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Abstract: The laboratory, an integral component of engineering education, can be conducted via 

traditional, online or mixed modes. Within these modes is a diverse range of implementation formats, 

each with different strengths and weaknesses. Empirical evidence investigating laboratory learning is 

rather scattered, with objectives measurement focused on the innovation in question (e.g., new 

simulation or experiment). Recently, a clearer picture of the most important laboratory learning 

objectives has formed. Missing is an understanding of whether academics implementing laboratories 

across different modes think about learning objectives differently. Using a survey based on the 

Laboratory Learning Objectives Measurement instrument, academics from a diverse range of 

engineering disciplines from across the world undertook a ranking exercise. The findings show that 

those implementing traditional and mixed laboratories align closely in their ranking choices, while 

those implementing online-only laboratories think about the objectives slightly differently. These 

findings provide an opportunity for reflection, enabling engineering educators to refine the alignment 

of their teaching modes, implementations and assessments with their intended learning objectives. 
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1. Introduction  

Practical work has learning benefits that stem across all levels of education [1]. Practical 

laboratory experiences, referred to as traditional laboratory mode, have long supported engineering 

education, where students bridge the gap between theoretical knowledge and practical application [2]. 

Traditionally, these labs have been conducted in physical spaces involving hands-on learning 

experiences, but over many years, online laboratory modes have emerged as a viable alternative. 

Such viability was witnessed during the COVID-19 lockdowns when many traditional laboratory 

implementations were transitioned to online experiences [3,4]. The term online laboratory can be 

associated with various implementations, including remote, virtually represented, fully simulated and 

otherwise emulated laboratories [5]. This collection of approaches defines the online mode used 

within this study. A mixed laboratory refers to implementations that combine traditional and online 

modes. The definitions used here under the umbrella of modes are very broad, and a more granular 

introduction and description of a large spectrum of laboratory formats is outlined in the work of May, 

Terkowsky [6]. Different advantages are associated with the different modes, some key points are 

listed below [7–10]: 

- Traditional Labs: 

- Hands-On Learning: Allowing students to touch, feel and interact with physical equipment, 

fostering a deep understanding of engineering principles. 

- Immediate Feedback: Students receive instant feedback through real-time observations and 

measurements.  

- Collaboration: Traditional labs often encourage collaboration among students. Working in 

teams fosters communication and teamwork. 

- Safety: Engineers can work in dangerous environments. Traditional labs provide a controlled 

environment where safety protocols can be observed and practiced. 

- Instructor Guidance: Instructors can offer hands-on guidance, answer questions in real-time 

and provide valuable insights based on their expertise. 

- Troubleshooting: Implementing an experiment involves interacting with various tools and 

equipment, which can lead to errors, faulty equipment and problems. This provides students 

with a multi-sensory experience that replicates real-world challenges. 

- Online Labs: 

- Accessibility: Depending on the online format, online labs can be accessed from anywhere 

with an internet connection, allowing students to engage with experiments at their convenience. 

This was a significant benefit during COVID-19 lockdowns. 

- Cost-Efficiency: Setting up and maintaining physical labs can be expensive. Online labs often 

require fewer resources, making engineering education more cost-effective. Remote labs, for 

example, can give students in remote or underprivileged areas access to hardware that would 

otherwise not be possible. 

- Repeatability: Online labs can be repeated multiple times quickly. For example, students can 

change components and values and rerun a simulation at the speed of a button. There is no 
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need to find physical items and worry about wear and tear. 

- Data Analysis: Online labs often provide data analysis tools that allow students to process and 

visualize results more efficiently.  

- Self-Paced Learning: Online labs can accommodate various learning styles and paces, 

empowering students to tailor their educational experience to their needs. 

- Safety: Students can work in a safe environment without the risk of harm or equipment 

damage. 

- Scalability: Online labs can easily scale to accommodate larger numbers of students, making 

them an excellent choice for institutions with high enrolment. 

- Troubleshooting: Online labs allow students to focus on the core learning objectives, 

eliminating the need for complex fault finding and dealing with potential faulty equipment and 

logistical problems. 

By combining online and traditional components, mixed laboratories try to build upon the 

different strengths across the different modes. For example, verification of theoretical concepts may 

be simulated first and followed up with traditional hands-on activities. Using a mixed approach, 

students have access to various benefits associated with both modes [11,12]. 

The list of advantages highlights that different laboratory modes have different strengths and 

weaknesses. Not surprisingly, this relationship also extends to differences in learning outcomes 

across modes [13]. Substantial evidence shows that online laboratories can provide equal or better 

cognitive learning outcomes than traditional approaches [14–16]. However, beyond the cognitive 

domain, little empirical evidence offers the understanding that we need for learning outcomes across 

the psychomotor and affective domains, resulting in a knowledge gap [17]. Nikolic et al. [17] 

pinpointed two reasons for this phenomenon. First, the ease of data collection is cited as a factor, 

particularly when it comes to cognitive learning. Second, the predominant focus of empirical data on 

learning revolves around gaining insights into innovation, such as new simulations, experimental 

setups or technologies. The emphasis is often not placed on achieving a holistic understanding of 

laboratory-based learning. Therefore, due to the diversity of applications and intended outcomes in 

different laboratory implementations, direct comparisons are not necessarily helpful in developing a 

holistic understanding of learning [5]. There are several steps we can undertake to overcome this 

limitation. The first step in developing this holistic understanding is gaining insights into what 

learning is occurring beyond those defined in course learning objectives. The first author has made 

progress on this in terms of perceived learning [18] and is currently building evidence in terms of 

real learning. In other words, whether there is a relationship between what students think they 

learned and what they actually learned. The second step is to understand which learning objectives 

are important and to whom, and major inroads have been made on this front [19–21]. The third step 

is to confirm if we are effectively assessing said objectives [17] because misalignment is 

probable [22]. For instance, Nightingale, Carew and Fung [22] found that a significant mismatch can 

occur between the stated learning objectives of subjects and how students are assessed. This is the 

next research phase by the team. By doing this, staff can associate the best mode, implementation 

and assessment with intended learning objectives. 

In this work, we focus on the second step, which is understanding the importance of learning 

objectives, as mentioned above. Collectively, the work of Nikolic et al. [19] found that the most 

important cognitive ranked items were understanding, design/modeling and analysis. For the 
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psychomotor-based objectives, the items ranked highest were successful experimentation, planning 

& execution and instrument use. For the affective-based objectives, items ranked highest were 

teamwork, communication and independence. However, ranking order may be influenced by location 

or discipline, with discipline being most influential to the slight variances [19–21]. These differences 

are important to understand as they give meaning to laboratory design decisions by different groups 

of engineering educators. 

Within the literature, the influence of laboratory mode on design decisions is unknown. That is, 

do academics designing laboratory implementations think about objectives differently when working 

in a specific mode? This study contributes to the field by exploring the targeted learning objectives 

of academics implementing traditional, mixed or online-only laboratory implementations. In doing 

so, the study answers the following research question: “How do academics implementing different 

laboratory modes of teaching think about laboratory learning objectives and rank them in terms of 

importance?”. This study's findings will help classify which mode is best suited to which learning 

objective.  

2. Laboratory learning 

There are 13 core laboratory learning objectives: Instrumentation, models, experiment, data 

analysis, safety, design, psychomotor, sensory awareness, learning from failure, creativity, 

communication, teamwork and ethics [2]. Learning also occurs across three domains: Cognitive, 

psychomotor and affective [23]. An instrument called Laboratory Learning Objectives Measurement 

(LLOM) [19] combines the laboratory learning objectives with Bloom's Taxonomy, providing an 

easy-to-use, context-modifiable, holistic template to explore learning in engineering laboratories. 

Using this instrument, it has been discovered that students perceive that learning occurs across all 

three domains during experimentation [18]. However, the scientific community has concentrated its 

efforts on measuring cognitive learning [5,17]. For example, Steger and Nitsche [24] compared 

learning of simulation and traditional implementations by exploring student achievement based on 

post-laboratory test results. Likewise, Singh and Mantri [15] investigated the differences through pre 

and post-laboratory tests. All tests focused on the cognitive domain. 

While perceived learning can highlight many benefits to student experience [25], more effort is 

needed to understand real learning. To overcome this, over the last ten years, through the efforts of 

higher-quality journals, research efforts have accelerated to analyze empirical data on student 

learning through learning instruments or student performance than simply focusing on perceptions of 

learning through survey instruments [17]. Complicating the analysis and evidence collection is 

whether learning is considered on an immediate or long-term basis [26]. Furthermore, influences 

such as the impact of teaching staff can affect the results of studies if not carefully accounted 

for [24,27]. We can improve knowledge in this area by improving our processes and strategies 

towards measuring learning [28]. 

The community has built substantial evidence that cognitive learning occurs across any 

laboratory mode. For example, Uzunidis and Pagiatakis [29] showed that the average student grade 

for laboratory reports was similar across virtual and physical implementations. Similarities in 

cognitive learning were also found by Memik and Nikolic [30]. Growing evidence shows that 

combining modes increases learning benefits [14]. For example, Coleman and Hosein [31] found that 

the maximum marks for laboratory reports increased when a simulation was added and used in a 

traditional laboratory. A similar uplift in marks was seen by Gamo [12] and Kollöffel and de 
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Jong [32]. However, a more significant problem across all studies is that there is no unity in the 

laboratory objectives being addressed; they are primarily targeted at a specific innovation [17]. 

Therefore, as innovation drives the researched learning outcomes, it is important to take a step back 

and determine if the important learning objectives, whatever they may be, are not being lost in this 

innovation-driven approach. Hence, it is important to determine which laboratory objectives are 

important.  

Not much attention beyond perceptions of learning is given to psychomotor or affective 

learning, primarily because it is harder to collect the data [17,33]. For example, using a pre and 

post-test is easy to implement [34]. Attempts made to try and measure psychomotor or affective 

learning have primarily come from instructor observations and interviews [35,36], possibly more 

time consuming and suggestive. The problem with this deficiency of empirical data is that we do not 

have a holistic understanding of learning across all modes. If there are areas of weakness, the 

community can work towards innovative solutions. For example, teamwork is strongly associated 

with the traditional mode, but examples of collaboration in online modes have emerged [37]. 

Additionally, COVID-19 transitions to remote work environments have shown how the world can 

adjust to online forms of collaboration. Just as with the cognitive domain, some commonality is 

needed to understand better the laboratory objectives across the psychomotor and affective domains, 

hence the need for this study. We need a better understanding of which laboratory objectives are 

essential. Then, it will be possible to collectively test the impact of learning across modes using the 

best assessment methods. 

3. Laboratory learning objectives measurement 

The Laboratory Learning Objectives Measurement (LLOM) instrument provides a holistic list 

of learning objectives that combine the laboratory objectives outlined in [2] with Bloom‟s 

Taxonomy [23], hierarchical models used for the classification of educational learning objectives. It 

uses a template format in which keywords can be substituted for any engineering discipline or 

context. This allows it to be used in traditional labs and new innovative labs (e.g., 3D Printing). The 

template is outlined in Table 1. As an example of its use, item C1 could be written as “Understand 

the operation of soil testing equipment” for a civil laboratory, while it could be written as 

“Understand the operation of a multimeter” for an electronics laboratory. A comprehensive 

explanation of the instrument is available in [19].  

Through the use of this instrument, it is possible to develop a common understanding of what is 

perceived as the most important laboratory objectives. This allows for a reflection on the direction 

and thinking of academic communities across disciplines, locations and modes. Questions can then 

be asked, such as, are the perceived rankings optimum? Are some objectives more important in some 

disciplines than others? Moreover, in the case of this study, do academics with a traditional focus 

think about objectives differently from those that design online laboratories? Answering such 

questions allows for some positive reflection and possible realignment of actions. 

Through investigations to date, evidence suggests that students perceive that learning occurs 

across all three domains in a laboratory [18]. This was achieved by students rating their ability 

against the instrument items before the start of the first laboratory session and after the last 

laboratory session, with the differences equating to their perceived learning. In terms of determining 

the most and least important objectives, the LLOM items have been used in ranking exercises. 
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Table 1. Laboratory learning objective items [19]. 

Domain Item LLOM Objective* 

Cognitive C1 Understand the operation of equipment/software used within the laboratory 

Cognitive C2 Design experiments/models (physical or simulation) to verify course concepts 

Cognitive C3 Use engineering tools (e.g. [name of hardware/software used]) to solve problems 

Cognitive C4 Read and understand datasheets/circuit-diagrams/ procedures/user-manuals/help-menus 

Cognitive C5 Draw & interpret relevant charts, graphs, tables & signals 

Cognitive C6 Recognise safety issues associated with laboratory experimentation 

Cognitive C7 Analyze the results from an experiment 

Cognitive C8 Write a conclusion summarising your findings from an experiment 

Cognitive C9 Write a laboratory report/entry into a logbook in a professional manner 

    

 

Psychomotor P1 Correctly conduct an experiment on [course equipment/ software name- e.g. power systems] 

Psychomotor P2H Select and use appropriate instruments for the input, output and measurement of your circuit/system 

Psychomotor P2S Select appropriate commands and navigate interface to simulate/program a model 

Psychomotor P3 Plan and execute experimental work related to this course 

Psychomotor P4 Construct/code a working circuit/simulation/program 

Psychomotor P5 Interpret sounds, temperature, smells and visual cues and use tools to diagnose faults/errors 

Psychomotor P6H Operate instruments (e.g. [equipment name]) required for experimentation 

Psychomotor P6S Operate software packages (e.g. [software name]) required for coding/simulation 

Psychomotor P7 Take the reading of the output from circuits/ instruments/sensors 

      

Affective A1 Work in a team to conduct experiments, diagnose problems and analyze results 

Affective A2 Communicate laboratory setup, fault diagnosis, readings and findings with others 

Affective A3 Work independently to conduct experiments, diagnose problems and analyze results 

Affective A4 Consider ethical issues in laboratory experimentation and communication of discoveries 

Affective A5 Creatively use software/hardware to design or modify an experiment to solve a problem 

Affective A6 Learn from failure (when experiment/simulation/code fails or results are unexpected) 

Affective A7 Motivate yourself to complete experiments and learn from the laboratory activities 

* Terms in italics are place keepers. The term is to be substituted for one relevant to the experiment. 

In terms of ranking, there is much commonality in order across continents [20]. As discovered 

by Nikolic et al. [19], even though a general common order is present, the most accurate rankings are 

determined by discipline [19]. Through those findings, it has been possible to develop insights into 

why the higher and lower rankings are how the academics perceived them. It allows for reflection 

and an opportunity to consider the correlation of objectives to the given assessment tasks. 

Interestingly, for the cognitive and psychomotor domains, the ranking order correlated somewhat to 

the hierarchical structure of Bloom's Taxonomy, but this was not the case for the affective 

domain [19]. Repeating this analysis with laboratory modes can open new insights. 

  



337 

 

STEM Education  Volume 3, Issue 4, 331–349 

4. The experiment 

In 2021, over 3,000 academics worldwide were invited to participate in a survey that required 

ranking learning objectives using the LLOM instrument. This is an instrument used as a foundation 

for multiple papers [17–21] and has undergone a range of testing, including Cronbach‟s alpha and 

factor analysis (Kaiser rule, parallel analysis, optimal coordinates and acceleration factor) as outlined 

in [18]. Recruitment for participation came from advertisements via direct email and through social 

and professional networks of the research team. This included professional networks on platforms 

such as Facebook and LinkedIn. From the invitations, there were 219 survey commencements and 

160 completions. Given the high workload on the academic community and the cognitive load 

required to complete the rankings, the number of completions met expectations.  

Response distribution was 113 from Australasia, 25 from Europe, 12 from Asia, nine from 

North America and one from South America. While Australasian responses dominate, an earlier 

study [24] found that across the board, statistical differences and rankings were minimal across the 

cognitive and psychomotor domains but evident across the affective domain. Discipline response 

distribution was 2 Aeronautical, 7 Biomedical, 17 Chemical, 14 Civil, 17 Computer, 22 Electrical, 19 

Electronics, 2 Industrial/Process, 10 Materials, 21 Mechanical, 8 Mechatronics, 1 Mining, 4 Other, 

10 Software and 6 Telecommunications. Regarding laboratory teaching experience, 23% of 

respondents had less than five years of teaching experience, 20% had between five and ten years of 

experience and 57% had ten or more years of experience. 

Participants completed the survey through Qualtrics. They were provided insights into how the 

template functioned and could be tailored for purpose. The survey required participants to rank the 

multi-domain objectives in order of importance (1 = highest ranked) as listed in the Laboratory 

Learning Objectives Measurement (LLOM) instrument. Participants were required to rank the 

objectives from most important (ranking = 1) to least important. A fixed initial ranking was used to 

determine if any rankings remained unchanged based on the order in Table 1. None of the rankings 

were left in the default state for the responses analyzed. 

The data was analyzed in five groups:  

- Collectively (n = 160): This included all responses. 

- Traditional (n = 56): This covered those that only implemented face-to-face styled 

laboratories.  

- Online (n = 13): This covered those that only implemented online-styled laboratories.  

- Mixed (n = 90): This covered those that implemented laboratories that combined traditional 

and online modes.  

- Other (n = 1): As classified by the respondents as not fitting any of the groups. This data was 

not investigated separately, only within the collective. 

It must be observed that the online-only cohort is a relatively small sample. This could create 

some noise within the ranking order. However, the data would still be helpful as the authors believe 

that the presented ratio probably represents the current implementation ratio. 

Limitations 

This study does have certain constraints. It relies on a self-selection approach, meaning that the 

viewpoints expressed might predominantly reflect those of academics who are more actively 
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involved in and influenced by research in engineering education. Although we provided guidance on 

how to understand and use the LLOM template, there is no assurance that every participant 

comprehended all the elements and correctly applied the template, including identifying key terms 

within the context. Despite inviting approximately 3000 academics to participate, only a relatively 

small number completed the survey in its entirety. It is worth noting that such a limited response rate 

aligns with common patterns observed in previous experiences of this kind.  

5. Results 

The statistician on the team analyzed the results. The platform R version 4.05 was used for the 

statistical analysis with the results shown in Tables 2 (cognitive), 3 (psychomotor) and 4 (affective). 

Rankings were determined using averages. The lower the number, the more academics ranked the 

objective as more important than objectives with a higher average. In brackets, the 95% confidence 

interval (CI) is shown. When two confidence intervals do not overlap, a statistically significant 

difference in mean values can be concluded. The differences between the online-only and traditional 

groups are highlighted in green. Differences between the online group and the collective are shown 

in blue. For example, for P2S in Table 3, the online-only group has a confidence interval (2.16, 4.95), 

and the traditional group has a confidence interval (5.10, 6.15). As the intervals do not overlap (2.16 

and 4.95 are both smaller than 5.10 and 6.15), and the lower endpoint, 5.10, is larger than the higher 

endpoint of the other (which is 4.95), a statistically significant difference in mean values can be 

concluded.  

The value in the last column shows the p-value of the non-parametric equivalent test of ANOVA, 

the Kruskal-Wallis test, to account for non-Gaussian distributed data, which is also best suited to the 

small sample size. The p-value is used to test for mean differences across groups; this examines 

whether, for a particular objective (e.g., C1), the mean responses are different across the laboratory 

modes, i.e., if a p-value is less than 5% (highlighted in grey), then responses differ across groups for 

that question, otherwise not. 

Each table also provides a visual representation of the objectives in ranking order. Visual 

representations can help develop a better understanding of data. Colour coding is used to show how 

the collective ranking differs across the laboratory modes. For example, in Table 2, C1 is light blue. 

The different ranking of C1 for each laboratory modes can be easily observed in the table by 

following the colour trend. 

From the sample, it was interesting that most respondents implemented mixed-mode laboratory 

activities. One reason could be that a substantial percentage of the academic community believes in 

the benefits of mixed-modal learning. Another reason could be that there is a growing opportunity to 

mesh online and hands-on skills for experimentation [7], such as in robotics [38]. 

The results of the research questions are outlined in the upcoming discussion section. 
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Table 2. Learning objectives cognitive domain (Averages with 95% confidence interval) 

and ranking order. 

 

Collectively Mixed Modes Online Only Traditional Non-Param. ANOVA 

C1 3.11 (2.79,3.42) 2.89 (2.46,3.54) 4.08 (3.06,6.05) 3.21 (2.68,3.75) 0.181 

C2 3.31 (2.92,3.69) 3.52 (3.09,4.51) 2.62 (0.56,4.77) 3.16 (2.50,3.82) 0.3979 

C3 4.06 (3.69,4.43) 3.77 (3.37,4.63) 3.69 (1.91,5.43) 4.61 (3.87,5.35) 0.1374 

C4 5.50 (5.14,5.86) 5.48 (5.21,6.53) 6.00 (3.77,8.01) 5.41 (4.81,6.01) 0.4055 

C5 5.10 (4.84,5.36) 5.29 (4.80,5.78) 4.77 (3.34,6.00) 4.84 (4.43,5.25) 0.4481 

C6 6.23 (5.85,6.61) 5.92 (5.05,6.36) 8.23 (7.21,9.01) 6.34 (5.69,6.99) 0.0363 

C7 3.86 (3.54,4.18) 4.07 (3.27,4.48) 3.23 (1.96,4.48) 3.70 (3.17,4.22) 0.6472 

C8 6.54 (6.22,6.85) 6.49 (5.60,6.80) 5.54 (4.18,7.16) 6.82 (6.29,7.35) 0.2609 

C9 7.29 (6.98,7.61) 7.58 (6.71,7.80) 6.85 (4.75,8.36) 6.91 (6.33,7.49) 0.0423 

Rank 

     1 C1 C1 C2 C2 

 2 C2 C2 C7 C1 

 3 C7 C3 C3 C7 

 4 C3 C7 C1 C3 

 5 C5 C5 C5 C5 

 6 C4 C4 C8 C4 

 7 C6 C6 C4 C6 

 8 C8 C8 C9 C8 

 9 C9 C9 C6 C9 

 

Table 3. Learning objectives psychomotor domain (Averages with 95% CI) and ranking order. 

 

Collectively Mixed Modes Online Only Traditional Non-Param. ANOVA 

P1 2.46 (2.19,2.73) 2.44 (1.74,2.51) 3.46 (1.75,5.80) 2.27 (1.81,2.72) 0.02731 

P2H 4.13 (3.78,4.48) 3.86 (3.30,4.45) 5.08 (3.86,8.14) 4.32 (3.68,4.97) 0.03486 

P2S 5.24 (4.93,5.56) 5.16 (4.75,5.79) 4.08 (2.16,4.95) 5.63 (5.10,6.15) 0.05501 

P3 3.02 (2.72,3.33) 3.10 (2.77,3.89) 3.85 (2.37,5.85) 2.71 (2.22,3.21) 0.20317 

P4 5.23 (4.87,5.60) 5.04 (4.85,5.99) 3.31 (1.75,4.92) 5.93 (5.30,6.56) 0.00148 

P5 6.86 (6.56,7.16) 7.03 (6.70,7.73) 7.54 (5.37,8.85) 6.52 (6.01,7.03) 0.19424 

P6H 4.90 (4.55,5.25) 4.97 (4.19,5.37) 6.31 (6.18,7.60) 4.48 (3.90,5.07) 0.00434 

P6S 6.50 (6.15,6.85) 6.63 (5.68,7.01) 5.46 (2.13,6.75) 6.55 (6.01,7.09) 0.01152 

P7 6.65 (6.29,7.01) 6.77 (6.01,7.27) 5.92 (3.90,7.65) 6.59 (6.00,7.18) 0.73002 

Rank 

     1 P1 P1 P1 P1 

 2 P3 P3 P4 P3 

 3 P2H P2H P3 P2H 

 4 P6H P6H P2S P6H 

 5 P4 P4 P2H P2S 

 6 P2S P2S P6S P4 

 7 P6S P6S P7 P5 

 8 P7 P7 P6H P6S 

 9 P5 P5 P5 P7 
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Table 4. Learning objectives affective domain (Averages with 95% confidence interval) 

and ranking order. 

 

Collectively Mixed Modes Online Only Traditional 
Non-Param. 

ANOVA 

A1 2.49 (2.21,2.77) 2.58 (1.87,2.71) 3.92 (1.53,5.81) 2.02 (1.65,2.39) 0.00719 

A2 3.24 (3.01,3.47) 3.39 (3.04,3.90) 3.46 (2.78,4.78) 2.93 (2.56,3.29) 0.2859 

A3 3.58 (3.27,3.88) 3.50 (2.97,3.98) 2.77 (0.49,4.18) 3.86 (3.36,4.36) 0.163 

A4 5.50 (5.28,5.72) 5.43 (5.03,5.84) 5.46 (4.15,6.29) 5.66 (5.36,5.96) 0.82857 

A5 4.44 (4.13,4.76) 4.40 (4.03,5.07) 3.77 (2.51,5.49) 4.64 (4.09,5.20) 0.69254 

A6 4.23 (3.97,4.49) 4.29 (3.84,4.81) 3.92 (3.30,5.15) 4.16 (3.75,4.57) 0.9569 

A7 4.53 (4.20,4.85) 4.41 (3.88,5.03) 4.69 (3.35,6.20) 4.73 (4.17,5.29) 0.85778 

Rank 
 

    1 A1 A1 A3 A1 

 2 A2 A2 A2 A2 

 3 A3 A3 A1 A3 

 4 A6 A6 A5 A6 

 5 A5 A5 A6 A5 

 6 A7 A7 A7 A7 

 7 A4 A4 A4 A4 

  

6. Discussion 

Each domain is discussed separately below. 

6.1. Cognitive domain 

The data indicates that ranking preferences across the collective, traditional and mixed modes 

were mainly in alignment. The substantial differences came from academics that implemented online 

implementations only. The online-only results show a firm preference for C2, the ability to „design 

experiments/models to verify course concepts‟ as the most important objective, with a value lower 

than the highest ranking objective for the other groups, even for the traditional group that also ranked 

it first. However, it is important to note that this difference is not statistically significant. 

More interesting was that C1, „understanding the operation of equipment/software used within 

the laboratory’, was ranked fourth for the „online-only‟ group. Across continents [20] and all 

disciplines, apart from computer and software engineering [19], C1 was ranked first or second. While 

not statistically significant, this suggests a pattern regarding the thinking of learning objectives 

across computer-based academics. The other major differences are that C8, summarising findings, is 

ranked higher for the online group and C6, „safety‟ is ranked lowest (as expected). C6 is the only 

cognitive objective in which a statistical difference is found both across groups (grey highlight) and 

mean values between the online-only group and across both the collective (blue highlight) and 

traditional groups (green highlight). The weight of C6 is substantially higher in the other groups. 

This is not surprising because online laboratories' safety benefits are often touted as one of the main 

benefits of such an implementation [8,14] and, therefore, unlikely to be emphasised as a key learning 
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objective. While in traditional laboratories, engaging with safe practices is one of the benefits [34,39], 

and hence would have higher emphasis. However, these insights overlook the fact that virtual 

reality-based online laboratory implementations may change this dynamic as the technology 

becomes prevalent, allowing for immersive experiences that bring safety front and center [40,41]; 

hence, the need for this study to reflect on learning objectives. 

The opposing ranking viewpoints between traditional-only and online-only rankings would 

suggest that combining the two modes would diversify the cognitive focus in the learning experience. 

For example, online resources can play a supporting role in aiding understanding in a traditional 

laboratory [42]. However, the mixed mode group data shows that those implementing such setups 

think broadly in line with academics implementing traditional-only laboratories. 

6.2. Psychomotor domain 

Across the psychomotor domain, the ranking pattern mimicked that found across the cognitive 

domain. There was a very clear alignment across the collective, mixed and traditional groups. P1, 

reflecting successful experimentation, consistently occupied the highest rank in each of these groups. 

The one noticeable outlier across the four was that P5, the psychomotor skills associated with fault 

finding, was ranked higher for the traditional group, however, this difference was not statistically 

significant. P5 had also been ranked mostly last or second last across the other comparisons 

undertaken in different studies by the researchers [19–21]. It seems appropriate that those academics 

focusing more on the traditional laboratory approach, where things are more likely to go wrong, 

would rate P5 higher. The authors have previously argued [19] that there is merit for a rethink that 

this objective should be ranked higher. It is apparent that objectives related to traditional 

implementations take higher precedence for those implementing mixed modes, just as was found in 

the cognitive domain. 

Across the groups, it was no surprise that the online rankings were the most different, as online 

and traditional modes have obvious differences in psychomotor opportunity. Noting that virtual 

reality-based online laboratory implementations provide a platform to change such a dynamic as they 

gradually become more immersive [40,43]. Four of the nine psychomotor items, P2H, P4, P6H and 

P6S, had statistical mean differences across groups.  

One standout observation involves P2H and P6H (statistically significant across both mean 

values and groups), representing the selection and operation of instruments. While in all other groups, 

P2H is unanimously placed in the third position and P6H in fourth, they notably drop to the fifth and 

eighth rank, respectively, when assessed solely within the online-only group. This is unsurprising, as 

hands-on activities would not be a primary focus in a hands-off environment. Another noticeable 

difference is that P4, construct/coding, moved up from fifth in the other groups to second in the 

online group. This divergence highlights a distinct pattern that sets the online-only group apart from 

the others in terms of their preferences and evaluations. This could be due to the lower key role 

equipment plays in online modes compared to the activity of constructing/coding working circuits, 

simulations and programs.  

Different strengths and weaknesses of the modes were highlighted in the literature review, most 

with psychomotor implications, as such engagement with psychomotor objectives is very different. 

These findings show that those objectives that resonate strongest with simulation/remote 

competencies were ranked higher than those associated with hardware. Interestingly, correctly 

conducting an experiment was the highest-ranked objective across all modes. 
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6.3. Affective domain 

Unlike the other two domains, there was almost complete alignment across all groups for the 

affective domain. In this particular domain, the collective, mixed and traditional groups exhibited a 

striking symmetry, mirroring one another perfectly. The significant outlier was the swapping of 

objectives A3 and A1 for the online group. That is, the online group ranked independent learning 

higher than teamwork, which is unsurprising as many online experimentation implementations are 

targeted at individual work. A1 was the only statistical difference recorded at the group level.  

Face-to-face learning easily enables many advantages of collaborative learning, especially soft 

skills [44]. This is not to say that teamwork is not possible in online modes, indeed, it can [37]. When 

synthesising the results from this study with the other three [19–21], it appears that discipline-based 

influences have the greatest influence on rankings across the affective domain. Ethics (A4) is ranked 

last across all groups. Given that data collection may be more prevalent away from the eyes of 

teaching staff in online modes, it may be wise to give this objective higher priority to ensure that the 

data being collected is the same being reported and analyzed, especially if marks are involved. It can 

be easy to manipulate data, and such practices must be encouraged as wrong. This is just one 

example, but ethics is clearly an area requiring greater consideration [45]. 

6.4. The road ahead 

As outlined in the literature review, most laboratory studies, especially those comparing 

laboratory mode implementations, focus on learning in the cognitive domain. As a result, the 

rankings in the cognitive domain correlate with such findings. The window of opportunity can be 

found in the psychomotor domain, where little effort has been made to gather non-perception-based 

empirical data on learning [5,17]. With a focus on different learning objectives, studies can attempt 

to measure and explore if the differences translate with learning. Such knowledge can aid in making 

design decisions. It has never been more important to improve our understanding of psychomotor 

learning due to the impact ChatGPT and other AI technologies are about to have on cognitive 

learning experiences [46]. 

We have been developing knowledge of laboratory learning, and we now better understand 

which learning objectives are important and to whom. The next step is synthesising this information 

and examining if our assessment practices correlate, which we need a much better understanding 

of [22]. If they do not, we can start to make changes.  

7. Conclusions 

We investigated the research question: “How do academics implementing different laboratory 

modes of teaching think about laboratory learning objectives and rank them in terms of importance?”. 

An almost perfect alignment was found across all modes for the affective domain. The main 

difference was the swap in priority between independent and collaborative learning, which closely 

aligns with the typical experience a student may face engaging in such modes. Online-only 

academics, prioritized independent learning over teamwork. While independent work may be the 

default approach when using many online technologies, collaborative learning is possible with the 

right technology and approach [37]. 

For the cognitive and psychomotor domains, much similarity was found across the collective, 
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traditional and mixed groups, with the greatest difference coming from the online-only group. These 

differences can, to some degree, be attributed to the technology associated with each mode. 

Specifically, the online-only group tended to assign higher rankings to items that were more relevant 

to their mode of learning. For example, the aspect of „safety‟ received the lowest ranking from the 

online-only group, most probably because student engaging in simulation or remote laboratory 

setups may not need to give significant consideration to safety due to the safe laboratory controlled 

environment. However, it is possible that if the focus of the technology changed, e.g., virtual reality 

bringing about highly immersive learning experiences where safety was the core learning objective, 

it would be very beneficial [40]. Similarly, virtual reality could simulate a great range of 

psychomotor activities. This reinforces the contribution of this study, allowing the academic 

community to reflect on the factors influencing ranking decisions, which, in turn, can influence their 

design choices. Academics can consider if the rankings are justified, optimal or need adjustment. The 

different areas of ranking priorities identified can be used by researchers to home in their 

investigations on the strengths and weaknesses of different laboratory modes, ultimately informing 

the development of more effective teaching strategies. One key takeaway from these findings is that 

academics should not let technology limitations guide their focus on the important laboratory 

objectives. The laboratory object should be the focus. 

The first step in developing this holistic understanding is gaining insights into what learning is 

occurring beyond those defined in course learning objectives. Progress on this in terms of perceived 

learning has been made [10], and research is currently underway to build evidence regarding real 

learning. The second step is to understand which learning objectives are important and to whom, and 

major inroads have been made on this front [11–13]. The third step is to confirm if we are effectively 

assessing said objectives [9], the next research phase by the research team. By doing this, staff can 

associate the best mode, implementation and assessment with intended learning objectives. This will 

help engineering educators enhance the alignment of their teaching modes, implementations and 

assessments with their intended learning objectives. 
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