.

    Note that \hat{\mu} = \min\{{\mathcal A}/{2}, A_2\} . In fact, if {\mathcal A}\ne A_2 , we then have

    \begin{align*} {\mathcal V}_{1} (t)+{\mathcal V}_{3} (t) \le&[{\mathcal V}_{1} (0)+{\mathcal V}_{3} (0)]e^{-{\mathcal A} t} + e^{-{\mathcal A} t} \int_0^t (c_{12}u_*+c_{32}w_* )\mathcal{V}_2 (0) e^{({\mathcal A}-A_2)s} ds\\ = & [{\mathcal V}_{1} (0)+{\mathcal V}_{3} (0)]e^{-{\mathcal A} t}+ (c_{12}u_*+c_{32}w_* )\mathcal{V}_2 (0) \frac{ e^{-A_2 t} -e^{-{\mathcal A} t}}{{\mathcal A}-A_2}\\ \le& [{\mathcal V}_{1} (0)+{\mathcal V}_{3} (0)]e^{-{\mathcal A} t}+ (c_{12}u_*+c_{32}w_* )\mathcal{V}_2 (0) \frac{ e^{-\min\{{\mathcal A},A_2\} t} } {|{\mathcal A}-A_2|}\\ \le& \hat{ C} _1 {e^{-\min\{{\mathcal A},A_2\}t } } \le \hat{ C} _1e^{-\hat{\mu}t},\ \forall t \gt 0, \end{align*}

    where

    \hat{C}_1: = {\mathcal V}_{1} (0)+{\mathcal V}_{3} (0)+ \frac{ (c_{12}u_*+c_{32}w_* )\mathcal{V}_2 (0)}{|{\mathcal A}-A_2|}.

    If {\mathcal A} = A_2 , then we obtain

    \begin{align*} {\mathcal V}_{1} (t)+{\mathcal V}_{3} (t) \le& [{\mathcal V}_{1} (0)+{\mathcal V}_{3} (0)]e^{-{\mathcal A} t} + e^{-{\mathcal A} t} \int_0^t (c_{12}u_*+c_{32}w_* )\mathcal{V}_2 (0) ds\\ \le& \big[{\mathcal V}_{1} (0)+{\mathcal V}_{3} (0)+(c_{12}u_*+c_{32}w_* )\mathcal{V}_2 (0)t\big] e^{-{\mathcal A} t}\\ \le&\hat{ C}_2 e^{-\frac{{\mathcal A}}{2}t}\le\hat{ C}_2 e^{-\hat{\mu}t},\ \forall t \gt 0, \end{align*}

    for some \hat{ C}_2 > 0 . Thus, the claim holds. Therefore, we conclude that

    \lim\limits_{\xi\to \infty} V_i(\xi,t) \le Ce^{-\hat{\mu} t},\ i = 1,2,3,

    for some positive constant C . This completes the proof.

    Based on the above lemmas, we can also obtain the following stability result.

    Theorem 6.1. Assume that {\rm(S3)}–{\rm(S4)} hold. Let \Phi (x+ct) be a traveling wavefront of (1.6) satisfying (1.9) and with speed c > {c}^{*}_1 . Then the initial value problem (1.6) admits a unique solution U(t, x) = (u(t, x), v(t, x), w(t, x)) satisfying U(t, x)\in[{\bf E}_1, {\bf E}_2]\ \mathit{\mbox{for all}}t > 0, \ x\in \mathbb{R} . In addition, we have

    \begin{equation} U(t,x)-\Phi (x+ct)\in C([0,+\infty );H_{\omega^*} ^1 (\mathbb{R}))\cap L^2([0,+\infty );H_{\omega^*} ^1 (\mathbb{R})) \end{equation} (6.15)

    and

    \begin{equation} \sup\limits_{x\in \mathbb{R}} \| U(t,x)-\Phi (x+ct)\| \le Ce^{-\mu t},\ \forall t \gt 0, \end{equation} (6.16)

    for some positive constants C and \mu .

    By the same way, we also have the following stability result for (1.7).

    Theorem 6.2. Assume that {\rm(S3)}–{\rm(S4)} hold. Let \Phi (i+ct) be a traveling wavefront of (1.7) satisfying (1.9) and with speed c > {c}^{*}_1 . Then the initial value problem of (1.7) admits a unique solution \{u_i(t)\}_{i\in\mathbb{Z}}, \ \{v_i(t)\}_{i\in\mathbb{Z}}, \ \{w_i(t)\}_{i\in\mathbb{Z}} satisfying (u_i(t), v_i(t), w_i(t))\in[{\bf E}_1, {\bf E}_2] for all t > 0, \ i\in \mathbb{Z} . In addition, for t > 0 , we have

    \begin{align*} & \{{u_i(t)}-\phi_1(i+ct)\}_{i\in\mathbb{Z}}\in \ell^2_{\omega}(t),\ \sup\limits_{i\in\mathbb{Z}}|{u_i(t)}-\phi_1(i+ct)|\le Ce^{-\mu t};\\ & \{{v_i(t)}-\phi_2(i+ct)\}_{i\in\mathbb{Z}}\in \ell^2_{\omega}(t),\ \sup\limits_{i\in\mathbb{Z}}|{v_i(t)}-\phi_2(i+ct)|\le Ce^{-\mu t};\\ &\{{w_i(t)}-\phi_3(i+ct)\}_{i\in\mathbb{Z}}\in \ell^2_{\omega}(t),\ \sup\limits_{i\in\mathbb{Z}}|{w_i(t)}-\phi_3(i+ct)|\le Ce^{-\mu t}, \end{align*}

    for some positive constants C and \mu .

    In population dynamics, traveling wave solution can be used to describe the spatial spread or invasion of the species. In this article we consider the existence and stability of the traveling wavefronts of discrete diffusive systems which come from the competition and cooperations between three species.

    In Theorem 3.1, we proved that both systems (1.6) and (1.7) admit traveling wavefronts connecting the extinct state {\bf E_1} and co-existence state {\bf E_2} , provided the assumptions (H1)-(H2) hold and the propagation wave speed c is greater than the minimum speed c_1^* . Roughly speaking, to guarantee the assumptions (H1)-(H2) hold, it is required that d_2, r_2, c_{12}, c_{32} are small enough, and d_1, \, r_1 are large enough. Biologically, it means that the diffusion effect, growth rate for the species v and the competition relation between v and the other species are very weak. Since the species u and w cooperate with each other; the species u has strong diffusion effect and growth rate; and their competition from the species v are very weak, this gives us the reason why the minimal speed is determined by the linearization problem of the first u -equation of both systems. And also the existence of traveling wavefronts propagating from the extinct state to the co-existence state.

    As mentioned in introduction, when the traveling wavefronts are disturbed under small perturbations, only stable such solutions can be visualized in the real world. However, since such solutions exist for all c > c_1^* , generically any one of them won't be globally asymptotic stable. Therefore, we introduce the weight functions to split the domain of attractions of traveling wavefronts with different speeds, and then obtain the stability results.

    The authors would like to thank the anonymous referees for their valuable comments and suggestions which have led to an improvement of the presentation. The first author was partially supported by the MOST of Taiwan (Grant No. MOST 107-2115-M-008-009-MY3) and NCTS of Taiwan, the second author was partially supported by the MOST of Taiwan (Grant No. MOST 107-2115-M-027-002), and the third author was partially supported by the NSF of China (Grant No. 11671315).

    The authors declare that they have no competing interests.



    [1] R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937), 355–369.
    [2] C. C. Chen, L. C. Hung, M. Mimura, et al., Exact travelling wave solutions of three-species competition-diffusion systems, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2653–2669.
    [3] C. C. Chen, L, C, Hung, M. Mimura, et al., Semi-exact equilibrium solutions for three-species competition-diffusion systems, Hiroshima Math. J., 43 (2013), 179–206.
    [4] M. Mimura and M. Tohma, Dynamic coexistence in a three-species competition-diffusion system, Ecol. Complex., 21 (2015), 215–232.
    [5] H. Ikeda, Travelling wave solutions of three-component systems with competition and diffusion, Toyama Math. J., 24 (2001), 37–66.
    [6] H. Ikeda, Dynamics of weakly interacting front and back waves in three-component systems, Toyama Math. J., 30 (2007), 1–34.
    [7] Y. Kan-on and M. Mimura, Singular perturbation approach to a 3-component reaction-diffusion system arising in population dynamics, SIAM J. Math. Anal., 29 (1998), 1519–1536.
    [8] P. D. Miller, Nonmonotone waves in a three species reaction-diffusion model, Methods and Applications of Analysis, 4 (1997), 261–282.
    [9] M. Mimura and P. C. Fife, A 3-component system of competition and diffusion, Hiroshima Math. J., 16 (1986), 189–207.
    [10] J.-S. Guo, Y.Wang, C.-H.Wu, et al., The minimal speed of traveling wave solutions for a diffusive three species competition system, Taiwan. J. Math., 19 (2015), 1805–1829.
    [11] L.-C. Hung, Traveling wave solutions of competitive-cooperative Lotka-Volterra systems of three species, Nonlinear Anal. Real World Appl., 12 (2011), 3691–3700.
    [12] C.-H. Chang, Existence and stability of traveling wave solutions for a competitive-cooperative system of three species, preprint, (2018).
    [13] A. W. Leung, X. Hou and W. Feng, Traveling wave solutions for Lotka-Volterra system revisited, Discrete Contin. Dyn. Syst.-B, 15 (2011), 171–196.
    [14] M. Mei, C. Ou and X.-Q. Zhao, Global stability of monostable traveling waves for nonlocal timedelayed reaction-diffusion equations, SIAM J. Math. Anal., 42 (2010), 2762–2790; Erratum, SIAM J. Math. Anal., 44 (2012), 538–540.
    [15] D. Sattinger, On the stability of traveling waves, Adv. Math., 22 (1976), 312–355.
    [16] M. Bramson, Convergence of solutions of the Kolmogorov equations to traveling waves, Mem. Amer. Math. Soc., 44 (1983), 285.
    [17] A. I. Volpert, V. A. Volpert and V. A. Volpert, Travelling wave solutions of parabolic systems, Translations of Mathematical Monographs, 140, Amer. Math. Soc., Providence, RI, 1994.
    [18] J. Xin, Front propagation in heterogeneous media, SIAM Rev., 42 (2000), 161–230.
    [19] G.-S. Chen, S.-L. Wu and C.-H. Hsu, Stability of traveling wavefronts for a discrete diffusive competition system with three species, J. Math. Anal. Appl., 474 (2019), 909–930.
    [20] C.-H. Hsu, T.-S. Yang and Z. X. Yu, Existence and exponential stability of traveling waves for delayed reaction-diffusion systems, Nonlinearity, 32 (2019), 1206–1236.
    [21] M. Mei, C. K. Lin, C. T. Lin, et al., Traveling wavefronts for time-delayed reaction-diffusion equation:(I) local nonlinearity, J. Differ. Equations, 247 (2009), 495–510.
    [22] M. Mei, C. K. Lin, C. T. Lin, et al., Traveling wavefronts for time-delayed reaction-diffusion equation:(II)local nonlinearity, J. Differ. Equations, 247 (2009), 511–529.
    [23] K. J. Brown and J. Carr, Deterministic epidemic waves of critical velocity, Math. Proc. Cambridge Philos. Soc., 81 (1977), 431–433.
    [24] M. A. Lewis, B. Li and H. F.Weinberger, Spreading speed and linear determinacy for two-species competition models, J. Math. Biol., 45 (2002), 219–233.
    [25] R. Martin and H. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1–44.
    [26] M. Mei, J.W.-H. So, M. Y. Li, et al., Asymptotic stability of traveling waves for Nicholson's blowflies equation with diffusion, Proc. Roy. Soc. Edinburgh, 134A (2004), 579–594.
    [27] W.-T. Li, L. Zhang and G.-B. Zhang, Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Contin. Dyn. Syst., 35 (2015), 1531–1560.
    [28] L.-C. Hung, Exact traveling wave solutions for diffusive Lotka-Volterra systems of two competing species, Japan J. Indust. Appl. Math., 29 (2012), 237–251.
    [29] W. Huang, Problem on minimum wave speed for a Lotka-Volterra reaction-diffusion competition model, J. Dynam. Differ. Equations, 22 (2010), 285–297.
    [30] N. Fei and J. Carr, Existence of travelling waves with their minimal speed for a diffusing Lotka- Volterra system, Nonlinear Anal. Real World Appl., 4 (2003) 503–524.
    [31] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, 840, Springer-Verlag, New York Berlin, 1981.
    [32] C.-H. Hsu, J.-J. Lin and T.-S. Yang, Traveling wave solutions for delayed lattice reaction-diffusion systems, IMA J. Appl. Math., 80 (2015), 302–323.
    [33] C.-H. Hsu and T.-S. Yang, Existence, uniqueness, monotonicity and asymptotic behavior of traveling waves for a epidemic model, Nonlinearity, 26 (2013), 121–139. Corrigendum: 26 (2013), 2925–2928.
    [34] Y. Kan-on, Note on propagation speed of travelling waves for a weakly coupled parabolic system, Nonlinear Anal.-Theor., 44 (2001), 239–246.
    [35] Y. Kan-on, Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Nonlinear Anal.-Theor., 28 (1997), 145–164.
    [36] S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differ. Equations, 171 (2001), 294–314.
    [37] M. Rodrigo and M. Mimura, Exact solutions of a competition-diffusion system, Hiroshima Math. J., 30 (2000), 257–270.
    [38] M. Rodrigo and M. Mimura, Exact solutions of reaction-diffusion systems and nonlinear wave equations, Japan J. Indust. Appl. Math., 18 (2001), 657–696.
    [39] Q. Ye, Z. Li, M. X.Wang, et al., Introduction to Reaction-Diffusion Equations, 2nd edition, Science Press, Beijing, 2011.
  • This article has been cited by:

    1. Yu-Cai Hao, Guo-Bao Zhang, Juan He, Exponential stability of traveling wavefronts for a system modeling the geographic spread of black-legged tick Ixodes scapularis, 2023, 74, 0044-2275, 10.1007/s00033-023-02014-9
    2. Xing-Xing Yang, Guo-Bao Zhang, Ge Tian, The dynamics of traveling wavefronts for a model describing host tissue degradation by bacteria, 2024, 17, 1793-5245, 10.1142/S1793524523500316
    3. 碧霞 陈, The Existence of Traveling Wave Solutions for Three Species Lotka-Volterra Competitive-Cooperative System under a Shifting Habitat, 2024, 13, 2324-7991, 3989, 10.12677/aam.2024.138380
    4. Zhi-Jiao Yang, Guo-Bao Zhang, Ge Tian, Global stability of traveling wave solutions for a discrete diffusion epidemic model with nonlocal delay effects, 2025, 66, 0022-2488, 10.1063/5.0202813
    5. Xing-Xing Yang, Guo-Bao Zhang, Yu-Cai Hao, Existence and stability of traveling wavefronts for a discrete diffusion system with nonlocal delay effects, 2024, 29, 1531-3492, 1891, 10.3934/dcdsb.2023160
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4503) PDF downloads(513) Cited by(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog