The laboratory, an integral component of engineering education, can be conducted via traditional, online or mixed modes. Within these modes is a diverse range of implementation formats, each with different strengths and weaknesses. Empirical evidence investigating laboratory learning is rather scattered, with objectives measurement focused on the innovation in question (e.g., new simulation or experiment). Recently, a clearer picture of the most important laboratory learning objectives has formed. Missing is an understanding of whether academics implementing laboratories across different modes think about learning objectives differently. Using a survey based on the Laboratory Learning Objectives Measurement instrument, academics from a diverse range of engineering disciplines from across the world undertook a ranking exercise. The findings show that those implementing traditional and mixed laboratories align closely in their ranking choices, while those implementing online-only laboratories think about the objectives slightly differently. These findings provide an opportunity for reflection, enabling engineering educators to refine the alignment of their teaching modes, implementations and assessments with their intended learning objectives.
Citation: Sasha Nikolic, Sarah Grundy, Rezwanul Haque, Sulakshana Lal, Ghulam M. Hassan, Scott Daniel, Marina Belkina, Sarah Lyden, Thomas F. Suesse. A ranking comparison of the traditional, online and mixed laboratory mode learning objectives in engineering: Uncovering different priorities[J]. STEM Education, 2023, 3(4): 331-349. doi: 10.3934/steme.2023020
[1] | Jichun Li, Gaihui Guo, Hailong Yuan . Nonlocal delay gives rise to vegetation patterns in a vegetation-sand model. Mathematical Biosciences and Engineering, 2024, 21(3): 4521-4553. doi: 10.3934/mbe.2024200 |
[2] | Alejandro Rincón, Fredy E. Hoyos, John E. Candelo-Becerra . Comparison, validation and improvement of empirical soil moisture models for conditions in Colombia. Mathematical Biosciences and Engineering, 2023, 20(10): 17747-17782. doi: 10.3934/mbe.2023789 |
[3] | Zixiao Xiong, Xining Li, Ming Ye, Qimin Zhang . Finite-time stability and optimal control of an impulsive stochastic reaction-diffusion vegetation-water system driven by Lˊevy process with time-varying delay. Mathematical Biosciences and Engineering, 2021, 18(6): 8462-8498. doi: 10.3934/mbe.2021419 |
[4] | Xiaomei Bao, Canrong Tian . Turing patterns in a networked vegetation model. Mathematical Biosciences and Engineering, 2024, 21(11): 7601-7620. doi: 10.3934/mbe.2024334 |
[5] | Christopher Middlebrook, Xiaoying Wang . A mathematical model between keystone species: Bears, salmon and vegetation. Mathematical Biosciences and Engineering, 2023, 20(9): 16628-16647. doi: 10.3934/mbe.2023740 |
[6] | Chaofeng Zhao, Zhibo Zhai, Qinghui Du . Optimal control of stochastic system with Fractional Brownian Motion. Mathematical Biosciences and Engineering, 2021, 18(5): 5625-5634. doi: 10.3934/mbe.2021284 |
[7] | Todorka Glushkova, Stanimir Stoyanov, Lyubka Doukovska, Jordan Todorov, Ivan Stoyanov . Modeling of an irrigation system in a virtual physical space. Mathematical Biosciences and Engineering, 2021, 18(5): 6841-6856. doi: 10.3934/mbe.2021340 |
[8] | Linhao Xu, Donald L. DeAngelis . Effects of initial vegetation heterogeneity on competition of submersed and floating macrophytes. Mathematical Biosciences and Engineering, 2024, 21(10): 7194-7210. doi: 10.3934/mbe.2024318 |
[9] | Qixin Zhu, Mengyuan Liu, Hongli Liu, Yonghong Zhu . Application of machine learning and its improvement technology in modeling of total energy consumption of air conditioning water system. Mathematical Biosciences and Engineering, 2022, 19(5): 4841-4855. doi: 10.3934/mbe.2022226 |
[10] | Xiaobo Zhang, Donghai Zhai, Yan Yang, Yiling Zhang, Chunlin Wang . A novel semi-supervised multi-view clustering framework for screening Parkinson's disease. Mathematical Biosciences and Engineering, 2020, 17(4): 3395-3411. doi: 10.3934/mbe.2020192 |
The laboratory, an integral component of engineering education, can be conducted via traditional, online or mixed modes. Within these modes is a diverse range of implementation formats, each with different strengths and weaknesses. Empirical evidence investigating laboratory learning is rather scattered, with objectives measurement focused on the innovation in question (e.g., new simulation or experiment). Recently, a clearer picture of the most important laboratory learning objectives has formed. Missing is an understanding of whether academics implementing laboratories across different modes think about learning objectives differently. Using a survey based on the Laboratory Learning Objectives Measurement instrument, academics from a diverse range of engineering disciplines from across the world undertook a ranking exercise. The findings show that those implementing traditional and mixed laboratories align closely in their ranking choices, while those implementing online-only laboratories think about the objectives slightly differently. These findings provide an opportunity for reflection, enabling engineering educators to refine the alignment of their teaching modes, implementations and assessments with their intended learning objectives.
Relatively large areas in the western region of the United States are classified as arid or semi-arid environments, which are characterized in part by their limited and variable precipitation. Semi-arid regions are expected to receive around 10 to 30 inches of average annual precipitation (
Extensive mathematical modeling and analysis of semi-arid water-vegetation systems emerged for at least the past twenty years, especially since the appearance of deterministic ecohydrological models with broad developments focused on vegetation pattern formation, see for instance [5,12,19,22,25,26,27]. The effects of noise on dryland ecosystems that are usually described by deterministic models showing bistability have also been analysed, [6,21], suggesting the possibility of creation or disappearance of vegetated states in the form of noise-induced transitions, [11]. In contrast, the goals in this paper are to present a stochastic differential equation approximation for an idealized water-vegetation (non-spatial) discrete system and the estimation of mean transition times into a desert state. We emphasize that our model is not obtained by adding "noise" to a differential equation as previously done [6,21], but by the construction of a diffusion approximation.
As a first step, we set up a Markov jump process that incorporates the interactions in an idealized water-vegetation system. Similar conceptual models have been used successfully in other biological contexts, see for instance [17] and [18,15]. The model involves only water and vegetation biomass, in an environment of limited capacity. When this capacity (or "system size") increases it gives rise to a deterministic system of differential equations for the mean densities. We deduce an intermediate mesoscale stochastic model between the jump process and the differential equations obtained for the means. Using estimated parameters for vegetation and precipitation in semi-arid landscapes from the literature, and data for state precipitation anomalies in California as baseline, we estimate the mean times for a system to reach desertification in a range of realistic precipitation anomalies, i.e. departures from long term mean. With these results we finally quantify, for this simple model, the dependence between changes in precipitation anomalies and mean transition times to the desert state.
We start by defining a Markov jump process that represents a simplified version of the real interactions between water and vegetation at a small scale. We do this through the discretization of (alive) vegetation biomass and water volume in small units (individuals), for which a specific set of stochastic events can be explicitly characterized. Naturally, as we transition into larger scales discreteness is lost, and the continuous state space takes place.
We first consider a patch with finite capacity, say
Event | Transition | Jump | Jump rate |
Vegetation biomass loss | |||
Incoming water | |||
Water evaporation | |||
Increase vegetation by | |||
water take up | |||
It is then straightforward to find the probability rates of transition from a state
(a)
(b)
(c)
(d)
Using these rates we can write the associated Kolmogorov equation (see [7] for instance),
dP(n,m,t)dt=T(n,m|n−1,m+1)P(n−1,m+1,t)+T(n,m|n+1,m)P(n+1,m,t)+T(n,m|n,m+1)P(n,m+1,t)+T(n,m|n,m−1)P(n,m−1,t)−(T(n+1,m−1|n,m)+T(n−1,m|n,m)+T(n,m−1|n,m)+T(n,m+1|n,m))P(n,m,t). |
where
d⟨n⟩dt=N∑n,m=0[T(n+1,m−1|n,m)−T(n−1,m|n,m)]P(n,m,t)=b⟨n⟩N⟨m⟩N−1−d⟨n⟩N, | (1) |
where the correlations between the random variables are neglected under the assumption of a large
dρvdt=˜bρvρw−˜dρv, | (2) |
where
d⟨m⟩dt=N∑n,m=0[T(n,m+1|n,m)−T(n,m−1|n,m)]P(n,m,t) =s−s⟨n+m⟩N−b⟨n⟩N⟨m⟩N−1−v⟨m⟩N | (3) |
Similarly, writing the mean density of water by
dρwdt=˜s(1−(ρv+ρw))−˜bρvρw−˜vρw, | (4) |
where
dρvdt=˜bρ2vρw−˜dρv | (5) |
instead of equation (2). A similar change happens in equation (4), which is now
dρwdt=˜s(1−(ρv+ρw))−˜bρ2vρw−˜vρw. | (6) |
Equations (5) and (6) constitute a system of differential equations that serves as approximation to the dynamics of the mean densities for large values of
The diffusion approximation to our model (the mesoscale model) describes the system as an intermediate approximation that emerges between the Markov jump process model (microscale model) and the differential equations for the mean densities (macroscale model). For this approximation the state variables are continuous but include random fluctuations. We expect the new model to incorporate the differential equations and terms that express random fluctuations around the mean densities.
To obtain a representation of the Markov jump process as a diffusion process one can follow either Kurtz's method [14], or find the same equations via the Fokker-Planck equation [18,7]; see [4] for a nice introduction. In Kurtz's approach, which is the one we use here, the jump process is represented by
X(t)=X(0)+∑rrN(r)(∫t0NΦ(1NX(s);r)ds), | (7) |
where
dY(t)=∑rrΦ(Y(t);r)dt+1√N∑rr√(Φ(Y(t);r)dW(r)(t), | (8) |
where the
A=[AvAw]=[˜bρ2vρw−˜dρv,˜s(1−ρv−ρw)−˜bρ2vρw−˜vρw,]. |
If we denote by
B=[BvvBvwBwvBww], |
where
Bvv=˜bρ2vρw+˜dρv,Bvw=Bwv=−˜bρ2vρw,Bww=˜bρ2vρw+˜s(1−ρv−ρw)+˜vρw, |
and factor it as
dY(t)=Adt+1√NgdW, | (9) |
where
We use the stochastic differential equation (9) to simulate the water-vegetation system and obtain averages of the expected time to desertification (see [10] or [13] for a quick or an extensive introduction respectively to the numerical solution of stochastic differential equations).
By identifying the parameters of the nondimensional deterministic (non-spatial) model in [12] with the mean field system obtained above (
Parameter | Definition | Estimated values | Units |
uptake rate of water | 1.5(trees) - 100(grass) | mm year |
|
yield of plant biomass | 0.002(trees) - 0.003(grass) | kg dry mass (mm) |
|
mortality rate | 0.18(trees) - 1.8(grass) | year |
|
precipitation | 250 - 750 | mm year |
|
evaporation rate | 4 | year |
|
Precipitation anomalies records, i.e. records of the deviations from a long term precipitation mean, have a negative trend in specific geographic drought events. In the state of California for instance, which experienced unusually long drought conditions, the (state) average of the precipitation anomalies for the past 16 years is
The results of the simulations are shown in Figure 3, portraying a roughly linear relationship between the time to desertification and the anomalies in precipitation in the range selected. The simulations were run using parameters for trees (top panel) and grass (low panel), with system capacity
A traditional approach for modeling interacting populations at the macroscopic level assumes that the terms in the equations that drive the dynamics represent the average effects of individual interactions in a general, all-inclusive way. Subsequent developments use those models as departing points for building theoretical extensions by incorporating further complexity to the equations, like the inclusion of spatial dependence by adding diffusion, or the introduction of "noise" terms. A different modeling approach is to start at the individual level, with explicit rules describing the interactions between individuals and their environment, [17]. This alternative implies the definition of a Markov jump process that constitutes the foundation for developing definitive model approximations that relate macro and microscopic dynamical levels. In this paper we have taken the latter approach for constructing a stochastic differential equation (continuous state space) that approximates the dynamics of an idealized water-vegetation system, initially conceived as a Markov jump process (with discrete states as a proxy for small scale). Thus, our work complements the existing literature on modeling noise in drylands, [21].
The diffusion approximation obtained, together with parameter values for vegetation and precipitation for semi-arid landscapes extracted from the literature, and data on decreasing precipitation trends in California, were used to estimate average times for desertification. For a fixed system capacity (
We remark that extended droughts may resemble desertification, but the return of seasonal precipitation events may recover the vegetation (see for instance [1] where desertification was limited to spatially localized areas). This suggests that the inclusion of patterns of precipitation anomalies restricted to relatively small areas would provide more reliable results. For systems with relatively small capacity we notice that the times to desertification may be reduced dramatically (see Figure 4).
Further work should also include long term variations of other climate related parameters. For instance, it has been documented that higher temperatures increase evapotranspiration rates [3], which have been observed over most of the United States, [8]. Another aspect that deserves attention is the inclusion of changes in the vegetation dynamics during dry periods, where vegetation mortality could be exacerbated. As is clearly pointed out in [28], neglecting the effects of intermittent precipitation on vegetation dynamics may influence the results considerably. Finally, the understanding of desertification will demand treatment with insightful stochastic space-time models.
The authors are grateful to C. Kribs and three anonymous reviewers for comments and suggestions that led to significant improvement of the paper.
[1] |
Danković, D., Marjanović, M., Mitrović, N., Živanović, E., Danković, M., Prijić, A., et al., The Importance of Students' Practical Work in High Schools for Higher Education in Electronic Engineering. IEEE Transactions on Education, 2023, 66(2): 146–155. https://doi.org/10.1109/TE.2022.3202629 doi: 10.1109/TE.2022.3202629
![]() |
[2] |
Feisel, L.D. and Rosa, A.J., The Role of the Laboratory in Undergraduate Engineering Education. Journal of Engineering Education, 2005, 94(1): 121–130. https://doi.org/10.1002/j.2168-9830.2005.tb00833.x doi: 10.1002/j.2168-9830.2005.tb00833.x
![]() |
[3] |
Méndez Ruiz, J. and Valverde Armas, P., Designing a drinking water treatment experiment as a virtual lab to support engineering education during the COVID-19 outbreak. Cogent Engineering, 2022, 9(1): 2132648. https://doi.org/10.1080/23311916.2022.2132648 doi: 10.1080/23311916.2022.2132648
![]() |
[4] | May, D., Morkos, B., Jackson, A., Beyette, F.R., Hunsu, N., Walther, J., et al., Switching from Hands-on Labs to Exclusively Online Experimentation in Electrical and Computer Engineering Courses. 2021 ASEE Virtual Annual Conference, 2021. |
[5] |
May, D., Alves, G.R., Kist, A.A. and Zvacek, S.M., Online Laboratories in Engineering Education Research and Practice. International Handbook of Engineering Education Research, 2023,525–552. https://doi.org/10.4324/9781003287483-29 doi: 10.4324/9781003287483-29
![]() |
[6] |
May, D., Terkowsky, C., Varney, V. and Boehringer, D., Between hands-on experiments and Cross Reality learning environments – contemporary educational approaches in instructional laboratories. European Journal of Engineering Education, 2023, 48(5): 783–801. https://doi.org/10.1080/03043797.2023.2248819 doi: 10.1080/03043797.2023.2248819
![]() |
[7] | Ma, J. and Nickerson, J.V., Hands-on, simulated, and remote laboratories: A comparative literature review. ACM Computing Surveys (CSUR), 2006, 38(3): 7-es. |
[8] |
Stefanovic, M., Tadic, D., Nestic, S. and Djordjevic, A., An assessment of distance learning laboratory objectives for control engineering education. Computer Applications in Engineering Education, 2015, 23(2): 191–202. https://doi.org/10.1002/cae.21589 doi: 10.1002/cae.21589
![]() |
[9] |
May, D., Morkos, B., Jackson, A., Hunsu, N.J., Ingalls, A. and Beyette, F., Rapid transition of traditionally hands-on labs to online instruction in engineering courses. European Journal of Engineering Education, 2023, 48(5): 842–860. https://doi.org/10.1080/03043797.2022.2046707 doi: 10.1080/03043797.2022.2046707
![]() |
[10] | Kruger, K., Wolff, K. and Cairncross, K., Real, virtual, or simulated: Approaches to emergency remote learning in engineering. Computer Applications in Engineering Education, 2022, 30(1): 93–105. |
[11] |
Campbell, J.O., Bourne, J.R., Mosterman, P.J. and Brodersen, A.J., The Effectiveness of Learning Simulations for Electronic Laboratories. Journal of Engineering Education, 2002, 91(1): 81–87. https://doi.org/10.1002/j.2168-9830.2002.tb00675.x doi: 10.1002/j.2168-9830.2002.tb00675.x
![]() |
[12] |
Gamo, J., Assessing a Virtual Laboratory in Optics as a Complement to On-Site Teaching. IEEE Transactions on Education, 2019, 62(2): 119–126. https://doi.org/10.1109/TE.2018.2871617 doi: 10.1109/TE.2018.2871617
![]() |
[13] |
Lindsay, E.D. and Good, M.C., Effects of laboratory access modes upon learning outcomes. IEEE Transactions on Education, 2005, 48(4): 619–631. https://doi.org/10.1109/TE.2005.852591 doi: 10.1109/TE.2005.852591
![]() |
[14] |
Balakrishnan, B. and Woods, P.C., A comparative study on real lab and simulation lab in communication engineering from students' perspectives. European Journal of Engineering Education, 2013, 38(2): 159–171. https://doi.org/10.1080/03043797.2012.755499 doi: 10.1080/03043797.2012.755499
![]() |
[15] | Singh, G., Mantri, A., Sharma, O. and Kaur, R., Virtual reality learning environment for enhancing electronics engineering laboratory experience. Computer Applications in Engineering Education, 2021, 29(1): 229–243. |
[16] |
Ogot, M., Elliott, G. and Glumac, N., An Assessment of In-Person and Remotely Operated Laboratories. Journal of Engineering Education, 2003, 92(1): 57–64. https://doi.org/10.1002/j.2168-9830.2003.tb00738.x doi: 10.1002/j.2168-9830.2003.tb00738.x
![]() |
[17] |
Nikolic, S., Ros, M., Jovanovic, K. and Stanisavljevic, Z., Remote, Simulation or Traditional Engineering Teaching Laboratory: A Systematic Literature Review of Assessment Implementations to Measure Student Achievement or Learning. European Journal of Engineering Education, 2021, 46(6): 1141–1162. https://doi.org/10.1080/03043797.2021.1990864 doi: 10.1080/03043797.2021.1990864
![]() |
[18] |
Nikolic, S., Suesse, T., Jovanovic, K. and Stanisavljevic, Z., Laboratory Learning Objectives Measurement: Relationships Between Student Evaluation Scores and Perceived Learning. IEEE Transactions on Education, 2021, 64(2): 163–171. https://doi.org/10.1109/TE.2020.3022666 doi: 10.1109/TE.2020.3022666
![]() |
[19] |
Nikolic, S., Suesse, T.F., Grundy, S., Haque, R., Lyden, S., Hassan, G.M., et al., Laboratory learning objectives: ranking objectives across the cognitive, psychomotor and affective domains within engineering. European Journal of Engineering Education, 2023, 48(4): 559–614. https://doi.org/10.1080/03043797.2023.2248042 doi: 10.1080/03043797.2023.2248042
![]() |
[20] | Nikolic, S., Suesse, T., Grundy, S., Haque, R., Lyden, S., Hassan, G.M., et al., A European vs Australasian Comparison of Engineering Laboratory Learning Objectives Rankings. SEFI 50th Annual Conference. European Society for Engineering Education (SEFI), 2023. |
[21] | Nikolic, S., Suesse, T., Haque, R., Hassan, G., Lyden, S., Grundy, S., et al., An Australian University Comparison of Engineering Laboratory Learning Objectives Rankings. 33rd Australasian Association for Engineering Education Conference, 2022, 45–53. |
[22] | Nightingale, S., Carew, A.L. and Fung, J., Application of constructive alignment principles to engineering education: have we really changed? AaeE Conference, 2007. Melbourne. |
[23] | Krathwohl, D.R., A Revision of Bloom's Taxonomy: An Overview. Theory Into Practice, 2002, 41(4): 212–218. |
[24] | Steger, F., Nitsche, A., Arbesmeier, A., Brade, K.D., Schweiger, H.G. and Belski, I., Teaching Battery Basics in Laboratories: Hands-On Versus Simulated Experiments. IEEE Transactions on Education, 2020, 63(3): 198–208. |
[25] |
Salehi, F., Mohammadpour, J., Abbassi, R., Cheng, S., Diasinos, S. and Eaton, R., Developing an Interactive Digital Reality Module for Simulating Physical Laboratories in Fluid Mechanics. Australasian Journal of Engineering Education, 2022, 27(2): 100–114. https://doi.org/10.1080/22054952.2022.2162673 doi: 10.1080/22054952.2022.2162673
![]() |
[26] | Sriadhi, S., Sitompul, H., Restu, R., Khaerudin, S. and Wan Yahaya, W.A., Virtual-laboratory based learning to improve students' basic engineering competencies based on their spatial abilities. Computer Applications in Engineering Education, 2022, 30(6): 1857–1871. |
[27] |
Nikolic, S., Suesse, T.F., McCarthy, T.J. and Goldfinch, T.L., Maximising Resource Allocation in the Teaching Laboratory: Understanding Student Evaluations of Teaching Assistants in a Team Based Teaching Format. European Journal of Engineering Education, 2017, 42(6): 1277–1295. https://doi.org/10.1080/03043797.2017.1287666 doi: 10.1080/03043797.2017.1287666
![]() |
[28] |
Jackson, T., Shen, J., Nikolic, S. and Xia, G., Managerial factors that influence the success of knowledge management systems: A systematic literature review. Knowledge and Process Management, 2020, 27(2): 77–92. https://doi.org/10.1002/kpm.1622 doi: 10.1002/kpm.1622
![]() |
[29] |
Uzunidis, D. and Pagiatakis, G., Design and implementation of a virtual on-line lab on optical communications. European Journal of Engineering Education, 2023, 48(5): 913–928. https://doi.org/10.1080/03043797.2023.2173558 doi: 10.1080/03043797.2023.2173558
![]() |
[30] |
Memik, E. and Nikolic, S., The virtual reality electrical substation field trip: Exploring student perceptions and cognitive learning. STEM Education, 2021, 1(1): 47–59. https://doi.org/10.3934/steme.2021004 doi: 10.3934/steme.2021004
![]() |
[31] |
Coleman, P. and Hosein, A., Using voluntary laboratory simulations as preparatory tasks to improve conceptual knowledge and engagement. European Journal of Engineering Education, 2023, 48(5): 899–912. https://doi.org/10.1080/03043797.2022.2160969 doi: 10.1080/03043797.2022.2160969
![]() |
[32] | Kollöffel, B. and de Jong, T., Conceptual Understanding of Electrical Circuits in Secondary Vocational Engineering Education: Combining Traditional Instruction with Inquiry Learning in a Virtual Lab. Journal of Engineering Education, 2013,102(3): 375–393. |
[33] | Nikolic, S., Suesse, T.F., Goldfinch, T. and McCarthy, T.J., Relationship between Learning in the Engineering Laboratory and Student Evaluations. Australasian Association for Engineering Education Annual Conference, 2015. |
[34] |
Cai, R. and Chiang, F.-K., A laser-cutting-centered STEM course for improving engineering problem-solving skills of high school students in China. STEM Education, 2021, 1(3): 199–224. https://doi.org/10.3934/steme.2021015 doi: 10.3934/steme.2021015
![]() |
[35] |
Vojinovic, O., Simic, V., Milentijevic, I. and Ciric, V., Tiered Assignments in Lab Programming Sessions: Exploring Objective Effects on Students' Motivation and Performance. IEEE Transactions on Education, 2020, 63(3): 164–172. https://doi.org/10.1109/TE.2019.2961647 doi: 10.1109/TE.2019.2961647
![]() |
[36] |
Vial, P.J., Nikolic, S., Ros, M., Stirling, D. and Doulai, P., Using Online and Multimedia Resources to Enhance the Student Learning Experience in a Telecommunications Laboratory within an Australian University. Australasian Journal of Engineering Education, 2015, 20(1): 71–80. http://dx.doi.org/10.7158/D13-006.2015.20.1 doi: 10.7158/D13-006.2015.20.1
![]() |
[37] |
Tang, H., Arslan, O., Xing, W. and Kamali-Arslantas, T., Exploring collaborative problem solving in virtual laboratories: a perspective of socially shared metacognition. Journal of Computing in Higher Education, 2023, 35(2): 296–319. https://doi.org/10.1007/s12528-022-09318-1 doi: 10.1007/s12528-022-09318-1
![]() |
[38] |
Romdhane, L. and Jaradat, M.A., Interactive MATLAB based project learning in a robotics course: Challenges and achievements. STEM Education, 2021, 1(1): 32–46. https://doi.org/10.3934/steme.2021003 doi: 10.3934/steme.2021003
![]() |
[39] |
Wahab, N.A.A., Aqila, N.A., Isa, N., Husin, N.I., Zin, A.M., Mokhtar, M., et al., A Systematic Review on Hazard Identification, Risk Assessment and Risk Control in Academic Laboratory. Journal of Advanced Research in Applied Sciences and Engineering Technology, 2021, 24(1): 47–62. https://doi.org/10.37934/araset.24.1.4762 doi: 10.37934/araset.24.1.4762
![]() |
[40] |
Pedram, S., Palmisano, S., Skarbez, R., Perez, P. and Farrelly, M., Investigating the process of mine rescuers' safety training with immersive virtual reality: A structural equation modelling approach. Computers & Education, 2020,153: 103891. https://doi.org/10.1016/j.compedu.2020.103891 doi: 10.1016/j.compedu.2020.103891
![]() |
[41] |
Pedram, S., Palmisano, S., Miellet, S., Farrelly, M. and Perez, P., Influence of age and industry experience on learning experiences and outcomes in virtual reality mines rescue training. Frontiers in Virtual Reality, 2022, 3: 941225. https://doi.org/10.3389/frvir.2022.941225 doi: 10.3389/frvir.2022.941225
![]() |
[42] | Nikolic, S., Training laboratory: Using online resources to enhance the laboratory learning experience. Teaching, Assessment and Learning (TALE), 2014 International Conference on, 2014. IEEE. https://doi.org/10.1109/TALE.2014.7062584 |
[43] |
Marks, B. and Thomas, J., Adoption of virtual reality technology in higher education: An evaluation of five teaching semesters in a purpose-designed laboratory. Education and information technologies, 2022, 27(1): 1287–1305. https://doi.org/10.1007/s10639-021-10653-6 doi: 10.1007/s10639-021-10653-6
![]() |
[44] |
Carbone, G., Curcio, E.M., Rodinò, S. and Lago, F., A Robot-Sumo student competition at UNICAL as a learning-by-doing strategy for STEM education. STEM Education, 2022, 2(3): 262–274. https://doi.org/10.3934/steme.2022016 doi: 10.3934/steme.2022016
![]() |
[45] |
Gwynne-Evans, A.J., Chetty, M. and Junaid, S., Repositioning ethics at the heart of engineering graduate attributes. Australasian Journal of Engineering Education, 2021, 26(1): 7–24. https://doi.org/10.1080/22054952.2021.1913882 doi: 10.1080/22054952.2021.1913882
![]() |
[46] |
Nikolic, S., Daniel, S., Haque, R., Belkina, M., Hassan, G.M., Grundy, S., et al., ChatGPT versus Engineering Education Assessment: A Multidisciplinary and Multi-institutional Benchmarking and Analysis of this Generative Artificial Intelligence Tool to Investigate Assessment Integrity. European Journal of Engineering Education, 2023, 48(4): 559–614. https://doi.org/10.1080/03043797.2023.2213169 doi: 10.1080/03043797.2023.2213169
![]() |
1. | C. Currò, G. Grifò, G. Valenti, Turing patterns in hyperbolic reaction-transport vegetation models with cross-diffusion, 2023, 176, 09600779, 114152, 10.1016/j.chaos.2023.114152 |
Event | Transition | Jump | Jump rate |
Vegetation biomass loss | |||
Incoming water | |||
Water evaporation | |||
Increase vegetation by | |||
water take up | |||
Parameter | Definition | Estimated values | Units |
uptake rate of water | 1.5(trees) - 100(grass) | mm year |
|
yield of plant biomass | 0.002(trees) - 0.003(grass) | kg dry mass (mm) |
|
mortality rate | 0.18(trees) - 1.8(grass) | year |
|
precipitation | 250 - 750 | mm year |
|
evaporation rate | 4 | year |
|
Event | Transition | Jump | Jump rate |
Vegetation biomass loss | |||
Incoming water | |||
Water evaporation | |||
Increase vegetation by | |||
water take up | |||
Parameter | Definition | Estimated values | Units |
uptake rate of water | 1.5(trees) - 100(grass) | mm year |
|
yield of plant biomass | 0.002(trees) - 0.003(grass) | kg dry mass (mm) |
|
mortality rate | 0.18(trees) - 1.8(grass) | year |
|
precipitation | 250 - 750 | mm year |
|
evaporation rate | 4 | year |
|