We explored the prescribed-time stability (PTSt) of impulsive piecewise smooth differential systems (IPSDS) based on the Lyapunov theory and set-valued analysis technology, allowing flexibility in selecting the settling time as desired. Furthermore, by developing a feedback controller, we employed the theoretical results to evaluate the synchronization behavior of impulsive piecewise-smooth network systems (IPSNS) within a prescribed time frame and obtained novel criteria to guarantee the synchronization objective. A numerical example was presented to validate the accuracy of the results.
Citation: Chenchen Li, Chunyan Zhang, Lichao Feng, Zhihui Wu. Note on prescribed-time stability of impulsive piecewise-smooth differential systems and application in networks[J]. Networks and Heterogeneous Media, 2024, 19(3): 970-991. doi: 10.3934/nhm.2024043
We explored the prescribed-time stability (PTSt) of impulsive piecewise smooth differential systems (IPSDS) based on the Lyapunov theory and set-valued analysis technology, allowing flexibility in selecting the settling time as desired. Furthermore, by developing a feedback controller, we employed the theoretical results to evaluate the synchronization behavior of impulsive piecewise-smooth network systems (IPSNS) within a prescribed time frame and obtained novel criteria to guarantee the synchronization objective. A numerical example was presented to validate the accuracy of the results.
[1] | R. W. Brockett, Asymptotic stability and feedback stabilization, Differ. Geom. Control Theory, 27 (1983), 181–191. |
[2] | S. P. Bhat, D. S. Bernstein, Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 38 (2000), 751–766. https://doi.org/10.1137/S0363012997321358 doi: 10.1137/S0363012997321358 |
[3] | W. M. Haddad, Q. Hui, Dissipativity theory for discontinuous dynamical systems: Basic input, state, and output properties, and finite-time stability of feedback interconnections, Nonlinear Anal.: Hybrid Syst., 3 (2009), 551–564. https://doi.org/10.1016/j.nahs.2009.04.006 |
[4] | A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Autom. Control, 57 (2011), 2106–2110. https://doi.org/10.1109/TAC.2011.2179869 doi: 10.1109/TAC.2011.2179869 |
[5] | B. Zhou, Finite-time stability analysis and stabilization by bounded linear time-varying feedback, Automatica, 121 (2020), 109191. https://doi.org/10.1016/j.automatica.2020.109191 doi: 10.1016/j.automatica.2020.109191 |
[6] | F. C. Kong, Q. X. Zhu, T. W. Huang, New fixed-time stability lemmas and applications to the discontinuous fuzzy inertial neural networks, IEEE Trans. Fuzzy Syst., 29 (2020), 3711–3722. https://doi.org/10.1109/TFUZZ.2020.3026030 doi: 10.1109/TFUZZ.2020.3026030 |
[7] | J. Holloway, M. Krstic, Prescribed-time observers for linear systems in observer canonical form, IEEE Trans. Autom. Control, 64 (2019), 3905–3912. https://doi.org/10.1109/TAC.2018.2890751 doi: 10.1109/TAC.2018.2890751 |
[8] | B. Zhou, Y. Shi, Prescribed-time stabilization of a class of nonlinear systems by linear time-varying feedback, IEEE Trans. Autom. Control, 66 (2021), 6123–6130. https://doi.org/10.1109/TAC.2021.3061645 doi: 10.1109/TAC.2021.3061645 |
[9] | L. C. Feng, M. Y. Dai, N. Ji, Y. L. Zhang, L. P. Du, Prescribed-time stabilization of nonlinear systems with uncertainties/disturbances by improved time-varying feedback control, AIMS Math., 9 (2024), 23859–23877. https://doi.org/10.3934/math.20241159 doi: 10.3934/math.20241159 |
[10] | D. X. Cao, X. X. Zhou, X. Y. Guo, N. Song, Limit cycle oscillation and dynamical scenarios in piecewise-smooth nonlinear systems with two-sided constraints, Nonlinear Dyn., 112 (2024), 9887–9914. https://doi.org/10.1007/s11071-024-09589-6 doi: 10.1007/s11071-024-09589-6 |
[11] | M. R. Jeffrey, Smoothing tautologies, hidden dynamics, and sigmoid asymptotics for piecewise smooth systems, Chaos, 25 (2015), 103125. https://doi.org/10.1063/1.4934204 doi: 10.1063/1.4934204 |
[12] | B. Samadi, Stability Analysis and Controller Synthesis for A Class of Piecewise Smooth Systems, Ph.D thesis, Concordia University, 2008. |
[13] | S. Chen, Z. D. Du, Stability and perturbations of homoclinic loops in a class of piecewise smooth systems, Int. J. Bifurcation Chaos, 25 (2015), 1550114. https://doi.org/10.1142/S021812741550114X doi: 10.1142/S021812741550114X |
[14] | B. Samadi, L. Rodrigues, A unified dissipativity approach for stability analysis of piecewise smooth systems, Automatica, 47 (2011), 2735–2742. https://doi.org/10.1016/j.automatica.2011.09.018 doi: 10.1016/j.automatica.2011.09.018 |
[15] | P. Glendinning, M. R. Jeffrey, An Introduction to Piecewise Smooth Dynamics, Springer International Publishing, Switzerland, 2019. https://doi.org/10.1007/978-3-030-23689-2 |
[16] | X. N. Li, H. Q. Wu, J. D. Cao, Prescribed-time synchronization in networks of piecewise smooth systems via a nonlinear dynamic event-triggered control strategy, Math. Comput. Simul., 203 (2023), 647–668. https://doi.org/10.1016/j.matcom.2022.07.010 doi: 10.1016/j.matcom.2022.07.010 |
[17] | W. M. Haddad, V. Chellaboina, N. A. Kablar, Non-linear impulsive dynamical systems, Part I: Stability and dissipativity, Int. J. Control, 74 (2001), 1631–1658. https://doi.org/10.1080/00207170110081705 doi: 10.1080/00207170110081705 |
[18] | S. G. Nersesov, W. M. Haddad, Control vector Lyapunov functions for large-scale impulsive dynamical system, Nonlinear Anal. Hybrid Syst., 1 (2007), 223–243. https://doi.org/10.1016/j.nahs.2006.10.006 doi: 10.1016/j.nahs.2006.10.006 |
[19] | Q. Xi, Z. L. Liang, X. D. Li, Uniform finite-time stability of nonlinear impulsive time-varying systems, Appl. Math. Modell., 91 (2021), 913–922. https://doi.org/10.1016/j.apm.2020.10.002 doi: 10.1016/j.apm.2020.10.002 |
[20] | Q. Xi, X. Z. Liu, X. D. Li, Practical finite-time stability of nonlinear systems with delayed impulsive control, IEEE Trans. Syst. Man Cybern.: Syst., 53 (2023), 7317–7325. https://doi.org/10.1109/TSMC.2023.3296481 doi: 10.1109/TSMC.2023.3296481 |
[21] | S. W. Zhao, J. T. Sun, L. Liu, Finite-time stability of linear time-varying singular systems with impulsive effects, Int. J. Control, 81 (2008), 1824–1829. https://doi.org/10.1080/00207170801898893 doi: 10.1080/00207170801898893 |
[22] | M. A. Jamal, R. Kumar, S. Mukhopadhyay, S. Das, Fixed-time stability of dynamical systems with impulsive effects, J. Franklin Inst., 359 (2022), 3164–3182. https://doi.org/10.1016/j.jfranklin.2022.02.016 doi: 10.1016/j.jfranklin.2022.02.016 |
[23] | Q. H. Wang, A. Abdurahman, Fixed-time stability analysis of general impulsive systems and application to synchronization of complex networks with hybrid impulses, Neurocomputing, 601 (2024), 128218. https://doi.org/10.1016/j.neucom.2024.128218 doi: 10.1016/j.neucom.2024.128218 |
[24] | H. F. Li, C. D. Li, T. W. Huang, D. Q. Ouyang, Fixed-time stability and stabilization of impulsive dynamical systems, J. Franklin Inst., 354 (2017), 8626–8644. https://doi.org/10.1016/j.jfranklin.2017.09.036 doi: 10.1016/j.jfranklin.2017.09.036 |
[25] | X. Y. He, X. D. Li, S. J. Song, Prescribed-time stabilization of nonlinear systems via impulsive regulation, IEEE Trans. Syst. Man Cybern.: Syst., 53 (2022), 981–985. https://doi.org/10.1109/TSMC.2022.3188874 doi: 10.1109/TSMC.2022.3188874 |
[26] | X. N. Li, H. Q. Wu, J. D. Cao, A new prescribed-time stability theorem for impulsive piecewise-smooth systems and its application to synchronization in networks, Appl. Math. Modell., 115 (2023), 385–397. https://doi.org/10.1016/j.apm.2022.10.051 doi: 10.1016/j.apm.2022.10.051 |
[27] | M. Coraggio, P. De Lellis, M. di Bernardo, Convergence and synchronization in networks of piecewise-smooth systems via distributed discontinuous coupling, Automatica, 129 (2021), 109596. https://doi.org/10.1016/j.automatica.2021.109596 doi: 10.1016/j.automatica.2021.109596 |
[28] | L. Dieci, C. Elia, Master stability function for piecewise smooth Filippov networks, Automatica, 152 (2023), 110939. https://doi.org/10.1016/j.automatica.2023.110939 doi: 10.1016/j.automatica.2023.110939 |
[29] | J. Chen, X. R. Li, X. Q. Wu, G. B. Shen, Prescribed-time synchronization of complex dynamical networks with and without time-varying delays, IEEE Trans. Network Sci. Eng., 9 (2022), 4017–4027. https://doi.org/10.1109/TNSE.2022.3191348 doi: 10.1109/TNSE.2022.3191348 |
[30] | L. L. Xu, X. W. Liu, Prescribed-time synchronization of multiweighted and directed complex networks, IEEE Trans. Autom. Control, 68 (2023), 8208–8215. https://doi.org/10.1109/TAC.2023.3292148 doi: 10.1109/TAC.2023.3292148 |
[31] | J. R. Yang, G. C. Chen, S. Zhu, S. P. Wen, J. H. Hu, Fixed/prescribed-time synchronization of BAM memristive neural networks with time-varying delays via convex analysis, Neural Networks, 163 (2023), 53–63. https://doi.org/10.1016/j.neunet.2023.03.031 doi: 10.1016/j.neunet.2023.03.031 |
[32] | Q. Tang, S. C. Qu, C. Zhang, Z. W. Tu, Y. T. Cao, Effects of impulse on prescribed-time synchronization of switching complex networks, Neural Networks, 174 (2024), 106248. https://doi.org/10.1016/j.neunet.2024.106248 doi: 10.1016/j.neunet.2024.106248 |
[33] | F. V. Difonzo, Isochronous attainable manifolds for piecewise smooth dynamical systems, Qual. Theory Dyn. Syst., 21 (2022), 6. https://doi.org/10.1007/s12346-021-00536-z doi: 10.1007/s12346-021-00536-z |
[34] | A. F. Filippov, Differential Equations with Discontinuous Righthand Sides: Control Systems, Springer Science & Business Media, Berlin, 2013. https://doi.org/10.1007/978-94-015-7793-9 |
[35] | J. Cortes, Discontinuous dynamical systems, IEEE Control Syst. Mag., 28 (2008), 36–73. https://doi.org/10.1109/MCS.2008.919306 doi: 10.1109/MCS.2008.919306 |
[36] | Y. D. Song, Y. J. Wang, J. Holloway, M. Krstic, Time-varying feedback for regulation of normal-form nonlinear systems in prescribed finite time, Automatica, 83 (2017), 243–251. https://doi.org/10.1016/j.automatica.2017.06.008 doi: 10.1016/j.automatica.2017.06.008 |
[37] | A. Bacciotti, F. Ceragioli, Stability and stabilization of discontinuous systems and nonsmooth Lyapunov functions, ESAIM. Control. Optim. Calc. Var., 4 (1999), 361–376. https://doi.org/10.1051/cocv:1999113 doi: 10.1051/cocv:1999113 |
[38] | Y. J. Shen, X. H. Xia, Semi-global finite-time observers for nonlinear systems, Automatica, 44 (2008), 3152–3156. https://doi.org/10.1016/j.automatica.2008.05.015 doi: 10.1016/j.automatica.2008.05.015 |
[39] | Y. J. Shen, Y. H. Huang, Uniformly observable and globally Lipschitzian nonlinear systems admit global finite-time observers, IEEE Trans. Autom. Control, 54 (2009), 2621–2625. https://doi.org/10.1109/TAC.2009.2029298 doi: 10.1109/TAC.2009.2029298 |
[40] | P. J. Ning, C. C. Hua, K. Li, H. Li, A novel theorem for prescribed-time control of nonlinear uncertain time-delay systems, Automatica, 152 (2023), 111009. https://doi.org/10.1016/j.automatica.2023.111009 doi: 10.1016/j.automatica.2023.111009 |
[41] | L. C. Feng, L. Liu, J. D. Cao, L. Rutkowski, G. P. Lu, General decay stability for nonautonomous neutral stochastic systems with time-varying delays and Markovian switching, IEEE Trans. Cybern., 52 (2022): 5441–5453. https://doi.org/10.1109/TCYB.2020.3031992 doi: 10.1109/TCYB.2020.3031992 |
[42] | D. Chalishajar, D. Kasinathan, R. Kasinathan, R. Kasinathan, Exponential stability, T-controllability and optimal controllability of higher-order fractional neutral stochastic differential equation via integral contractor, Chaos, Solitons Fractals, 186 (2024), 115278. https://doi.org/10.1016/j.chaos.2024.115278 doi: 10.1016/j.chaos.2024.115278 |
[43] | D. Chalishajar, R. Kasinathan, Kasinathan R, S. Varshini, On solvability and optimal controls for impulsive stochastic integrodifferential varying-coefficient model, Automatika, 65 (2024), 1271–1283. https://doi.org/10.1080/00051144.2024.2361212 doi: 10.1080/00051144.2024.2361212 |
[44] | D. Chalishajar, R. Kasinathan, R. Kasinathan, Existence and Stability Results for Time-Dependent Impulsive Neutral Stochastic Partial Integrodifferential Equations with Rosenblatt Process and Poisson Jumps, Tatra Mt. Math. Publ., 00 (2024), 1–24. https://doi.org/10.2478/tmmp-2024-0002 doi: 10.2478/tmmp-2024-0002 |