Loading [MathJax]/jax/output/SVG/jax.js
Research article

A ranking comparison of the traditional, online and mixed laboratory mode learning objectives in engineering: Uncovering different priorities


  • Received: 13 September 2023 Revised: 29 November 2023 Accepted: 05 December 2023 Published: 28 December 2023
  • The laboratory, an integral component of engineering education, can be conducted via traditional, online or mixed modes. Within these modes is a diverse range of implementation formats, each with different strengths and weaknesses. Empirical evidence investigating laboratory learning is rather scattered, with objectives measurement focused on the innovation in question (e.g., new simulation or experiment). Recently, a clearer picture of the most important laboratory learning objectives has formed. Missing is an understanding of whether academics implementing laboratories across different modes think about learning objectives differently. Using a survey based on the Laboratory Learning Objectives Measurement instrument, academics from a diverse range of engineering disciplines from across the world undertook a ranking exercise. The findings show that those implementing traditional and mixed laboratories align closely in their ranking choices, while those implementing online-only laboratories think about the objectives slightly differently. These findings provide an opportunity for reflection, enabling engineering educators to refine the alignment of their teaching modes, implementations and assessments with their intended learning objectives.

    Citation: Sasha Nikolic, Sarah Grundy, Rezwanul Haque, Sulakshana Lal, Ghulam M. Hassan, Scott Daniel, Marina Belkina, Sarah Lyden, Thomas F. Suesse. A ranking comparison of the traditional, online and mixed laboratory mode learning objectives in engineering: Uncovering different priorities[J]. STEM Education, 2023, 3(4): 331-349. doi: 10.3934/steme.2023020

    Related Papers:

    [1] Jichun Li, Gaihui Guo, Hailong Yuan . Nonlocal delay gives rise to vegetation patterns in a vegetation-sand model. Mathematical Biosciences and Engineering, 2024, 21(3): 4521-4553. doi: 10.3934/mbe.2024200
    [2] Alejandro Rincón, Fredy E. Hoyos, John E. Candelo-Becerra . Comparison, validation and improvement of empirical soil moisture models for conditions in Colombia. Mathematical Biosciences and Engineering, 2023, 20(10): 17747-17782. doi: 10.3934/mbe.2023789
    [3] Zixiao Xiong, Xining Li, Ming Ye, Qimin Zhang . Finite-time stability and optimal control of an impulsive stochastic reaction-diffusion vegetation-water system driven by Lˊevy process with time-varying delay. Mathematical Biosciences and Engineering, 2021, 18(6): 8462-8498. doi: 10.3934/mbe.2021419
    [4] Xiaomei Bao, Canrong Tian . Turing patterns in a networked vegetation model. Mathematical Biosciences and Engineering, 2024, 21(11): 7601-7620. doi: 10.3934/mbe.2024334
    [5] Christopher Middlebrook, Xiaoying Wang . A mathematical model between keystone species: Bears, salmon and vegetation. Mathematical Biosciences and Engineering, 2023, 20(9): 16628-16647. doi: 10.3934/mbe.2023740
    [6] Chaofeng Zhao, Zhibo Zhai, Qinghui Du . Optimal control of stochastic system with Fractional Brownian Motion. Mathematical Biosciences and Engineering, 2021, 18(5): 5625-5634. doi: 10.3934/mbe.2021284
    [7] Todorka Glushkova, Stanimir Stoyanov, Lyubka Doukovska, Jordan Todorov, Ivan Stoyanov . Modeling of an irrigation system in a virtual physical space. Mathematical Biosciences and Engineering, 2021, 18(5): 6841-6856. doi: 10.3934/mbe.2021340
    [8] Linhao Xu, Donald L. DeAngelis . Effects of initial vegetation heterogeneity on competition of submersed and floating macrophytes. Mathematical Biosciences and Engineering, 2024, 21(10): 7194-7210. doi: 10.3934/mbe.2024318
    [9] Qixin Zhu, Mengyuan Liu, Hongli Liu, Yonghong Zhu . Application of machine learning and its improvement technology in modeling of total energy consumption of air conditioning water system. Mathematical Biosciences and Engineering, 2022, 19(5): 4841-4855. doi: 10.3934/mbe.2022226
    [10] Xiaobo Zhang, Donghai Zhai, Yan Yang, Yiling Zhang, Chunlin Wang . A novel semi-supervised multi-view clustering framework for screening Parkinson's disease. Mathematical Biosciences and Engineering, 2020, 17(4): 3395-3411. doi: 10.3934/mbe.2020192
  • The laboratory, an integral component of engineering education, can be conducted via traditional, online or mixed modes. Within these modes is a diverse range of implementation formats, each with different strengths and weaknesses. Empirical evidence investigating laboratory learning is rather scattered, with objectives measurement focused on the innovation in question (e.g., new simulation or experiment). Recently, a clearer picture of the most important laboratory learning objectives has formed. Missing is an understanding of whether academics implementing laboratories across different modes think about learning objectives differently. Using a survey based on the Laboratory Learning Objectives Measurement instrument, academics from a diverse range of engineering disciplines from across the world undertook a ranking exercise. The findings show that those implementing traditional and mixed laboratories align closely in their ranking choices, while those implementing online-only laboratories think about the objectives slightly differently. These findings provide an opportunity for reflection, enabling engineering educators to refine the alignment of their teaching modes, implementations and assessments with their intended learning objectives.



    1. Introduction

    Relatively large areas in the western region of the United States are classified as arid or semi-arid environments, which are characterized in part by their limited and variable precipitation. Semi-arid regions are expected to receive around 10 to 30 inches of average annual precipitation ( 254-762 mm year1) but climate change is predicted to increase the intensity and frequency of droughts globally [24]. For instance, in August of 2016, abnormally dry to moderate drought conditions were observed in several locations of the western region of the United States, with ranges between severe to extreme drought occurring in the northern portions, and severe to exceptional drought extending from California into Nevada [20]. The lack of precipitation puts indigenous species of plants and animals in semi-arid environments under unusual stress and the parallel habitat loss might pose a threat to local biodiversity [16]. Under these circumstances, having educated guesses of the potential vegetation biomass responses in semi-arid landscapes to long term changes in precipitation could serve to put forward the design of adaptation and conservation policies [9]. The estimation of the expected time of transition to a desert state (or bare-soil), as a conceivable measure of those responses, presents difficulties due to the complexities associated with specific water-vegetation systems. For instance, the inherent non-linear characteristics of semi-arid landscapes may trigger desertification in response to slow changes [23]. Results from simulations of simple mathematical models could still offer a hint of the relationship with the parameters that might be driving decline.

    Extensive mathematical modeling and analysis of semi-arid water-vegetation systems emerged for at least the past twenty years, especially since the appearance of deterministic ecohydrological models with broad developments focused on vegetation pattern formation, see for instance [5,12,19,22,25,26,27]. The effects of noise on dryland ecosystems that are usually described by deterministic models showing bistability have also been analysed, [6,21], suggesting the possibility of creation or disappearance of vegetated states in the form of noise-induced transitions, [11]. In contrast, the goals in this paper are to present a stochastic differential equation approximation for an idealized water-vegetation (non-spatial) discrete system and the estimation of mean transition times into a desert state. We emphasize that our model is not obtained by adding "noise" to a differential equation as previously done [6,21], but by the construction of a diffusion approximation.

    As a first step, we set up a Markov jump process that incorporates the interactions in an idealized water-vegetation system. Similar conceptual models have been used successfully in other biological contexts, see for instance [17] and [18,15]. The model involves only water and vegetation biomass, in an environment of limited capacity. When this capacity (or "system size") increases it gives rise to a deterministic system of differential equations for the mean densities. We deduce an intermediate mesoscale stochastic model between the jump process and the differential equations obtained for the means. Using estimated parameters for vegetation and precipitation in semi-arid landscapes from the literature, and data for state precipitation anomalies in California as baseline, we estimate the mean times for a system to reach desertification in a range of realistic precipitation anomalies, i.e. departures from long term mean. With these results we finally quantify, for this simple model, the dependence between changes in precipitation anomalies and mean transition times to the desert state.


    2. Theoretical framework for water-vegetation dynamics


    2.1. The stochastic and ODE models

    We start by defining a Markov jump process that represents a simplified version of the real interactions between water and vegetation at a small scale. We do this through the discretization of (alive) vegetation biomass and water volume in small units (individuals), for which a specific set of stochastic events can be explicitly characterized. Naturally, as we transition into larger scales discreteness is lost, and the continuous state space takes place.

    We first consider a patch with finite capacity, say N, containing three types of individuals: (ⅰ) vegetation biomass units; (ⅱ) water volume units; (ⅲ) empty locations. The dynamics of plant biomass and water interactions is driven by events involving a few processes: vegetation biomass loss, incoming water, water evaporation, and increase vegetation yield by taking up water. If we represent the state of the system, i.e. the number of biomass units, n, and the number of water volume units, m, by the pair (n,m) then these events correspond to the transitions detailed in Table 1.

    Table 1. Possible transition events with their associated jumps if the system is at state (n,m), where n and m represent units of biomass and water, respectively.
    Event Transition Jump Jump rate
    Vegetation biomass loss (n,m)(n1,m) (1,0) d
    Incoming water (n,m)(n,m+1) (0,1) s
    Water evaporation (n,m)(n,m1) (0,1) v
    Increase vegetation by (n,m)(n+1,m1) (1,1) b
    water take up
     | Show Table
    DownLoad: CSV

    It is then straightforward to find the probability rates of transition from a state (n,m) to (n,m), T(n,m|n,m):

    (a) T(n+1,m1|n,m)=bnNmN1

    (b) T(n1,m|n,m)=dnN

    (c) T(n,m+1|n,m)=sNnmN

    (d) T(n,m1|n,m)=vmN

    Using these rates we can write the associated Kolmogorov equation (see [7] for instance),

    dP(n,m,t)dt=T(n,m|n1,m+1)P(n1,m+1,t)+T(n,m|n+1,m)P(n+1,m,t)+T(n,m|n,m+1)P(n,m+1,t)+T(n,m|n,m1)P(n,m1,t)(T(n+1,m1|n,m)+T(n1,m|n,m)+T(n,m1|n,m)+T(n,m+1|n,m))P(n,m,t).

    where P(n,m,t) is the probability that the system is at the state (n,m) at time t. Imposing zero boundary conditions, multiplying the Kolmogorov equation by n, and summing over m and n gives the expression for the rate of change of the mean biomass,

    dndt=Nn,m=0[T(n+1,m1|n,m)T(n1,m|n,m)]P(n,m,t)=bnNmN1dnN, (1)

    where the correlations between the random variables are neglected under the assumption of a large N. Writing the mean density of vegetation as ρv=n/N finally gives

    dρvdt=˜bρvρw˜dρv, (2)

    where ˜b=b/(N1) and ˜d=d/N. Similarly,

    dmdt=Nn,m=0[T(n,m+1|n,m)T(n,m1|n,m)]P(n,m,t)        =ssn+mNbnNmN1vmN (3)

    Similarly, writing the mean density of water by ρw=m/N then

    dρwdt=˜s(1(ρv+ρw))˜bρvρw˜vρw, (4)

    where ˜s=s/N and ˜v=v/N. We remark at this point that water infiltration in the soil is generally improved by the presence of vegetation. As a consequence, the process of taking up water by plants gets more efficient. This fact can be incorporated into the model by letting the rate for taking up water be density dependent, that is, to the jump (1, -1) we associate a new rate bn/N. This leads to having T(n+1,m1|n,m)=bn2N2mN1, which replaced into the equation for dn/dt produces

    dρvdt=˜bρ2vρw˜dρv (5)

    instead of equation (2). A similar change happens in equation (4), which is now

    dρwdt=˜s(1(ρv+ρw))˜bρ2vρw˜vρw. (6)

    Equations (5) and (6) constitute a system of differential equations that serves as approximation to the dynamics of the mean densities for large values of N, also known as mean field equations in the Physics literature. We remark that for N relatively large the factor 1(ρv+ρw) is close to one, making our equations an approximation to the reaction part of Klausmeier's reaction-diffusion-advection equations for water-vegetation systems, [12].


    2.2. The diffusion approximation

    The diffusion approximation to our model (the mesoscale model) describes the system as an intermediate approximation that emerges between the Markov jump process model (microscale model) and the differential equations for the mean densities (macroscale model). For this approximation the state variables are continuous but include random fluctuations. We expect the new model to incorporate the differential equations and terms that express random fluctuations around the mean densities.

    To obtain a representation of the Markov jump process as a diffusion process one can follow either Kurtz's method [14], or find the same equations via the Fokker-Planck equation [18,7]; see [4] for a nice introduction. In Kurtz's approach, which is the one we use here, the jump process is represented by

    X(t)=X(0)+rrN(r)(t0NΦ(1NX(s);r)ds), (7)

    where r is a jump (see the third column in Table 1), N(r)(t) is a collection of independent rate 1 scalar Poisson processes and NΦ(1NX(s);r) is the rate at which a transition with jump r occurs. Kurtz showed that the process X(t)/N can be approximated by a process Y(t) that satisfies the stochastic differential equation

    dY(t)=rrΦ(Y(t);r)dt+1Nrr(Φ(Y(t);r)dW(r)(t), (8)

    where the W(r) are the Brownian motions associated with the jump types of the Markov jump process. The error introduced on bounded intervals of time by replacing X(t)/N with Y(t) is O(logN/N) as N. The first term in the sum of the right hand side of (8) corresponds to the vector field of mean densities, that is,

    A=[AvAw]=[˜bρ2vρw˜dρv,˜s(1ρvρw)˜bρ2vρw˜vρw,].

    If we denote by B the covariance matrix

    B=[BvvBvwBwvBww],

    where

    Bvv=˜bρ2vρw+˜dρv,Bvw=Bwv=˜bρ2vρw,Bww=˜bρ2vρw+˜s(1ρvρw)+˜vρw,

    and factor it as B=ggT for some g, then the stochastic differential equations system (8) can be written as

    dY(t)=Adt+1NgdW, (9)

    where dW is a two dimensional Brownian motion. Figure 1 compares several paths that correspond to the Markov jump process and the diffusion approximation, generated with the same set of (arbitrarily chosen) parameters. It is apparent that the stochastic differential equation provides a good approximation to the jump process.

    Figure 1. Simulations corresponding to the Markov jump process (left) and the diffusion approximation (right). For comparison purposes the paths in both panels were generated using the same parameters and the same scaled time.

    3. Simulations

    We use the stochastic differential equation (9) to simulate the water-vegetation system and obtain averages of the expected time to desertification (see [10] or [13] for a quick or an extensive introduction respectively to the numerical solution of stochastic differential equations).

    By identifying the parameters of the nondimensional deterministic (non-spatial) model in [12] with the mean field system obtained above (Av=Av(ρ) and Aw=Aw(ρ), where ρ=(ρv,ρw)) we obtain S=AR1/2J/L3/2 and ˜d=M/L, with the meaning and realistic values for these parameters listed in Table 3. Thus, for instance, Klausmeier's parameter ranges for S are [0.077,0.23] and ˜d=0.045 for trees, and [0.94,2.81] and ˜d=0.45 for grass. Also, the corresponding value for ˜b and ˜v in both cases is one. Regarding the average evaporation rate, we follow Klausmeier assuming that the equilibrium of water (in his deterministic model) is at w=75 mm, and then computing the associated evaporation rate given the averaged annual precipitation, [12]. For example, with A=300 mm year1 the evaporation rate is A/w=4 year1.

    Table 2. Parameters for semi-arid landscapes, taken from [12].
    Parameter Definition Estimated values Units
    R uptake rate of water 1.5(trees) - 100(grass) mm year1 (kg dry mass)2
    J yield of plant biomass 0.002(trees) - 0.003(grass) kg dry mass (mm)1
    M mortality rate 0.18(trees) - 1.8(grass) year1
    A precipitation 250 - 750 mm year1
    L evaporation rate 4 year1
     | Show Table
    DownLoad: CSV

    Precipitation anomalies records, i.e. records of the deviations from a long term precipitation mean, have a negative trend in specific geographic drought events. In the state of California for instance, which experienced unusually long drought conditions, the (state) average of the precipitation anomalies for the past 16 years is 2.07 (inches year1) (i.e. -52.58 mm year1), see Figure 2. Although there is a lot of variability across the state, we use this value for illustration purposes, and plot the data as if this negative deviation from the long term precipitation average were steady in time.

    Figure 2. State averages of precipitation anomalies for 2000-2016 in California (inches year1). The averaged anomaly (difference from long term average) during that period is -2.07 (inches year1) (-52.58 mm year1). The precipitation increase expected from El Niño for the winter 2015-2016 was scarcely above the long term state average. Data/image provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/.

    The results of the simulations are shown in Figure 3, portraying a roughly linear relationship between the time to desertification and the anomalies in precipitation in the range selected. The simulations were run using parameters for trees (top panel) and grass (low panel), with system capacity N=500. If we denote by T the average time to desertification and by P the average annual precipitation we can define the (dimensionless) sensitivity index S0 as the ratio S0=(ΔT/T)/(ΔP/P), where ΔT and ΔP represent the absolute change in the variables T and P, i.e. S0 measures the relative change in T with respect to the relative change in P, see for instance [2]. Direct computation from the averaged results gives S02. Similar results were obtained with the larger system capacity N=104.

    Figure 3. Examples of how average time to desertification might be affected by a reduction in average annual precipitation. Parameters for trees were used in panel (a) and for grass in panel (b). The average of negative anomalies similar to that observed for the last years in California is around 50 mm year1. The model suggests that the sensitivity index S02, i.e. relative changes in the mean time to desertification are roughly twice the relative changes in average annual precipitation. For the simulations, N=500 and the initial conditions were ρ(0)=(0.1,0.1) (squares), ρ(0)=(0.5,0.5) (stars) and ρ(0)=(0.9,0.1) (triangles). Each time average was obtained from 50000 simulations. Panel (c) shows the histograms corresponding to the simulated times to desertification with an average annual precipitation of 200 and 250 mm year1 (for grass) on the left and right, respectively. The simulations used the same initial conditions ρ(0)=(0.1,0.1).

    4. Conclusions and discussion

    A traditional approach for modeling interacting populations at the macroscopic level assumes that the terms in the equations that drive the dynamics represent the average effects of individual interactions in a general, all-inclusive way. Subsequent developments use those models as departing points for building theoretical extensions by incorporating further complexity to the equations, like the inclusion of spatial dependence by adding diffusion, or the introduction of "noise" terms. A different modeling approach is to start at the individual level, with explicit rules describing the interactions between individuals and their environment, [17]. This alternative implies the definition of a Markov jump process that constitutes the foundation for developing definitive model approximations that relate macro and microscopic dynamical levels. In this paper we have taken the latter approach for constructing a stochastic differential equation (continuous state space) that approximates the dynamics of an idealized water-vegetation system, initially conceived as a Markov jump process (with discrete states as a proxy for small scale). Thus, our work complements the existing literature on modeling noise in drylands, [21].

    The diffusion approximation obtained, together with parameter values for vegetation and precipitation for semi-arid landscapes extracted from the literature, and data on decreasing precipitation trends in California, were used to estimate average times for desertification. For a fixed system capacity (N=500) the simulations for trees and grass suggests that the sensitivity of the time to desertification from the annual precipitation is roughly similar, and approximately equal to 2, i.e. the relative change in the transition time into a desert state is equal to twice the relative change in precipitation. Repeating the simulations, for different initial conditions and for a larger capacity (N=104), provided the same approximate numerical relation. The simulations (see Figure 3) suggest, for instance, that a decrease of roughly 0.4 inches of precipitation (10 mm year1) might reduce times to desertification in some cases by more than 25 years for the case of trees, and around 5 years in the case of grass. Put another way, current trends of desertification could be significantly boosted if the patterns of increasing precipitation anomalies are maintained. However, looking at the basic transition mechanisms considered in formulating the Markov jump process, it is clear that the model should be used with care to draw any conclusions on specific vegetation-water systems.

    We remark that extended droughts may resemble desertification, but the return of seasonal precipitation events may recover the vegetation (see for instance [1] where desertification was limited to spatially localized areas). This suggests that the inclusion of patterns of precipitation anomalies restricted to relatively small areas would provide more reliable results. For systems with relatively small capacity we notice that the times to desertification may be reduced dramatically (see Figure 4).

    Figure 4. Left: time to desertification for A=250 (dashes) and A=200 (dot-dashes) as function of the system capacity N. The sensitivity of the time to desertification from the annual precipitation was computed for N=10000 showing to be the same as when N=500, i.e. 2. As N increases both times to desertification also increase, but they get reduced dramatically as N gets smaller. Right: Difference between the curves in the contiguous plot. Although the difference increases, the sensitivity of the time to desertification from the annual precipitation is apparently similar in relatively large systems.

    Further work should also include long term variations of other climate related parameters. For instance, it has been documented that higher temperatures increase evapotranspiration rates [3], which have been observed over most of the United States, [8]. Another aspect that deserves attention is the inclusion of changes in the vegetation dynamics during dry periods, where vegetation mortality could be exacerbated. As is clearly pointed out in [28], neglecting the effects of intermittent precipitation on vegetation dynamics may influence the results considerably. Finally, the understanding of desertification will demand treatment with insightful stochastic space-time models.


    Acknowledgments

    The authors are grateful to C. Kribs and three anonymous reviewers for comments and suggestions that led to significant improvement of the paper.




    [1] Danković, D., Marjanović, M., Mitrović, N., Živanović, E., Danković, M., Prijić, A., et al., The Importance of Students' Practical Work in High Schools for Higher Education in Electronic Engineering. IEEE Transactions on Education, 2023, 66(2): 146–155. https://doi.org/10.1109/TE.2022.3202629 doi: 10.1109/TE.2022.3202629
    [2] Feisel, L.D. and Rosa, A.J., The Role of the Laboratory in Undergraduate Engineering Education. Journal of Engineering Education, 2005, 94(1): 121–130. https://doi.org/10.1002/j.2168-9830.2005.tb00833.x doi: 10.1002/j.2168-9830.2005.tb00833.x
    [3] Méndez Ruiz, J. and Valverde Armas, P., Designing a drinking water treatment experiment as a virtual lab to support engineering education during the COVID-19 outbreak. Cogent Engineering, 2022, 9(1): 2132648. https://doi.org/10.1080/23311916.2022.2132648 doi: 10.1080/23311916.2022.2132648
    [4] May, D., Morkos, B., Jackson, A., Beyette, F.R., Hunsu, N., Walther, J., et al., Switching from Hands-on Labs to Exclusively Online Experimentation in Electrical and Computer Engineering Courses. 2021 ASEE Virtual Annual Conference, 2021.
    [5] May, D., Alves, G.R., Kist, A.A. and Zvacek, S.M., Online Laboratories in Engineering Education Research and Practice. International Handbook of Engineering Education Research, 2023,525–552. https://doi.org/10.4324/9781003287483-29 doi: 10.4324/9781003287483-29
    [6] May, D., Terkowsky, C., Varney, V. and Boehringer, D., Between hands-on experiments and Cross Reality learning environments – contemporary educational approaches in instructional laboratories. European Journal of Engineering Education, 2023, 48(5): 783–801. https://doi.org/10.1080/03043797.2023.2248819 doi: 10.1080/03043797.2023.2248819
    [7] Ma, J. and Nickerson, J.V., Hands-on, simulated, and remote laboratories: A comparative literature review. ACM Computing Surveys (CSUR), 2006, 38(3): 7-es.
    [8] Stefanovic, M., Tadic, D., Nestic, S. and Djordjevic, A., An assessment of distance learning laboratory objectives for control engineering education. Computer Applications in Engineering Education, 2015, 23(2): 191–202. https://doi.org/10.1002/cae.21589 doi: 10.1002/cae.21589
    [9] May, D., Morkos, B., Jackson, A., Hunsu, N.J., Ingalls, A. and Beyette, F., Rapid transition of traditionally hands-on labs to online instruction in engineering courses. European Journal of Engineering Education, 2023, 48(5): 842–860. https://doi.org/10.1080/03043797.2022.2046707 doi: 10.1080/03043797.2022.2046707
    [10] Kruger, K., Wolff, K. and Cairncross, K., Real, virtual, or simulated: Approaches to emergency remote learning in engineering. Computer Applications in Engineering Education, 2022, 30(1): 93–105.
    [11] Campbell, J.O., Bourne, J.R., Mosterman, P.J. and Brodersen, A.J., The Effectiveness of Learning Simulations for Electronic Laboratories. Journal of Engineering Education, 2002, 91(1): 81–87. https://doi.org/10.1002/j.2168-9830.2002.tb00675.x doi: 10.1002/j.2168-9830.2002.tb00675.x
    [12] Gamo, J., Assessing a Virtual Laboratory in Optics as a Complement to On-Site Teaching. IEEE Transactions on Education, 2019, 62(2): 119–126. https://doi.org/10.1109/TE.2018.2871617 doi: 10.1109/TE.2018.2871617
    [13] Lindsay, E.D. and Good, M.C., Effects of laboratory access modes upon learning outcomes. IEEE Transactions on Education, 2005, 48(4): 619–631. https://doi.org/10.1109/TE.2005.852591 doi: 10.1109/TE.2005.852591
    [14] Balakrishnan, B. and Woods, P.C., A comparative study on real lab and simulation lab in communication engineering from students' perspectives. European Journal of Engineering Education, 2013, 38(2): 159–171. https://doi.org/10.1080/03043797.2012.755499 doi: 10.1080/03043797.2012.755499
    [15] Singh, G., Mantri, A., Sharma, O. and Kaur, R., Virtual reality learning environment for enhancing electronics engineering laboratory experience. Computer Applications in Engineering Education, 2021, 29(1): 229–243.
    [16] Ogot, M., Elliott, G. and Glumac, N., An Assessment of In-Person and Remotely Operated Laboratories. Journal of Engineering Education, 2003, 92(1): 57–64. https://doi.org/10.1002/j.2168-9830.2003.tb00738.x doi: 10.1002/j.2168-9830.2003.tb00738.x
    [17] Nikolic, S., Ros, M., Jovanovic, K. and Stanisavljevic, Z., Remote, Simulation or Traditional Engineering Teaching Laboratory: A Systematic Literature Review of Assessment Implementations to Measure Student Achievement or Learning. European Journal of Engineering Education, 2021, 46(6): 1141–1162. https://doi.org/10.1080/03043797.2021.1990864 doi: 10.1080/03043797.2021.1990864
    [18] Nikolic, S., Suesse, T., Jovanovic, K. and Stanisavljevic, Z., Laboratory Learning Objectives Measurement: Relationships Between Student Evaluation Scores and Perceived Learning. IEEE Transactions on Education, 2021, 64(2): 163–171. https://doi.org/10.1109/TE.2020.3022666 doi: 10.1109/TE.2020.3022666
    [19] Nikolic, S., Suesse, T.F., Grundy, S., Haque, R., Lyden, S., Hassan, G.M., et al., Laboratory learning objectives: ranking objectives across the cognitive, psychomotor and affective domains within engineering. European Journal of Engineering Education, 2023, 48(4): 559–614. https://doi.org/10.1080/03043797.2023.2248042 doi: 10.1080/03043797.2023.2248042
    [20] Nikolic, S., Suesse, T., Grundy, S., Haque, R., Lyden, S., Hassan, G.M., et al., A European vs Australasian Comparison of Engineering Laboratory Learning Objectives Rankings. SEFI 50th Annual Conference. European Society for Engineering Education (SEFI), 2023.
    [21] Nikolic, S., Suesse, T., Haque, R., Hassan, G., Lyden, S., Grundy, S., et al., An Australian University Comparison of Engineering Laboratory Learning Objectives Rankings. 33rd Australasian Association for Engineering Education Conference, 2022, 45–53.
    [22] Nightingale, S., Carew, A.L. and Fung, J., Application of constructive alignment principles to engineering education: have we really changed? AaeE Conference, 2007. Melbourne.
    [23] Krathwohl, D.R., A Revision of Bloom's Taxonomy: An Overview. Theory Into Practice, 2002, 41(4): 212–218.
    [24] Steger, F., Nitsche, A., Arbesmeier, A., Brade, K.D., Schweiger, H.G. and Belski, I., Teaching Battery Basics in Laboratories: Hands-On Versus Simulated Experiments. IEEE Transactions on Education, 2020, 63(3): 198–208.
    [25] Salehi, F., Mohammadpour, J., Abbassi, R., Cheng, S., Diasinos, S. and Eaton, R., Developing an Interactive Digital Reality Module for Simulating Physical Laboratories in Fluid Mechanics. Australasian Journal of Engineering Education, 2022, 27(2): 100–114. https://doi.org/10.1080/22054952.2022.2162673 doi: 10.1080/22054952.2022.2162673
    [26] Sriadhi, S., Sitompul, H., Restu, R., Khaerudin, S. and Wan Yahaya, W.A., Virtual-laboratory based learning to improve students' basic engineering competencies based on their spatial abilities. Computer Applications in Engineering Education, 2022, 30(6): 1857–1871.
    [27] Nikolic, S., Suesse, T.F., McCarthy, T.J. and Goldfinch, T.L., Maximising Resource Allocation in the Teaching Laboratory: Understanding Student Evaluations of Teaching Assistants in a Team Based Teaching Format. European Journal of Engineering Education, 2017, 42(6): 1277–1295. https://doi.org/10.1080/03043797.2017.1287666 doi: 10.1080/03043797.2017.1287666
    [28] Jackson, T., Shen, J., Nikolic, S. and Xia, G., Managerial factors that influence the success of knowledge management systems: A systematic literature review. Knowledge and Process Management, 2020, 27(2): 77–92. https://doi.org/10.1002/kpm.1622 doi: 10.1002/kpm.1622
    [29] Uzunidis, D. and Pagiatakis, G., Design and implementation of a virtual on-line lab on optical communications. European Journal of Engineering Education, 2023, 48(5): 913–928. https://doi.org/10.1080/03043797.2023.2173558 doi: 10.1080/03043797.2023.2173558
    [30] Memik, E. and Nikolic, S., The virtual reality electrical substation field trip: Exploring student perceptions and cognitive learning. STEM Education, 2021, 1(1): 47–59. https://doi.org/10.3934/steme.2021004 doi: 10.3934/steme.2021004
    [31] Coleman, P. and Hosein, A., Using voluntary laboratory simulations as preparatory tasks to improve conceptual knowledge and engagement. European Journal of Engineering Education, 2023, 48(5): 899–912. https://doi.org/10.1080/03043797.2022.2160969 doi: 10.1080/03043797.2022.2160969
    [32] Kollöffel, B. and de Jong, T., Conceptual Understanding of Electrical Circuits in Secondary Vocational Engineering Education: Combining Traditional Instruction with Inquiry Learning in a Virtual Lab. Journal of Engineering Education, 2013,102(3): 375–393.
    [33] Nikolic, S., Suesse, T.F., Goldfinch, T. and McCarthy, T.J., Relationship between Learning in the Engineering Laboratory and Student Evaluations. Australasian Association for Engineering Education Annual Conference, 2015.
    [34] Cai, R. and Chiang, F.-K., A laser-cutting-centered STEM course for improving engineering problem-solving skills of high school students in China. STEM Education, 2021, 1(3): 199–224. https://doi.org/10.3934/steme.2021015 doi: 10.3934/steme.2021015
    [35] Vojinovic, O., Simic, V., Milentijevic, I. and Ciric, V., Tiered Assignments in Lab Programming Sessions: Exploring Objective Effects on Students' Motivation and Performance. IEEE Transactions on Education, 2020, 63(3): 164–172. https://doi.org/10.1109/TE.2019.2961647 doi: 10.1109/TE.2019.2961647
    [36] Vial, P.J., Nikolic, S., Ros, M., Stirling, D. and Doulai, P., Using Online and Multimedia Resources to Enhance the Student Learning Experience in a Telecommunications Laboratory within an Australian University. Australasian Journal of Engineering Education, 2015, 20(1): 71–80. http://dx.doi.org/10.7158/D13-006.2015.20.1 doi: 10.7158/D13-006.2015.20.1
    [37] Tang, H., Arslan, O., Xing, W. and Kamali-Arslantas, T., Exploring collaborative problem solving in virtual laboratories: a perspective of socially shared metacognition. Journal of Computing in Higher Education, 2023, 35(2): 296–319. https://doi.org/10.1007/s12528-022-09318-1 doi: 10.1007/s12528-022-09318-1
    [38] Romdhane, L. and Jaradat, M.A., Interactive MATLAB based project learning in a robotics course: Challenges and achievements. STEM Education, 2021, 1(1): 32–46. https://doi.org/10.3934/steme.2021003 doi: 10.3934/steme.2021003
    [39] Wahab, N.A.A., Aqila, N.A., Isa, N., Husin, N.I., Zin, A.M., Mokhtar, M., et al., A Systematic Review on Hazard Identification, Risk Assessment and Risk Control in Academic Laboratory. Journal of Advanced Research in Applied Sciences and Engineering Technology, 2021, 24(1): 47–62. https://doi.org/10.37934/araset.24.1.4762 doi: 10.37934/araset.24.1.4762
    [40] Pedram, S., Palmisano, S., Skarbez, R., Perez, P. and Farrelly, M., Investigating the process of mine rescuers' safety training with immersive virtual reality: A structural equation modelling approach. Computers & Education, 2020,153: 103891. https://doi.org/10.1016/j.compedu.2020.103891 doi: 10.1016/j.compedu.2020.103891
    [41] Pedram, S., Palmisano, S., Miellet, S., Farrelly, M. and Perez, P., Influence of age and industry experience on learning experiences and outcomes in virtual reality mines rescue training. Frontiers in Virtual Reality, 2022, 3: 941225. https://doi.org/10.3389/frvir.2022.941225 doi: 10.3389/frvir.2022.941225
    [42] Nikolic, S., Training laboratory: Using online resources to enhance the laboratory learning experience. Teaching, Assessment and Learning (TALE), 2014 International Conference on, 2014. IEEE. https://doi.org/10.1109/TALE.2014.7062584
    [43] Marks, B. and Thomas, J., Adoption of virtual reality technology in higher education: An evaluation of five teaching semesters in a purpose-designed laboratory. Education and information technologies, 2022, 27(1): 1287–1305. https://doi.org/10.1007/s10639-021-10653-6 doi: 10.1007/s10639-021-10653-6
    [44] Carbone, G., Curcio, E.M., Rodinò, S. and Lago, F., A Robot-Sumo student competition at UNICAL as a learning-by-doing strategy for STEM education. STEM Education, 2022, 2(3): 262–274. https://doi.org/10.3934/steme.2022016 doi: 10.3934/steme.2022016
    [45] Gwynne-Evans, A.J., Chetty, M. and Junaid, S., Repositioning ethics at the heart of engineering graduate attributes. Australasian Journal of Engineering Education, 2021, 26(1): 7–24. https://doi.org/10.1080/22054952.2021.1913882 doi: 10.1080/22054952.2021.1913882
    [46] Nikolic, S., Daniel, S., Haque, R., Belkina, M., Hassan, G.M., Grundy, S., et al., ChatGPT versus Engineering Education Assessment: A Multidisciplinary and Multi-institutional Benchmarking and Analysis of this Generative Artificial Intelligence Tool to Investigate Assessment Integrity. European Journal of Engineering Education, 2023, 48(4): 559–614. https://doi.org/10.1080/03043797.2023.2213169 doi: 10.1080/03043797.2023.2213169
  • This article has been cited by:

    1. C. Currò, G. Grifò, G. Valenti, Turing patterns in hyperbolic reaction-transport vegetation models with cross-diffusion, 2023, 176, 09600779, 114152, 10.1016/j.chaos.2023.114152
  • Author's biography Sasha Nikolic received a B.E. degree in telecommunications and a PhD in engineering education from the University of Wollongong, Australia, in 2001 and 2017, respectively. He is a Senior Lecturer of Engineering Education at the University of Wollongong. His interest is developing career-ready graduates involving research in teaching laboratories, artificial intelligence, industry engagement, work-integrated learning, knowledge management, communication, and reflection. Dr Nikolic has been recognised with many awards, including an Australian Award for University Teaching Citation in 2012 and 2019, and a 2023 AAEE Engineering Education Research Design Award. He is a member of the executive committee of AAEE and an Associate Editor for AJEE and EJEE; Sarah Grundy is an education-focused lecturer at the School of Chemical Engineering, The University of New South Wales. Sarah predominantly teaches design subjects at all levels (undergraduate to postgraduate). Sarah has over 15 years of experience in Research & Development, Manufacturing, and project management in industry. Sarah's passion is to develop students to be credible engineers and make their impact in whatever industry through authentic learning practices; Dr. Rezwanul Haque is a Senior Lecturer specialising in Manufacturing Technology at the University of the Sunshine Coast. As an inaugural member of the AAEE Academy, he has contributed significantly to the academic community. In 2019, Dr. Haque served as an Academic Lead at the School of Science and Technology, overseeing the launch of two new Engineering programs and reviewing existing ones. His dedication to learning and teaching earned him the prestigious Senior Fellow status at the Higher Education Academy (UK) in the same year. His research focuses on Engineering Education and material characterisation through neutron diffraction; Sulakshana Lal has a PhD in Engineering Education from Curtin University, Perth, WA, Australia. Her research focused on comparing the learning and teaching processes of face-to-face and remotely-operated engineering laboratories. With a keen interest in the intersection of technology and education, Sulakshana has published several articles in reputable journals and also presented her work at national and international engineering education conferences. Her expertise lies in understanding the nuances of different laboratories pedagogical settings and harnessing technology to enhance laboratory learning outcomes. Sulakshana is passionate about sharing her knowledge and helping educators and students navigate the evolving landscape of engineering education; Dr. Ghulam M. Hassan is Senior Lecturer in Department of Computer Science and Software Engineering at The University of Western Australia (UWA). He received his PhD from UWA. He completed MS and BS from Oklahoma State University, USA and University of Engineering and Technology (UET) Peshawar, Pakistan, respectively. His research interests are multidisciplinary problems, including engineering education, artificial intelligence, machine learning and optimisation in different fields of engineering and education. He is the recipient of multiple teaching excellence awards and is awarded AAEE Engineering Education Research Design Award 2021 & 2023; Scott Daniel is a Senior Lecturer in Humanitarian Engineering at the University of Technology Sydney, and serves as Deputy Editor at the Australasian Journal of Engineering Education and on the Editorial Boards of the European Journal of Engineering Education, the African Journal of Teacher Education and Development, and the Journal of Humanitarian Engineering. Scott uses qualitative methodologies to explore different facets of engineering education, particularly humanitarian engineering. He won the 2019 Australasian Association for Engineering Education Award for Research Design for his work with Andrea Mazzurco on the assessment of socio-technical thinking and co-design expertise in humanitarian engineering; Dr. Marina Belkina is Lecturer and First Year Experience Coordinator at Western Sydney University. She has taught various subjects and courses (Foundation, Diploma, first and second years of Bachelor's Degree, online Associate Degree). She has implemented numerous projects to support learning, including: Creating the YouTube channel Engineering by Steps, Leading the development of HD videos for the first-year engineering courses, Developing iBook for physics, creating 3D lectures and aminations for Engineering Materials, and conducting research focused on exploring student's barriers to Higher Education; Sarah Lyden completed her BSc-BE (Hons) at the University of Tasmania in 2011. From 2012 to 2015 she was a PhD candidate with the School of Engineering and ICT at the University of Tasmania. From March 2015 to February 2018 Sarah was employed as the API Lecturer in the field of power systems and renewable energy. Since 2018, Sarah has been employed as Lecturer in the School of Engineering. Sarah has been a member of the School of Engineering and ICT's STEM education and outreach team; Dr. Thomas F. Suesse completed his MSc (Dipl-Math) degree in mathematics at the Friedrich-Schiller-University (FSU) of Jena, Germany, in 2003. Dr Suesse then worked as a research fellow at the Institute of Medical Statistics, Informatics and Documentation (IMSID) and FSU. In 2005 he went to Victoria University of Wellington (VUW), New Zealand, to start his PhD in statistics and his degree was conferred with his thesis titled, 'Analysis and Diagnostics of Categorical Variables with Multiple Outcomes' in 2008. In 2009 Dr Suesse started working as a research fellow at the Centre for Statistical and Survey Methodology (CSSM) at the University of Wollongong. He was appointed as a lecturer at UOW in 2011 and promoted to senior lecturer in 2015. Currently he is at FSU on a research on a research fellowship
    Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1756) PDF downloads(56) Cited by(3)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog