Research article Special Issues

Influence of environmental pollution and bacterial hyper-infectivity on dynamics of a waterborne pathogen model with free boundaries

  • Received: 04 May 2024 Revised: 12 August 2024 Accepted: 10 September 2024 Published: 23 September 2024
  • In this paper, we mainly study the influence of environmental pollution and bacterial hyper-infectivity on the spreading of diseases by considering a waterborne pathogen model with free boundaries. At first, the global existence and uniqueness of the solution to this problem is proved. Then, we analyze its longtime behavior, which is determined by a spreading-vanishing dichotomy. Furthermore, we obtain the criteria for spreading and vanishing. Our results indicate that environmental pollution and bacterial hyper-infectivity can increase the chance of epidemic spreading.

    Citation: Meng Zhao, Jiancheng Liu, Yindi Zhang. Influence of environmental pollution and bacterial hyper-infectivity on dynamics of a waterborne pathogen model with free boundaries[J]. Networks and Heterogeneous Media, 2024, 19(3): 940-969. doi: 10.3934/nhm.2024042

    Related Papers:

  • In this paper, we mainly study the influence of environmental pollution and bacterial hyper-infectivity on the spreading of diseases by considering a waterborne pathogen model with free boundaries. At first, the global existence and uniqueness of the solution to this problem is proved. Then, we analyze its longtime behavior, which is determined by a spreading-vanishing dichotomy. Furthermore, we obtain the criteria for spreading and vanishing. Our results indicate that environmental pollution and bacterial hyper-infectivity can increase the chance of epidemic spreading.



    加载中


    [1] J. N. Eisenberg, M. Brookhart, G. Rice, M. Brown, J. Colford, Disease transmission models for public health decision making: Analysis of epidemic and endemic conditions caused by waterborne pathogens, Environ. Health Perspect., 110 (2002), 783–790. https://doi.org/10.1289/ehp.02110783 doi: 10.1289/ehp.02110783
    [2] C. Codeco, Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir, BMC Infect. Dis., 1 (2001), 1–14. https://doi.org/10.1186/1471-2334-1-1 doi: 10.1186/1471-2334-1-1
    [3] J. H. Tien, D. J. D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bull. Math. Biol., 72 (2010), 1506–1533. https://doi.org/10.1007/s11538-010-9507-6 doi: 10.1007/s11538-010-9507-6
    [4] J. Zhou, Y. Yang, T. Zhang, Global dynamics of a reaction-diffusion waterborne pathogen model with general incidence rate, J. Math. Anal. Appl., 466 (2018), 835–859. https://doi.org/10.1016/j.jmaa.2018.06.029 doi: 10.1016/j.jmaa.2018.06.029
    [5] H. Song, Y. Zhang, Traveling waves for a diffusive SIR-B epidemic model with multiple transmission pathways, Electron. J. Qual. Theory Differ. Equations, 86 (2019), 1–19. https://doi.org/10.14232/ejqtde.2019.1.86 doi: 10.14232/ejqtde.2019.1.86
    [6] Y. Du, Z. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377–405. https://doi.org/10.1137/090771089 doi: 10.1137/090771089
    [7] M. Zhao, Dynamics of a reaction-diffusion waterborne pathogen model with free boundaries, Nonlinear Anal. Real World Appl., 77 (2024), 104043. https://doi.org/10.1016/j.nonrwa.2023.104043 doi: 10.1016/j.nonrwa.2023.104043
    [8] J. F. Cao, W. T. Li, J. Wang, F. Y. Yang, A free boundary problem of a diffusive SIRS model with nonlinear incidence, Z. Angew. Math. Phys., 68 (2017), 39. https://doi.org/10.1007/s00033-017-0786-8 doi: 10.1007/s00033-017-0786-8
    [9] Y. Hu, X. Hao, X. Song, Y. Du, A free boundary problem for spreading under shifting climate, J. Differ. Equations, 269 (2020), 5931–5958. https://doi.org/10.1016/j.jde.2020.04.024 doi: 10.1016/j.jde.2020.04.024
    [10] K.I. Kim, Z. Lin, Q. Zhang, An SIR epidemic model with free boundary, Nonlinear Anal. Real World Appl., 14 (2013), 1992–2001. https://doi.org/10.1016/j.nonrwa.2013.02.003 doi: 10.1016/j.nonrwa.2013.02.003
    [11] Y. Tang, B. Dai, Z. Li, Dynamics of a Lotka-Volterra weak competition model with time delays and free boundaries, Z. Angew. Math. Phys., 73 (2022), 143. https://doi.org/10.1007/s00033-022-01788-8 doi: 10.1007/s00033-022-01788-8
    [12] J. B. Wang, W. T. Li, F. D. Dong, S. X. Qiao, Recent developments on spatial propagation for diffusion equations in shifting environments, Discrete Contin. Dyn. Syst. Ser. B, 27 (2022), 5101–5127. https://doi.org/10.3934/dcdsb.2021266 doi: 10.3934/dcdsb.2021266
    [13] H. Zhang, L. Li, M. Wang, Free boundary problems for the local-nonlocal diffusive model with different moving parameters, Discrete Contin. Dyn. Syst. Ser. B, 28 (2023), 474–498. https://doi.org/10.3934/dcdsb.2022085 doi: 10.3934/dcdsb.2022085
    [14] K. D. Lafferty, R. D. Holt, How should environmental stress affect the population dynamics of disease, Ecol. Lett., 6 (2003), 654–664. https://doi.org/10.1046/j.1461-0248.2003.00480.x doi: 10.1046/j.1461-0248.2003.00480.x
    [15] W. Wang, Z. Feng, Influence of environmental pollution to a waterborne pathogen model: Global dynamics and asymptotic profiles, Commun. Nonlinear Sci. Numer. Simul., 99 (2021), 105821. https://doi.org/10.1016/j.cnsns.2021.105821 doi: 10.1016/j.cnsns.2021.105821
    [16] D. M. Hartley, J. G. Morris Jr, D. L. Smith, Hyperinfectivity: A critical element in the ability of V. cholerae to cause epidemics, PLoS Med., 3 (2006), 63–69. https://doi.org/10.1371/journal.pmed.0030007 doi: 10.1371/journal.pmed.0030007
    [17] J. Wang, X. Wu, Dynamics and profiles of a diffusive cholera model with bacterial hyperinfectivity and distinct dispersal rates, J. Dyn. Differ. Equations, 35 (2023), 1205–1241. https://doi.org/10.1007/s10884-021-09975-3 doi: 10.1007/s10884-021-09975-3
    [18] V. Capasso, G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43–61. https://doi.org/10.1016/0025-5564(78)90006-8 doi: 10.1016/0025-5564(78)90006-8
    [19] G. Dimarco, B. Perthame, G. Toscani, M. Zanella, Kinetic models for epidemic dynamics with social heterogeneity, J. Math. Biol., 83 (2021), 4. https://doi.org/10.1007/s00285-021-01630-1 doi: 10.1007/s00285-021-01630-1
    [20] G. Bunting, Y. Du, K. Krakowski, Spreading speed revisited: Analysis of a free boundary model, Networks Heterogen. Media, 7 (2012), 583–603. https://doi.org/10.3934/nhm.2012.7.583 doi: 10.3934/nhm.2012.7.583
    [21] S. Sharma, N. Kumari, Dynamics of a waterborne pathogen model under the influence of environmental pollution, Appl. Math. Comput., 346 (2019), 219–243. https://doi.org/10.1016/j.amc.2018.10.044 doi: 10.1016/j.amc.2018.10.044
    [22] P. Zhou, D. Xiao, The diffusive logistic model with a free boundary in heterogeneous environment, J. Differ. Equations, 256 (2014), 1927–1954. https://doi.org/10.1016/j.jde.2013.12.008 doi: 10.1016/j.jde.2013.12.008
    [23] L. Li, S. Liu, M. Wang, A viral propagation model with a nonlinear infection rate and free boundaries, Sci. China Math., 64 (2021), 1971–1992. https://doi.org/10.1007/s11425-020-1680-0 doi: 10.1007/s11425-020-1680-0
    [24] S. Liu, M. Wang, Existence and uniqueness of solution of free boundary problem with partially degenerate diffusion, Nonlinear Anal. Real World Appl., 54 (2020), 103097. https://doi.org/10.1016/j.nonrwa.2020.103097 doi: 10.1016/j.nonrwa.2020.103097
    [25] M. Wang, Existence and uniqueness of solutions of free boundary problems in heterogeneous environments, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 415–421. https://doi.org/10.3934/dcdsb.2018179 doi: 10.3934/dcdsb.2018179
    [26] A. Friedman, Partial Differential Equations of Parabolic Type, Courier Dover Publications, Prentice-Hall, Englewood Cliffs, NJ, 1964.
    [27] O. A. Ladyzenskaja, V. A. Solonnikov, N. N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, Academic Press, New York, 1968.
    [28] H. Huang, M. Wang, A nonlocal SIS epidemic problem with double free boundaries, Z. Angew. Math. Phys., 70 (2019), 109. https://doi.org/10.1007/s00033-019-1156-5 doi: 10.1007/s00033-019-1156-5
    [29] M. Wang, J. Zhao, A free boundary problem for the predator-prey model with double free boundaries, J. Dyn. Differ. Equations, 29 (2017), 957–979. https://doi.org/10.1007/s10884-015-9503-5 doi: 10.1007/s10884-015-9503-5
    [30] M. Wang, Q. Zhang, Dynamics for the diffusive Leslie-Gower model with double free boundaries, preprint, arXiv: 1710.09564.
    [31] M. Zhao, The longtime behavior of an SIR epidemic model with free boundaries, J. Nonlinear Model. Anal., 6 (2024), 476–484. https://doi.org/10.12150/jnma.2024.476 doi: 10.12150/jnma.2024.476
    [32] W. Wang, X. Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652–1673. https://doi.org/10.1137/120872942 doi: 10.1137/120872942
    [33] L. Li, W. Ni, M. Wang, Dynamical properties of a new SIR epidemic model, Discrete Contin. Dyn. Syst. Ser. S, 17 (2024), 690–707. https://doi.org/10.3934/dcdss.2023076 doi: 10.3934/dcdss.2023076
    [34] R. Wang, Y. Du, Long-time dynamics of a diffusive epidemic model with free boundaries, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 2201–2238. https://doi.org/10.3934/dcdsb.2020360 doi: 10.3934/dcdsb.2020360
    [35] I. Ahn, S. Beak, Z. Lin, The spreading fronts of an infective environment in a man-environment-man epidemic model, Appl. Math. Model., 40 (2016), 7082–7101. https://doi.org/10.1016/j.apm.2016.02.038 doi: 10.1016/j.apm.2016.02.038
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(108) PDF downloads(22) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog