Research article Special Issues

New wave behaviors and stability analysis for magnetohydrodynamic flows

  • Received: 30 July 2024 Revised: 21 August 2024 Accepted: 29 August 2024 Published: 04 September 2024
  • The Lie symmetry analysis and generalized Riccati equation expansion methods were performed on the inviscid and viscous incompressible magnetohydrodynamic equations. Using the Lie symmetry analysis method, symmetries and similarity reductions of (2 + 1)- and (3 + 1)-dimensional magnetohydrodynamic equations were derived. Different forms of trigonometric function solutions and rational solutions were obtained, which yielded periodic solutions, single soliton solutions, and lump solutions. Furthermore, using the generalized Riccati equation expansion method, we obtained abundant new solutions of magnetohydrodynamic equations, including kink, kink-like, breather, and interaction solutions. Moreover, the stability of magnetohydrodynamic equations was investigated from both qualitative and quantitative perspectives. The exact solutions and stability analysis could provide accurate mathematical descriptions and theoretical basis for numerical analysis and regulation of magnetohydrodynamic systems.

    Citation: Shengfang Yang, Huanhe Dong, Mingshuo Liu. New wave behaviors and stability analysis for magnetohydrodynamic flows[J]. Networks and Heterogeneous Media, 2024, 19(2): 887-922. doi: 10.3934/nhm.2024040

    Related Papers:

  • The Lie symmetry analysis and generalized Riccati equation expansion methods were performed on the inviscid and viscous incompressible magnetohydrodynamic equations. Using the Lie symmetry analysis method, symmetries and similarity reductions of (2 + 1)- and (3 + 1)-dimensional magnetohydrodynamic equations were derived. Different forms of trigonometric function solutions and rational solutions were obtained, which yielded periodic solutions, single soliton solutions, and lump solutions. Furthermore, using the generalized Riccati equation expansion method, we obtained abundant new solutions of magnetohydrodynamic equations, including kink, kink-like, breather, and interaction solutions. Moreover, the stability of magnetohydrodynamic equations was investigated from both qualitative and quantitative perspectives. The exact solutions and stability analysis could provide accurate mathematical descriptions and theoretical basis for numerical analysis and regulation of magnetohydrodynamic systems.



    加载中


    [1] F. Haas, A magnetohydrodynamic model for quantum plasmas, Phys. Plasmas, 12 (2005), 062117. https://doi.org/10.1063/1.1939947 doi: 10.1063/1.1939947
    [2] X. Zhou, Y. Shen, D. Yuan, R. Keppens, X. Zhao, L. Fu, et al., Resolved magnetohydrodynamic wave lensing in the solar corona, Nat. Commun., 15 (2024), 3281. https://doi.org/10.1038/s41467-024-46846-z doi: 10.1038/s41467-024-46846-z
    [3] P. Kumar, V. M. Nakariakov, J. T. Karpen, K. S. Cho, Direct imaging of magnetohydrodynamic wave mode conversion near a 3D null point on the sun, Nat. Commun., 15 (2024), 2667. https://doi.org/10.1038/s41467-024-46736-4 doi: 10.1038/s41467-024-46736-4
    [4] B. Zohuri, Plasma Physics and Controlled Thermonuclear Reactions Driven Fusion Energy, Albuquerque, New Mexico, USA: Springer, 2016. https://doi.org/10.1007/978-3-319-47310-9
    [5] R. Yousofvand, S. Derakhshan, K. Ghasemi, M. Siavashi, MHD transverse mixed convection and entropy generation study of electromagnetic pump including a nanofluid using 3D LBM simulation, Int. J. Mech. Sci., 133 (2017), 73–90. https://doi.org/10.1016/j.ijmecsci.2017.08.034 doi: 10.1016/j.ijmecsci.2017.08.034
    [6] Y. Qin, X. Liu, X. Yang, Global existence and exponential stability for a 1D compressible and radiative MHD flow, J. Differ. Equations, 253 (2012), 1439–1488. https://doi.org/10.1016/j.jde.2012.05.003 doi: 10.1016/j.jde.2012.05.003
    [7] X. Suo, Q. Jiu, Global well-posedness of 2D incompressible Magnetohydrodynamic equations with horizontal dissipation, Discrete Contin. Dyn. Syst. - Ser. A., 42 (2022), 4523–4253. https://doi.org/10.3934/dcds.2022063 doi: 10.3934/dcds.2022063
    [8] Y. Wang, K. Wang, Global well-posedness of the three dimensional magnetohydrodynamics equations, Nonlinear Anal. Real World Appl., 17 (2014), 245–251. https://doi.org/10.1016/j.nonrwa.2013.12.002 doi: 10.1016/j.nonrwa.2013.12.002
    [9] Y. P. Li, W. A. Yong, The zero Mach number limit of the three-dimensional compressible viscous magnetohydrodynamic equations, Chin. Ann. Math. Ser. B, 36 (2015), 1043–1054. https://doi.org/10.1007/s11401-015-0918-4 doi: 10.1007/s11401-015-0918-4
    [10] Q. M. Xu, X. Zhong, Local well-posedness to the three-dimensional barotropic compressible magnetohydrodynamic equations with vacuum, J. Math. Phys., 62 (2021), 031501. https://doi.org/10.1063/5.0039481 doi: 10.1063/5.0039481
    [11] W. X. Ma, Y. Zhou, Lump solutions to nonlinear partial differential equations via Hirota bilinear forms, J. Differ. Equations, 264 (2018), 2633–2659. https://doi.org/10.1016/j.jde.2017.10.033 doi: 10.1016/j.jde.2017.10.033
    [12] L. Y. Ma, H. Q. Zhao, S. F. Shen, W. X. Ma, Abundant exact solutions to the discrete complex mKdV equation by Darboux transformation, Commun. Nonlinear Sci. Numer. Simul., 68 (2019), 31–40. https://doi.org/10.1016/j.cnsns.2018.07.037 doi: 10.1016/j.cnsns.2018.07.037
    [13] X. Xin, Y. Liu, Y. Xia, H. Liu, Integrability, Darboux transformation and exact solutions for nonlocal couplings of AKNS equations, Appl. Math. Lett., 119 (2021), 107209. https://doi.org/10.1016/j.aml.2021.107209 doi: 10.1016/j.aml.2021.107209
    [14] M. M. A. Qurashi, D. Baleanu, M. Inc, Optical solitons of transmission equation of ultra-short optical pulse in parabolic law media with the aid of Backlund transformation, Optik, 140 (2017), 114–122. https://doi.org/10.1016/j.ijleo.2017.03.109 doi: 10.1016/j.ijleo.2017.03.109
    [15] Z. Zhao, B. Han, Lie symmetry analysis of the Heisenberg equation, Commun. Nonlinear Sci. Numer. Simul., 45 (2017), 220–234. https://doi.org/10.1016/j.cnsns.2016.10.008 doi: 10.1016/j.cnsns.2016.10.008
    [16] M. R. Ali, R. Sadat, Lie symmetry analysis, new group invariant for the (3 + 1)-dimensional and variable coefficients for liquids with gas bubbles models, Chin. J. Phys., 71 (2021), 539–547. https://doi.org/10.1016/j.cjph.2021.03.018 doi: 10.1016/j.cjph.2021.03.018
    [17] O. D. Adeyemo, C. M. Khalique, Closed-form solutions and conserved quantities of a new integrable (2 + 1)-dimensional Boussinesq equation of nonlinear sciences, Int. J. Nonlinear Sci. Numer. Simul., 24 (2023), 2801–2821. https://doi.org/10.1515/ijnsns-2020-0288 doi: 10.1515/ijnsns-2020-0288
    [18] B. Ren, Interaction solutions for mKP equation with nonlocal symmetry reductions and CTE method, Phys. Scr., 90 (2015), 065206. https://doi.org/10.1088/0031-8949/90/6/065206 doi: 10.1088/0031-8949/90/6/065206
    [19] Y. Li, H. Hu, Nonlocal symmetries and interaction solutions of the Benjamin-Ono equation, Appl. Math. Lett., 75 (2018), 18–23. https://doi.org/10.1016/j.aml.2017.06.012 doi: 10.1016/j.aml.2017.06.012
    [20] Y. Li, J. Li, R. Wang, Multi-soliton solutions of the N-component nonlinear Schrödinger equations via Riemann-Hilbert approach, Nonlinear Dyn., 105 (2021), 1765–1772. https://doi.org/10.1007/s11071-021-06706-7 doi: 10.1007/s11071-021-06706-7
    [21] X. F. Zhang, S. F. Tian, J. J. Yang, The Riemann-Hilbert approach for the focusing Hirota equation with single and double poles, Anal. Math. Phys., 11 (2021), 1–18. https://doi.org/10.1007/s13324-021-00522-3 doi: 10.1007/s13324-021-00522-3
    [22] A. Donato, F. Oliveri, Reduction to autonomous form by group analysis and exact solutions of axisymmetric MHD equations, Math. Comput. Modell., 18 (1993), 83–90. https://doi.org/10.1016/0895-7177(93)90216-L doi: 10.1016/0895-7177(93)90216-L
    [23] V. A. Dorodnitsyn, E. I. Kaptsov, R. V. Kozlov, S. V. Meleshko, One-dimensional MHD flows with cylindrical symmetry: Lie symmetries and conservation laws, Int. J. Non-Linear Mech., 148 (2023), 104290. https://doi.org/10.1016/j.ijnonlinmec.2022.104290 doi: 10.1016/j.ijnonlinmec.2022.104290
    [24] M. S. Liu, H. H. Dong, On the existence of solution, Lie symmetry analysis and conservation law of magnetohydrodynamic equations, Commun. Nonlinear Sci. Numer. Simul., 87 (2020), 105277. https://doi.org/10.1016/j.cnsns.2020.105277 doi: 10.1016/j.cnsns.2020.105277
    [25] S. Xia, Z. Wang, Lie symmetries, group invariant solutions and conservation laws of ideal MHD equations, J. Appl. Anal. Comput., 12 (2022), 1959–1986. https://doi.org/10.11948/20210410 doi: 10.11948/20210410
    [26] P. Y. Picard, Some exact solutions of the ideal MHD equations through symmetry reduction method, J. Math. Anal. Appl., 337 (2008), 360–385. https://doi.org/10.1016/j.jmaa.2007.03.100 doi: 10.1016/j.jmaa.2007.03.100
    [27] N. K. Vitanov, On modified method of simplest equation for obtaining exact and approximate solutions of nonlinear PDEs: The role of the simplest equation, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 4215–4231. https://doi.org/10.1016/j.cnsns.2011.03.035 doi: 10.1016/j.cnsns.2011.03.035
    [28] G. D. Zhang, X. He, X. Yang, A fully decoupled linearized finite element method with second-order temporal accuracy and unconditional energy stability for incompressible MHD equations, J. Comput. Phys., 448 (2022), 110752. https://doi.org/10.1016/j.jcp.2021.110752 doi: 10.1016/j.jcp.2021.110752
    [29] Z. Li, X. Zhang, New exact kink solutions and periodic form solutions for a generalized Zakharov-Kuznetsov equation with variable coefficients, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 3418–3422. https://doi.org/10.1016/j.cnsns.2010.01.003 doi: 10.1016/j.cnsns.2010.01.003
    [30] H. U. Rehman, A. R. Seadawy, S. Razzaq, S. T. R. Rizvi, Optical fiber application of the Improved Generalized Riccati Equation Mapping method to the perturbed nonlinear Chen-Lee-Liu dynamical equation, Optik, 290 (2023), 171309. https://doi.org/10.1016/j.ijleo.2023.171309 doi: 10.1016/j.ijleo.2023.171309
    [31] X. Huang, Y. Wang, Global strong solution with vacuum to the two dimensional density-dependent Navier-Stokes system, SIAM J. Math. Anal., 46 (2014), 1771–1788. https://doi.org/10.1137/120894865 doi: 10.1137/120894865
    [32] J. Li, Z. Xin, Global Existence of Regular Solutions with Large Oscillations and Vacuum, Berlin Heidelberg: Springer Cham, 2016. https://doi.org/10.1007/978-3-319-10151-4_58-1
    [33] K. L. Cheung, Exact solutions for the two-dimensional incompressible magnetohydrodynamics equations, Appl. Math. Sci., 8 (2014), 5915–5922. http://doi.org/10.12988/ams.2014.48641 doi: 10.12988/ams.2014.48641
    [34] K. Ayub, M. Y. Khan, Q. M. Ul-Hassan, M. Ashraf, M. Shakeel, Soliton formations for magnetohydrodynamic viscous flow over a nonlinear stretching sheet, Pramana, 91 (2018), 1–7. https://doi.org/10.1007/s12043-018-1652-8 doi: 10.1007/s12043-018-1652-8
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(291) PDF downloads(35) Cited by(0)

Article outline

Figures and Tables

Figures(15)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog