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Abstract: The Lie symmetry analysis and generalized Riccati equation expansion methods were
performed on the inviscid and viscous incompressible magnetohydrodynamic equations. Using the Lie
symmetry analysis method, symmetries and similarity reductions of (2 + 1)- and (3 + 1)-dimensional
magnetohydrodynamic equations were derived. Different forms of trigonometric function solutions
and rational solutions were obtained, which yielded periodic solutions, single soliton solutions, and
lump solutions. Furthermore, using the generalized Riccati equation expansion method, we obtained
abundant new solutions of magnetohydrodynamic equations, including kink, kink-like, breather, and
interaction solutions. Moreover, the stability of magnetohydrodynamic equations was investigated
from both qualitative and quantitative perspectives. The exact solutions and stability analysis could
provide accurate mathematical descriptions and theoretical basis for numerical analysis and regulation
of magnetohydrodynamic systems.
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1. Introduction

Magnetohydrodynamic (MHD) equations are composed of Euler (or Navier-Stokes) equations and
Maxwells equations, which are mainly used to describe the complex interactions between conductive
fluids and electromagnetic fields. They are widely applied in plasma [1], astrophysical research [2, 3],
controlled thermonuclear fusion [4], and new industrial technologies [5]. The study of exact solutions
for magnetohydrodynamics systems can provide possible ideas for finding the global smooth solutions
of the Navier-Stokes equation. However, compared with the Navier-Stokes equation, MHD equations
contain additional nonlinear and coupling terms for velocity and magnetic fields, which makes their
research more challenging.

The qualitative stability analysis of MHD systems has been widely studied. Qin et al. [6] investigated
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the exponential stability of the global solution of (1 + 1)-dimensional compressible MHD equations.
Suo et al. [7] studied the well-posedness of (2 + 1)-dimensional incompressible MHD equations with
horizontal dissipation. Wang et al. [8] proved the stability of the global weak solution of (3 + 1)-
dimensional incompressible MHD equations when the norms of the initial data are bounded by the
minimal value of the viscosity coefficients. Li et al. [9] studied the convergence stability of local
solutions for (3 + 1)-dimensional compressible viscous MHD equations. Xu et al. [10] studied the
stability of local solutions to (3 + 1)-dimensional barotropic compressible MHD equations with vacuum.
In the quantitative analysis, the complex nonlinearity and strong coupling of MHD equations make it
difficult to seek the analytical solutions by some classical methods, such as the bilinear method [11],
Darboux transformation method [12, 13], Backlund transformation method [14], Lie symmetry analysis
method [15-17], non-local symmetry analysis method [18, 19], and Riemann-Hilbert method [20, 21].
The quantitative calculations on MHD equations mainly focused on constructing specific forms of
exact solutions or numerical solutions. Nevertheless, analytical solutions can provide an accurate
mathematical description and theoretical basis for analysis and regulation of MHD systems, which has
aroused widespread research interest. Donato et al. [22] studied exact solutions of (1 + 1)-dimensional
MHD equations by Lie group analysis. Dorodnitsyn et al. [23] explored symmetries of plane one-
dimensional MHD flows in the mass Lagrangian coordinates. Liu et al. [24] derived exact solutions
of (2 + 1)-dimensional incompressible and barotropic MHD equations by Lie symmetry analysis.
Xia et al. [25] studied group invariant solutions of (2 + 1)-dimensional incompressible ideal MHD
equations by Lie symmetry method. Picard et al. [26] obtained some exact solutions of (3 + 1)-
dimensional ideal MHD equations based on Lie group theory. Considering the physical significance
of MHD equations and importance of analytical calculation, more diverse forms of exact solutions of
MHD equations deserve to be further studied.

As powerful tools for solving nonlinear equations, symmetry analysis [15-19] and the simplest
equation methods [27] demonstrate special advantages in handling nonlinear terms in dynamical systems.
For instance, Zhao et al. [15] studied the Heisenberg equation from the perspective of statistical physics
by Lie symmetry analysis. Ali et al. [16] obtained new exact invariant solutions of (3 + 1)-dimensional
variable coefficients Kudryashov-Sinelshchikov equation by Lie symmetry analysis. Adeyemo et al. [17]
explored closed-form solutions of integrable (2 + 1)-dimensional Boussinesq equation by Lie symmetry
reductions. Ren et al. [18] derived interaction solutions of modified Kadomtsev-Petviashvili equation
by nonlocal symmetry reductions. Vitanov et al. [27] investigated the role of the simplest equations in
obtaining exact and approximate solutions of nonlinear partial differential equations. The Lie symmetry
analysis method simplifies problems by finding the invariance of differential equations, and transforms
the original equations into a more easily solvable form through symmetry transformations. This method
provides powerful tools for solving nonlinear problems with complex structures. The generalized Riccati
equation is an important auxiliary equation with rich special solutions. This makes the generalized
Riccati equation mapping method an effective direct method for constructing the solitary wave solutions,
the periodic solutions and the rational solutions for MHD equations. In this paper, using the Lie
symmetry analysis method and generalized Riccati equation expansion method, we obtain new solutions
with various forms of MHD equations. The major contributions of this article are listed as follows:

(1) Based on symmetry analysis and generalized Riccati equation expansion methods, the complex
nonlinear and strongly coupled terms in MHD equations are technically handled. Different forms of
new solutions are derived, which can describe various wave behaviors for MHD flows. Some of the
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solutions can be reduced to exact solutions for Euler or Navier-Stokes equations when magnetic fields
vanish, which may provide references for the research on global solutions for Navier-Stokes equations.

(2) The stability of solutions for MHD equations is analyzed from both qualitative and quantitative
perspectives based on the obtained solutions.

(3) The new solutions, wave behaviors, and stability analysis provide accurate mathematical descrip-
tions and theoretical basis for numerical analysis and regulation of MHD systems.

The rest of the paper is organized as follows: The transformations for MHD equations are given in
Section 2. In Section 3, the exact solutions of inviscid and viscous (2 + 1)-dimensional MHD equations
are obtained by the Lie symmetry analysis method and generalized Riccati equation expansion method.
In Section 4, inviscid and viscous (3 + 1)-dimensional MHD equations are further studied. In Section 5,
the stability of MHD equations is studied from qualitative and quantitative perspectives. Finally, some
conclusions are drawn in Section 6.

2. Preliminaries

The flow of conducting fluid in a magnetic field is governed by the following incompressible MHD
equations [28], which are a combination of Euler (or Navier-Stokes) equations of fluid dynamics and
Maxwell’s equations of electromagnetism. The set of equations express the conservation of mass,
momentum and the interaction of the flow with the magnetic field. Consider (2 + 1)- and (3 + 1)-
dimensional incompressible MHD equations [28]

U -vAU+ U -V)U+ Vp+«B xcurl B =0,
B; + ncurlcurl B — curl(U X B) + Vr = 0, 2.1)
divU =0, divB =0,

where U is fluid velocity, p is hydrodynamic pressure, B is magnetic induction, r is magnetic pressure.
The physical parameters v, u and o represent kinematic viscosity, magnetic permeability and electric
conductivity, respectively. n = lﬁ K= i Substituting equations

1
B xcurl B = EV(|B|2) — (B -V)B, curlcurl B = —AB,
curl(UxB)=B-V)U - (U- V)B,

into (2.1), the incompressible MHD equations (2.1) can be rewritten as

1
U, - vAU + (U-V)U + Vp + K[EV(|B|2) —(B-V)B] =0,

B, -—nAB-B-V)U+@U-V)B+Vr=0, (2.2)

divU =0, divB =0.
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3. New wave behaviors of (2 + 1)-dimensional MHD flows

Denote x = (x,y), U = (u1(¢,X), uy(t,x)), B = (b(t,X), bo(t,x)) in (2.2). (2 + 1)-dimensional MHD
equations can be given as

uy — V(Uigy + tyyy) + (g, + uptyy) + k(babaoy — bobyy) + p, =0,

Uz = V(Uaxx + Unyy) + (Ui + Ualtny) + k(D1D1y — D1D2y) + py = 0,

bi; = (b1xx + b1yy) — (brury + bouyy) + (b1 + ushyy) +r, =0, (3.1)
byt = N(boxx + bayy) — (bruay + boutay) + (1 by + Urhry) + 1, = 0,

Uiy + oy =0, by + by, = 0.

3.1. Lie symmetry analysis of MHD equations

The vector field of system (3.1) can be expressed as

Vo l5 Han H Gt bt b b et s ()
=T T %x T %8y TP e, T 2 Y ob o, Vap T ar '

where §; (i = 1,2,3), ¢;, ¢, ¥; (j = 1,2) are undetermined coefficients about ¢, x, U, B, p, r. It follows
from second-order prolongation pr®V(A)|s— = O that

P — V(T + &) + Grun, + iy + doutr, + x| + k(@abo + bags — by, — b)) + ¥ =0,

Py — V(@S + ) + P, + WS + Pottay + Ury + K(@1b1y + b1 — @1ba — bigd) + Yy =0,
— (e + @) = @i, — b1y — pautry — Do + $1by1y + urf + dobyy, + urp, + 45 =0, (3.3)
— (@3 + @3) = @itz — b1y — @attay — brpy + P1bay + U195 + Pobyy + Urpy + 4, =0

S +6,=0, 9] +¢, =0

3.1.1. Inviscid MHD equations
Choosing v =1 = 0 and « = 1 in Eq (3.1), the inviscid MHD equations can be obtained as

uy + (uyity, + usttyy) + (boboy — bobyy) + pe = 0,

uy; + (Uitty, + usttyy) + (b1byy — b1byy) + p, = 0,

bi; — (byuyy + bouyy) + (ui by + upbyy) + 1 = 0, (3.4)
2 — (bruox + bougy) + (1 by, + uzbyy) + 1, = 0,

Uiy +upy =0, by + by, =0.

Solving (3.3) with v = 7 = 0 and « = 1, the coefficient functions of vector field V can be obtained as

§1=2C1t+Cy, £ =Cox—Cray + fi(t) + C3, {3 = Crpx + Coy + fo(1) + Cy,
¢1 = (Co = 2C)u; = Crouy + f{(1), ¢2 = Crouy + (Co = 2C1)uy + f5(2),

@1 =(Co —2C1)by — Ciaba, 2 = Ci2by +(Co — 2C1)b,

Y1 =2Co = 2C)p — xf1 (1) = yf5 @) + a(®), Y2 = 2(Co — 2C1)r + B(1),

(3.5)
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where Cy, Cy, C», C3,C4 and C, are arbitrary constants. fi(?), f>(¢), a(t) and () are arbitrary functions

related to ¢ Ol’lly. WhenC, =1,C3=9,,C4=v,,Co=C1 =Cyp = fl(t) = fz(l) =0

0 0 0 0
= (Cza +C—+ C4—) + a(t)— ﬁ(t)— =

x o 'ox | ay

The characteristic equation is

dt dx dy duy duy dby dby, dp dr

1 % m» 0 0 0 0 a0n Bo
It follows from (3.7) that corresponding invariants are
Li=x=0t, L =y-0t, Fi({i,0) = —ui, F2(&1,0) = —uy, Gi(&1,4) = —by,

Gul1n 2 = b2 QG2 = -p+ [ ot RG.2) = -1+ [ poar
Substituting (3.8) into (3.4), reduced equations can be obtained as

VW +VoFz, + FiF 5 + FoF g, + GGy — GGz, — Qf =0,
\71F221 + \72F252 + FIFZZ1 + FZFZZz + GlGlZz — GleZl - ng =0,
ViGig + Gy, — G Fig — GoFyg, + F1Gyg, + F2Gig, — Rz =0,
‘_}1G2Z1 + \_}ZGZZZ - GIFZ_ZI - G2F2Z2 + FlGZZl + FZGZZZ - RZz =0,
Fig + Foz, =0, Gz, + Gy, = 0.

It can be obtained that (3.10)—(3.12) are three kinds of solutions for (3.9).
Case 1. Sin/cos-type solution.
Fi(&1,5) = —cos*(&y — &) — 91, Fa(&1, &) = —cos*(&) — &) — o,
G1(&1, &) = —sin(d) — &) cos(dy — &) — Vi, Ga(1, &) = —sin(dy — &) cos(dy — &) — Vi,

- _ _ —47, + 47 -
0. 5) = —7 sin(=2F, +22) - <2 G 9\ m, RGLE) =n,

where m and n are arbitrary constants.
Case 2. Sech-type solution.

Fi(&1,8) = —sech®(Z) = &) — W1, Fa(l1,4) = —sech(Z, — &) — s,
GI(ZI’ZZ) = —Cy, GZ(ZI,ZZ) = —Cy, Q(ZI7Z2) =m, R(ZDZZ) =n,

where ¢ is arbitrary constant.
Case 3. Rational solution.

Zz 2Z1
Fi21,0) = =22, ,
(&1, 0) = 41 Fy&1,0) = N
{ Cs§1
G R , =
141, 0) = 51 z Gr(&1,0) = oz
- c2(2§1v2 — 252\71 +¢) - - C3(§1V2 - {2"1)
7)) = 6 VR, D)= 2ozl
Q(gl {2) 2(4{,12 N 422) +m (él 52) {1 (2

+Vi—+ vzi + a(t)% +ﬁ(t)2.

(3.6)

(3.7

(3.8)

(3.9)

(3.10)

3.11)

(3.12)
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where ¢, and c3 are arbitrary constants. Substituting (3.8) into (3.10)—(3.12), respectively, we obtain
that (3.13)—(3.15) are three kinds of solutions for (2 + 1)-dimensional MHD equations (3.4).
Case 1. Sin/cos-type solution.

u = COSZ[)C -y- (\_/'1 - \_/2)f] +Vy, Up = COSZ[X -y- (\_/1 - \_/‘2)1'] + vy,

by = sin[x —y — () — ")l cos[x —y — (V; — Wp)t] + ¥y,

by = sin[x — y — (5 — B)t] cos[x — y — (B — Po)t] + ¥y, r = —n + f B(ndt, (3.13)

4%, — 47y)r — dx + 4
p = By Sin[(27) — 20,)1 — 2+ 2y] + LA V82) el NP f a(t)dt.

Setting v; = 3,7, = 4 and x = 6 for &, in (3.13), we obtain Figure 1 of periodic solution u, as follows.

(a) (b)
Figure 1. (a) The evolution of periodic solution via (3.13), (b) u;(t=1, 3, 5).

From solution (3.13) and Figure 1, it can be seen that the solution exhibits periodic characteristics
over time and space. The physical significance of the solution mainly includes the following points:

(i) Periodic solution can be used to analyze the stability of MHD system. If the MHD system can
reach periodic solutions, it usually means that the system can achieve stability under certain conditions.

(i1) Periodic solution can describe oscillatory phenomena in the MHD system, such as periodic
changes in magnetic fields, periodic fluctuations in fluid velocity, etc.

(ii1) In industry, such as magnetohydrodynamic power generation, periodic flow can improve power
generation efficiency. By optimizing the periodic solution, more efficient power generation equipment
can be designed.

Case 2. Sech-type solution.

U = sechz[x -y- (\_/1 — \72)t] + Vi, Up = sechz[x -y- (\_/1 — \72)t] + Vs,

(3.14)
by=ci, by=c;, p=—-m+ fa(t)a’t, r=-n+ fﬁ(t)dt.

Setting ¥; = 1 and ¥, = 2 for u; in (3.14), we obtain Figure 2 of single soliton solution u; as follows.
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Figure 2. The evolution of a single soliton solution via (3.14) (¢ = 1, 4, 7, respectively).

From Figure 2, it can be seen that the velocity is constant in certain domains of space. Moreover,
the velocity is induced to a sudden rise until it reaches a maximum value. As a stable wave form, the
characteristics of solitons emerge from the collective behavior of nonlinear media. Solitons play an
important role in the study of MHD waves due to their unique properties and applications in various
physical contexts. The importance of solitons in the main problem mostly includes the following points:

(1) As a special wave phenomenon, solitons can form stable wave structures in plasmas. In controlled
thermonuclear fusion research, soliton waves can be used to describe some wave phenomena in plasma,
which has potential application value for achieving and maintaining the stability of fusion plasma.

(i1) Solitons can maintain their shape and amplitude is unchanged during propagation. This property
is important for understanding and predicting some wave propagations in MHD flow.

(ii1) Solitons can help explain some phenomena in MHD flow, such as the localized structure of
magnetic fields and the dynamic behavior of magnetic domain walls.

Case 3. Rational solution.

- c2(y — ot) b = c2(x — Vi1)
1 = s U — — )
(x =011 + (y = Vo)’ (x =011 + (y = Vo)’
c3(y — at) c3(x = V1)

B N T Iy o)
_ _C2[2(X - \_/1l)\_/2 - 2(y - \_}2f)\_/'1 + C2] 4 fa’(t)dt
- 2[(x — 1) + (y — at)’] ’

_ alx=vnvn - -n)nl] f J
ST pod

(3.15)

Setting v; = 1,7V, = 1,¢, = 1 and x = 2 for u; in (3.15), we obtain lump (c.f. Figure 3 for solution u,
as follows.
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(a) (b)

Figure 3. (a) The evolution of lump solution via (3.15), (b) Overview of u;.

From Figure 3, it can be seen the flow have the characteristics of spatial and temporal localization.
Lump solution corresponds to the emergent phenomenon of energy focusing in a specific region or time
point. The amplitude of peak and valley is several times higher than the surrounding background height.
The scale transformation of the lump has already been processed in mathematics. Actually, shock wave
may be seen and local instability may occur in reality.

Remark 3.1. (1)If by = b, = 0and r = 01in (3.14) and (3.15), then (3.14) and (3.15) reduce to exact
solutions for (2 + 1)-dimensional Euler equation.

(2) Since w = % - % #01in (3.13) and (3.14) and w = % - % = 01in (3.15), it can be concluded

that (3.13) and (3.14) correspond to rotational flow. Additionally, (3.15) corresponds to inrotational flow.

3.1.2. Viscous MHD equations

Without loss of generality, choosing v =1 = k = 1 in Eq (3.1), the viscous MHD equations can be
obtained as
uy — Uiy + Uyy) + (Uitty, + upityy) + (boboy — bybyy) + p, =0,

Uy — (Unxx + Unyy) + (UyUy, + Upltyy) + (D1D1y — b1boy) + py = 0,

b1y — (bixx + byyy) — (bruyx + bouyy) + (w1 by + uzbyy) + 1 =0, (3.16)
by = (baxx + bayy) = (bruay + bausy) + (u1bay + ushyy) + 1, = 0,

Uiy +uzy =0, by + by, = 0.

Solving (3.3) with v = n = k = 1, the coeflicient functions of vector field V can be obtained as

G =2C1t+Cy, H=Cix—Cry+ fi() + G5, &3 = Crax + Cry + fo(t) + Cy,
¢1 = —Ciuy — Crauiz + f{(1), ¢p2 = Crauy — Cruz + f5(1),

@1 = —Ci1by — Ciaby, ¢ = Ciaby — Cby,

Y1 = =2C1p = xf () = yf57(®) + (), Y2 = =2Cyr + B(0).

Case 1. When C1 = C2 = C3 = C4 = C12 = fl([) = ﬁ(t) = O, Z = a/(t)% +ﬁ(l’)%

(3.17)
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The corresponding invariants are

z() =1, gl =X, 52 =Y Fl(ZO»ZZ) = —Uuyp, FZ(ZO’Zl) = —Up,

_ oz o (3.18)
G1(Qo, $2) = =b1, G2(8o, (1) = —bo.

Substituting invariants (3.18) into (3.16), and solving the reduced equations,
up = gie'cosy, u, = gre ' cosx, by = gze'cosy, by = gse”’ cos x,

[— cos(2y)g2ga + 2g3 sin® x + 4g5(g3 — g2) sin xsin yle™ (3.19)
p= ) + m(t), r = n(1),
84

is a sin/cos-type solution for MHD equations (3.16), where g,g4 — g,g3 = 0. m(¢) and n(r) are arbitrary
functions related to ¢ only. Setting g; = 1 for u; in (3.19), we obtain Figure 4 of solution u; as follows.

08 =08

(a) (b)
Figure 4. (a) The evolution of periodic solution via (3.19), (b) u,(t = 0.2, 0.5, 0.8).

From Figure 4, it can be seen that as time increases, the shape and direction of the velocity remain
unchanged, but the amplitude decreases.

Case2. When G, =1,C;=Cpn= fit) = () =a(®) =B(#) =01 =0,1,3,4), V = %.
The characteristic equation is

dt dx dy duy duy dby db, dp dr

e R e e 3.20
1 0 0 0 0 0 0 0 0 ( )
The corresponding invariants are

L=x, 0=y Filli,6) = u, F2(8,0) = us, 321)

Gi($1,5) = by, G4, &) = by, Q1. 5) = p, R, G) = .
Substituting invariants (3.21) into (3.16), and solving the reduced equations,

u; = sech’(x + i , U = isech®(x + iy),
1 ( y), Uz ( y) (3.22)

by = sech®(x + iy), b, = isech®(x +iy), p=m, r =n,

Networks and Heterogeneous Media Volume 19, Issue 2, 887-922.
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is a sech-type solution for MHD equations (3.16). Using symmetry

solution (3.22) can further generate the following invariant solution

uy = sech’(x — et + iy—et)+e, u = isech?(x — et + i(y —et)) + ¢,

2 . . 2 . (3.23)
by = sech”(x — et + i(y — €t)), b, = isech”™(x — et + i(y — €t)), p = m(t), r = n(t),

where ¢ is arbitrary constant.

Remark 3.2. (1) The lump solution (3.15) for inviscid MHD equations (3.4) also satisfies the viscous
MHD equations (3.16).

2)If by = b, =0and r = 01in (3.23), then (3.23) reduces to exact solutions for (2 + 1)-dimensional
Navier-Stokes equation.

(3) Since w = 22 — %4 2 0in (3.19) and w = %2 — %4 = () in (3.23), it can be concluded that (3.19)

Ox dy Ox dy
corresponds to rotational flow. Moreover, (3.23) corresponds to inrotational flow.

3.2. Generalized Riccati equation expansion method for MHD equations

As an important method of simplest equation methods, the generalized Riccati equation
method [29, 30] provides a powerful mathematical tool to deal with the complex nonlinear and strong
coupling terms in MHD equations. Using traveling wave transformation,

{ = kox + k3y — ki, (3.24)
equations (3.1) are transformed into following ordinary differential equations (ODEs) as
— kyug = vlouig + kKuigy) + (ko + kauauy ) + k(kababay — ksboby) + kapy = 0,
— kll/tzg — V(k%l/tz“ + kguzgg) + (kzuluzg + k3u2u2§) + K(k3b1b1§ — kzblbzg) + kgpév =0,
- klblg - U(k%blg + kgblg) - (kzblulg + k3b2u1§) + kzl/tlb]g + k3u2b1§ + kzl’( = 0, (325)
— kibyy — n(kabage + kibygy) — (kabyutay + ksbyuyy) + kot by + kaugbys + kary = 0,
kzl/tlg + k3l/t2§ =0, kzblé‘ + kj,bz( =0.

Suppose that the solution of ODEs (3.25) can be expressed as a polynomial of ¢({) as

N3

N N
m =) ad' Q) =) md'Q), by =) nd'©),
i=0 i=0 i=0 (326)

Ny

Ns Ne
by= ) sd(Q) p= ) L+ 0. r= ) g (Q) +q().
i=0 i=0

i=0
where a;, m;, n;, s;, l;, g; are undetermined constants and ay,, my,, ny,, Sy, # 0. I(f) and g(?) are arbitrary
functions related to ¢ only. ¢({) satisfies the generalized Riccati equation

¢ () = & + EQ) + E:87(), (3.27)

where &), & and &, are arbitrary constants with & # 0. We choose Ny = N, = N3 = Ny = Ns = Ng =2
with can balance the highest order of the derivative and nonlinear terms in ODEs.
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3.2.1. Inviscid MHD equations

When v =7 =0 and « = 1 in ODEs (3.25), substituting (3.26) and (3.27) into (3.25), collecting the
coeflicients of ¢'({) and setting them to be zeros, we obtain
ni(k; + k3)

ap = ap,a; = ay,ax = ay, ky = ki, ky = ky, ks = k3, [y = 11,1, = —

2k
—Cl()kz + k1 a1k2 k2a2 kzll
— - _ i -——_ 2" = 3.28
mo ks » My ks » 1M ks » 1o nl(k2 N kz)’ ny =ny, ( )
koksl, kon,
=0,9,=0,90=0,5=———, 51 = —, 5, = 0.
N e M N

Substituting (3.28) and the general solutions of (3.27) (c.f. [29]) into (3.26), it can be obtained
following four kinds of solutions for the (2 + 1)-dimensional inviscid MHD equations.

Case 1. When & — 46,& > 0 and &£, # 0 (or &, # 0), the tanh-type solution can be obtained
as follows.

4aol? = 2aéE16 + ME  aré —als [T N
"y = 057 41651 2 261 + 2 126312 ff—4§2§0tanh(#§)

| @ -4k VET — 4260

452 tanh”( >

0,

4€2(—apks + k1) + 2a1k261E — koaad? kran (€)% — 46:E0)

\/s‘:f — 466
Uy = — tanhz(—

4ky 2 4k3 &3 2

0
(3.29)
L kel@igs — aré1) ky(a,&, — axéy) \/W R \/ - 45250
k32 250

2UCLE, + (K +KD)E ™ Jff — 46, \E —46é 5
2

b, = — — tanh
: 20, (K2 + K2)é, (

okl +hand (K3 +DE kan \/fl — 46 V& — 466 )
2

tanh
2 (& + ) dg, b

whereg“ =lkox + k3y — kqt. Settlng apg=-1l,a; =T, a0 =1,k1 =3, kh = 1,k3 = —l,f() = 1,61 =3 and
& = 1for u; in (3.29), we obtain Figure 5 of kink solution u; as follows.

2 =

Figure 5. u,(t = 2, 4, 6, respectively).
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In particular, when &, = 0 and &,&; # 0, the sinh-cosh-type solution can be obtained as follows
_ _@&ilsinh(6i) + cosh(61)] aéi[sinh(£10) + cosh(€ O

&[sinh(£10) + cosh(€10) + C1 - [sinh(£,0) + cosh(£,) + CI*
—apk, + k; N a1ky§i[sinh(£,{) + cosh(£1)] kaar&3[sinh(€,0) + cosh(& )1

u =a

k3 k3&a[sinh(£10) + cosh(&1) + €] k&3 [sinh(£14) + cosh(é10) + CcP’ (3.30)
o K mé&lsinh@) + cosh& )
TG k) Elsinh(€) + cosh(é ) + CT
by = koksl; N koni&[sinh(£,) + cosh(£14)]

ni(k3 +k3)  kséo[sinh(£10) + cosh(£1) + CT

where C is arbitrary constant. Setting ay = 4,a; = —10,a, = -8,k; = —4,ky = —16,k3 = -2,&, = 0,
& =1,6 =1,C =1 and x = 1 for u; in (3.30), we obtain Figure 6 of anti-kink-like solution u;
as follows.

I

Figure 6. (a) u;, (b) u;(t =1, 2, 3).

The kink and kink-like solutions can be understood as a macroscopic stable structure generated from
the field dynamics at the microscale. They manifest as a rapid change or discontinuity in some field at
the macro level.

Case 2. When &} — 46,&) < 0 and £& # 0 (or &, # 0), the tan-type solution can be obtained
as follows.

4aos; = 2a16,6: + ] N a1y — axé \/mtan( \ 46280 — &

u = 4 f% > é:% D )
Wbty - &), k=&
+ 12 tan”( 0),
& 2
b o HBCak k) P2kt~ ok ba(bh -&) L 05 E 5
2 4hs? 432 2

£,

_ &2
ot ad) [T VOO

2kré2 2
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_%%&+ﬁ%+@E3;“¢%&—ﬁmm¢%@—ﬁﬁ
2m (2 + k2)é 28, 2 ’
A6k - &
0.

2k2liéy + 2 (k2 + KD)g; o \[46ako — & t
- - a
Case 3. When &, = & = 0 and &, # 0, the rational solution can be obtained as follows

1

n(

b, =
2 2]{31’11(]{% + k%)-fz 2k3§2

a a —Clok2 + kg ark, ark,
Uy =ap— + 5> U = + - 2
&EI+C (&HE+0) k3 k(6 +C) k(&0 +C) (3.31)
b = k%l] n _ k2k3ll + kzl’ll .
b m(ks +k3) &EL+C 2T m(k3+k) k(&L +C)
3.2.2. Viscous MHD equations
When v =1 =« =1 in ODEs (3.25), Substituting (3.26) and (3.27) into (3.25), we obtain
- img)k, + k
ap = ap,ay = ai,ay = ax, ky = ki, ky = ko, k3 = —iky, ) = (a0 + lm]f) 2 1)611’
2
—ap + img)ky + k
L = (o lmlf) 2 l)az,mo =my,my = —ia;,my = —iay,ny = ng,n; = ny, 2 =0, (3.32)
2
3 _ ((=ap + imp)ny — (iso — no)aky + mky . 3 .
n, =0,q, = g2 = —ax(iso — no), So = So, 1 = —iny.

ka

Substituting (3.32) and general solutions of (3.27) (c.f. [29]) into (3.26), it can be obtained that
(3.33)—(3.40) are four kinds of solutions for (2 + 1)-dimensional viscous MHD equations.

Case 1. When & — 46,4, > 0 and £& # 0 (or & # 0), the following tanh-type solution can
be obtained.

dags? -2 2 _ VE — 466
_ a0y — 201616 + &y amé - a1 /5% 464, tanh(%{)

+

u 18 =
a(é —468) & — 4&2¢
+ ———————tanh"(—— ),
48 2
' —ad)) | dag - & - 468
Uy =my + l(2a1flj; ax&y) + l(alfzzgzazfl) 2 — 458, tanh(@{)
’ - (3.33)
ax& —deay) &1 4k
- ——————tanh"(———),
& 2
21’1()62 - nl'fl m f% - 46260 f% - 452‘50
by = - tanh(————0),
26, 26, 2
ing,  Im A& — 4280 & — 468
T 7
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14 1.06

H“ :

12 1055

1.05

4 2 10
2 4 -10

1.045
-10

(a) (b) (c)
Figure 7. (a) The evolution of Akhmediev breaher solution via |u,|, (b) Overview of |u,|,
(©) lual(z = 1,2, 3).

In particular, when &, = 0 and &,&, # 0, the following sinh-cosh-type solution can be obtained.

ai&[sinh(&0) + cosh(@ ] a>£2[sinh(£,0) + cosh(&,0)]?

N Elsinh@0) + cosh(@Q) + €1 &[sinh(é,2) + cosh(@d) + CT

— iaré [sinh(£,) + cosh(&1 ] ia>&3[sinh(£;) + cosh(&,0)T (3.34)
&[sinh(§1¢) + cosh(€1) + C1 - £2[sinh(£,) + cosh(é10) + CT?

by =y — ni&[sinh(£,4) + cosh(£10)] = 5ot iny&[sinh(£,{) + cosh(£1)]

&[sinh(£10) + cosh(€1¢) + CT &[sinh(£,¢) + cosh(£1¢) + CT

Setting a; =2,a, = -2,my=—-1,k; = 1,k =-1,£, =0, =-2,& =-14,C=1and x = 1 for u,
in (3.34), we obtain breather (c.f. Figure 7) for solution u, as follows.

From Figure 7, the breather appears to be localized in the #-axis direction, and periodic in the y-axis
direction. It corresponds to a type of nonlinear wave where energy is concentrated in a local oscillation
manner. The breather solutions can serve as a carrier of energy transfer during the propagation
process, and the characteristics of this energy transfer are related to the macroscopic behavior in
emergent phenomena.

Case 2. When & — 46,& < 0 and && # 0 (or ¢, # 0), the following tan-type solution can
be obtained.

, 46260 — &
" _4ao) 22?52 + ayé] 6115226 aé Jmtan( \/Tl
2 > (3.35)
R L i
+ 22 tan”( 5 98
2
~ 46260 — &
uy =my + l(zalflj; azgl) l(az‘lef = \/‘Wtan( \/Tl
2 > (3.36)
w8 46 -§
_ e tan*( 7 ),
2
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_ 2noér —mé N My 4250 &

N
> 0,

by 5 2% tan( (3.37)
imé& M y*%0 - & (4eb-&

by = 5o + - tan( 0). (3.38)
26, 26 2

Setting ay = —12, ay = 2,m0 = 1,k1 = —6, kz = 1,50 = —2,61 = —2,52 =—-landx=1in (336), we
obtain Figure 8 for breather solution u, as follows.

30 ‘
28 % 20 %
26|

2% 24 10 x4
™2 2
20 =
18 10
16+
' -20
14
' 16 1
. 30
<40
N ///n/ 20
~" 2

10

!

0 T~

-10 1
t 40 y 5 10 15 20 25 30 1 12 14 16 18 2 22 24 26 28 3

t t

(a) (b) (c)
Figure 8. (a) The evolution of Kuznetsov-Ma breaher solution via |u;|, (b) Overview of |u,|,
(©) lual(y = 1,1.5,2) .

From Figure 8, the breather appears to be localized in the y-axis direction, and periodic in the #-axis
direction, which corresponds to a nonlinear local wave that oscillates periodically in time.
Case 3. When &, = & = 0 and &, # 0, the following rational solution can be obtained.

aq ay ia1 ia2

mEb e T @i o T e T @ O (3.39)
S O _ _im
by = ny §2§+ C’ by = 5o + §2§+ C (3.40)

4. New wave behaviors of (3 + 1)-dimensional MHD flows

Denote x = (x,y,2), U = (u(t,X), ux(t,x), u3(t,x)), B = (b(t,x), bo(t,X), b3(t,x)) in (2.2), the
component form of the (3 + 1)-dimensional MHD equations can be obtained as
Ui — V(Uigx + Uy + Uiz) + (U, + upttyy + usity;) + k(byboy + b3bs, — bybyy — bsby;) + p, = 0,
Uy — V(Uoxy + Unyy + Unzz) + (UUy, + Uploy + UsUy,) + K(D1b1y + b3b3y — D1boy — b3by, + py = 0,
Uz — V(Uzxy + Usyy + Us) + (Uilts, + Upltzy + Uzltz,) + K(D1by; + baby, — by b3, — byb3y) + p, = 0,
bi; = (b1cx + biyy + biz) — (bruiy + bauyy + bsuy;) + (Ui by + usbyy + u3by) + r, = 0,
bat — n(boxx + boyy + bozr) — (bruny + bautyy + b3uny) + (u1boy + urboy + uzby) +ry = 0,
b3; — n(b3yx + b3y + b3;) — (biusy + byuszy + bauz,) + (uibax + ushsy + uzbsz;) +r, =0,

Uy T Ugy + U3, = 0, by, + be + b3z =0.
(4.1)
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4.1. Lie symmetry analysis of MHD equations

The vector field of the system (4.1) can be expressed as

0
By { </’1 </>2 + 3 —

0,0 a wiw_
ob, " Pab, ", Vap TVar

0 0 0
K:&E*L{za*'é% 6u3
4.2)

+ ¢

where §; (i = 1,2,3,4), ¢;, ¢; (j = 1,2,3) and ¢ (k = 1,2) are undetermined coeflicients about ¢, x, U,
B, p and r. It follows from the second-order prolongation pr®V(A)|a— = 0 that

Py — V(P + &)+ BT + Prun, + mdy + douyy, + uod| + Gaur, + Uz

+ k(@abyx + bry + 03b3 + b3 — @2y, — by — @3by, — b3g}) + Y| =0, @3
Py = V(DS + &) + ) + Prun, + Py + Doty + Ury + B3ty + Uz (4.4)
+ k(@1b1y + b1@) + @3b3y + bagy — @1by, — b1 — p3by, — b3gd) + ) =0,
Ps — V(BT + I3 + 6Y) + drus, + wids + Pouzy + oy + P3uz, + Uz 4.5)
+ K(901blz + bl% + oy, + brpl — 013, — b1@s — ab3, — b)) + 4 =0

— (e + @) + @) — @rur, — bidi — poury, — bop) — 3u, .6)
- b3¢1 + @1bi + 1] + abiy + urp) + P3by, +usg + Y3 =0

— (@3 + @5 +¢5) — Qrir, — bid; — oty — bty — @3y, @.7)

- b3¢2 + @1boy + U1 ) + Gabay + uag + 3ba. + usgs + 4, = 0 '

— (@Y + @ + @) — pius, — bid; — @auzy — bay — p3us, “8)
- b3¢3 + @1bax + w1 + Pobsy + Ur + P3bs, +usgl + Y5 =0
$1+d,+¢5=0, ¢+, +¢; =0. 4.9)

4.1.1. Inviscid MHD equations

Choosing v = = 0 and « = 1 in equations (4.1), the inviscid MHD equations can be obtained as

ui + (Uilty, + sty + uztty) + (babay + b3bs, — bybyy, — b3by;) + p = 0,

Uy + (U Uy, + Uty + Uzlty,) + (b1 b1y + b3bsy — b1byy — b3by,) + py =0,

uz + (Ui, + usuzy + usuz,) + (b1b1, + byby, — b1bs, — bybs,) + p, =0,
— (biuiy + boury + b3uy) + (uibiy + usbyy + uzby;) +ry =0, (4.10)
— (biuay + bouay + b3ury) + (U1 by + urbyy + u3by,) + 1, = 0,

— (byuzy + bousy + bauz;) + (w1 b3 + urbszy + ushs;) +r, = 0,

Uiy + Uy + U3, = 0, b]x +b2y +b3z =0.

Solving (4.3)—(4.9) with v = n = 0 and x = 1, the coefficient functions of vector field V can be
obtained as

§1=2C1t+Cy, §=Cox—Cry — Ci3z+ fi(1) + C3,
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= Crax+ Coy — C3z+ fo(t) + Ca, {4 = Cizx + Cozy + Coz + f3(0) + Cs,

¢1 = (Co = 2C1)uy — Crouy — Cr3uz + f{(t), ¢ = Crauy +(Co — 2C)uy — Co3uz + f5(1),
¢3 = Cizuy + Cozuy + (Co — 2C)uz + f5(1), @1 = (Co — 2C1)by — C12b; — C3b3,

2 = Cppby + (Co — 2C1)by — Ca3bs, @3 = Ci3by + Co3by + (Co — 2C1)b3,

Y1 =2(Co—2C)p — xf'(1) =y 5/ () — 2f5 (1) + a(t), Y2 = 2(Co — 2C1)r + B(1).

When C, = 1,C3 =v,C4 = 15,Cs =13, Co=C; =C1p=Ci13=Cp3 =0, f1(t) = f2(1) =0,

0 0 0 0 0 0
Z = (CQ& + C3—x + C4—y + C56—Z) + CL’(Z')% +ﬁ(l)g

0 d
N R R i
ot lox oy oz ap ar’
The characteristic equation is
dr _dx _dy dz_dw _dwy dus dby _dby dby dp _ dr 4.12)
1 % % »» 0 0 0 0 0 0 ab BO '

It follows from (4.12) that corresponding invariants are

OL=x—0t, L=y—Wt, G =2-st, FI({1,5,85) = —ur, Fa(&i, 6, 85) = —ua,
F3y(l1,0,85) = ~us, Gi(&1,0,8) = —bi, Go(&1, 8, 83) = —by, G3(41,8,8) = —bs, (4.13)

0G0 0) = -p+ f a()dt, R B Bs) = —r + f Bloyd.

Substituting (4.13) into (4.10), reduced equations can be obtained as

\71F14‘vl + \_/2FIZZ + \73F123 + F1F1Z1 + FZFIZZ + F3F1Z3 + GQGQZI + G3G3Z1
-GGy, —G3G g, — Qg =0,

\71ngl + \72F252 + ‘_}3F223 + Flezl + FngZ2 + F3F2Z3 + GlGlZz + G3G3Zz
= GGy = G3Gy, — 0, = 0,

‘_’IFSZl + aFs;, + V3F3g + FiFsp + FoFsg, + FaFaz + G1G1z3 + G2G253
= GGz, — GaGyg, — Oy, =0,

VG + Gy, + V3G, — G Fg — GoF g, — GaF i + F1Gig + FaGyg, (4.14)
+ F3GIZ3 - R_Zl =0,

V1Goz + aGyg, + V3Goz, — G1Fyy — GoFyp, — GaFoz, + F1Go, + F2Gyg,
+ F3Goz, — Rz, = 0,

171G3ZI + 172G3ZZ + \73G3Z3 - Gngzl - G2F3é_“2 - G3F3.Z3 + FlGSZI + F2G3g2
+ F3Gsz, — Rz, = 0,

Fiz + Fyp, + Fsz, =0, Gig + Gyz, + Gag, = 0.

It can be obtained that (4.15)—(4.17) are three kinds of solutions for (4.14).
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Case 1. Sin-cos-type solution.
Fi(1,0,8) = —cos* (28 — & — &) — s
Fy(&1, 5. 5) = —cos* (28 — & — &) — s
F3(&1,5,8) = —cos* (24, — & — &) — 73,
Gl(Zl»ZZ,ZB) == sin(2Zl - é_'z - 53) COS(Z& - Zz - 53) -V, (4.15)
G:(81, 0, 5) = —sinR4 — & — ) cos(2E — & — &) — Vi,
G3(&1, 0, 8) = —sinQ2d — & — §3) cos(24 — & — &) — 7,
0G5y = ] sin(—4Z12+ 25, +28) 3 cos(—Sle-g 42, + 4Z3)

where m and n are arbitrary constants.
Case 2. Sech-type solution.

Fi(&1, 5, 5) = —sech®(2Z, = & — &) = V1, Fa(l1, 8, 83) = —sech®(2Z, — &, — ;) — o,

- - - - - - - - 1
F3(01,0,8) = —sech® (28 — & — &) — 93, Gi(&1, 8. &) = —5(01 +¢2), (4.16)
G281, 5. 5) = =1, G3(&1, 0, 5) = =2, O, 6. 85) =m, R(G, G, 5) =n

where ¢, and ¢, are arbitrary constants.
Case 3. Rational solution.

+m, R(Zl, 52’53) =n,

FI(ZI’ZZ,Z3):_§1 442 Fy(l1,0.8) = N géfz F3({1, 6, 8) = —cs,
Gi(&1,4,83) = 4422, G2(¢1,8,83) = 4&-2, G3(1,8,83) = —¢s, 4.17)
éVl évl 4
. C3(2§1V2 — 20601 + ¢3) S = = ca(&ivn — §2V1)
s s = = = 5 R D s - =5 =5 n,
01,82, 83) 2B+ D) +m, R({1,80,8) = e

where c3, ¢4, 5 and cg are arbitrary constants. Substituting (4.13) into (4.15)—(4.17), respectively, we
obtain that (4.18)—(4.20) are three kinds of solutions for (3 + 1)-dimensional MHD equations (4.10).

Case 1. Sin-cos-type solution.
U, = cos’[2x —y — 2 — (20) =y — V3)t] + ¥y,
Uy = cos’[2x —y — 7 — (20 — ¥y — D3)t] + s,

Uz = cos?[2x —y — 7 — (20) — p — V3)t] + Vs,

by =sin[2x —y —z— (2V; — ¥y — V3)t]cos[2x —y — 7 — 2V — Vy — V3)t] + Vy,
by =sin[2x —y —z— 2V — v, — V3)t] cos[2x —y — z — 2V — Vp — V3)t] + ¥y,
bz =sin[2x —y —z— (2V] — v, — V3)t]cos[2x —y — z — 2V — Vp — V3)t] + ¥y, (4.18)
_ 3vpsin[(4v) — 20y = 203)t — 4x + 2y + 27]
2

16
r=-n+ fﬁ(t)dt.
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Case 2. Sech-type solution.

uy = sech?[2x —y — 2 — (29, — ¥ — P3)t] + V1,

Uy = sech2[2x —y—2— 2V =V — W3)t] + Vy,

Uz = sech2[2x -y—2I- 2V — Vo — W) + V3, 4.19)
1

b, = E(Cl + ), by =1, by = ca, p=-—-m+ f&(l)dt, r=-n+ fﬁ(t)dt

Setting vy = =2,V, = —4,V3 = =1,y = =2 and x = 2 for u; in (4.19), we obtain Figure 9 of solution
u; as follows.

(a) (b)

Figure 9. (a) The evolution of single soliton solution uy, (b) u;(z = 1, 2, 3).

Case 3. Rational solution.

" = c3(y — at) oy = c3(x — i) s = e,
(x =911 + (y = Vo)’ (x =011 + (y = Wot)’

by = c4(y — Vo) = ca(x —vit) by = ¢
(x =01 + (y = a0)* (x =01 + (y = a0)” ’

(4.20)

:_@pu—mmra@—wmrwﬂ_m+j@mﬂ
20x = 107 + (v — 1a1)’]
rz_qﬂx—ﬁﬂ%—@ﬁﬁﬂﬁﬂ_n+J}mmh

(x =910 + (y — "ot)?

Remark 4.1. (1) If by = b, = b3 = 0and r = 0in (4.19) and (4.20), then (4.19) and (4.20) reduce to
exact solutions for (3 + 1)-dimensional Euler equation.

(2) Since w =V XU #0in (4.18) and (4.19) and w = V x U = 0 in (4.20), it can be concluded that
(4.18) and (4.19) correspond to rotational flow. Additionally, (4.20) corresponds to inrotational flow.
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4.1.2. Viscous MHD equations

Without loss of generality, choosing v = 7 = k = 1 in Eq (4.1), the viscous MHD equations can be
obtained as

Uy — Uiy + Uy + U1) + (Ut + oty + usutny) + (babay + b3bsy — babyy — b3byy) + p. = 0,

Uy — (Uoxx + Unyy + Uazr) + (Uylty, + Usllyy + Uslty,) + (B1byy + D3b3y — b1by, — b3by,) + p, = 0,

Uz — Uy + Usyy + Usz) + (U3, + Upltzy + UsU3,) + (D1by + baby, — b1b3 — bybsy) + p, = 0,

b1t = (bixx + biyy + bi) — (bruiy + boury + b3uy) + (Ui b1y + usbyy + uzby) +re =0, (4.21)
by — (baxy + bayy + byzr) — (byuay + byutyy + bauty,) + (U1 by + ushoy + uzby;) +r, = 0,

b3, — (b3xx + b3y + b3p) — (biusy + bausy + byusy) + (u1bsy + uzbsy + usbs;) +r; = 0,

Uiy + oy +u3, =0, by + by + b3, = 0.

Solving (4.3)—(4.9) with v = n = k = 1, the coeflicient functions of vector field V can be obtained as

§1=2C1t+Cy, o =Cix—Crpy—Ciz + f1(0) + G,

3 =Cnx+Ciy—Cyuz+ fo(t) + Cy, {a = Ciax + C3y + Ciz + f3(0) + Cs,
¢1 = —Ciuy — Cpauy — Cizus + f{(8), ¢2 = Ciouy — Cruy — Cozuz + f5(2),
¢3 = Cizuy + Cozup — Cruz + f3,(f), o1 = —Ci1by — C1aby — Cy3b3,

@2 = Cpby — C1by — Casbs, @3 = Ci3by + Cp3by — Cbs,

Y1 = =2Cip = xfi'() =5 @) — 2f5 () + a(t), Y2 = =2Cyr + B(0).

(4.22)

Case . C;=C,=C3=C4=Cs=Cu=Ci3=Co3 = il = o)) =0,V = “(t)a% + B0 L.

For invariants _ . ) )
bo=t0=x, L=y, H=1¢,
Fi(lo, &) = —uy, F2(lo, &) = —un, F3(8o,$3) = —us, (4.23)
G1(£o, &) = —b1, G2(&o, &) = —ba, G3({o. &) = —bs.

Substituting invariants (4.23) into (4.21), and solving the reduced equations,

u = gre'cosy, u, = gre”' cosx, uz = ¢y,

b, = gze”'cosy, b, = gse”" cos x, by = cg, 4.24)

[— cos(2y)g38a + 283 sin*x + 4g3(g5 — g3) sin x sinyle '

pP= - ) +m(1), r=n(1),
84

is a sin/cos-type solution for MHD equations (4.21), where g1g4 — 8283 = 0. ¢; and cg are arbitrary
constants. m(t) and n(¢) are arbitrary functions related to ¢ only.

Case2. C,=1,C;i=Cpp,=Ci3=Cu=fi()=a()=pt) =0 =1,3,4,5,j=1,2,3), V= %.
The corresponding invariants are

L=x,0=y, =2 00,0.86)=p, RG.0,5) =,
Fi({1,5.8) =w, Fo(l1, 0. 5) = wa, F(4, 6, 8) = us, (4.25)
G1(&1, 0, 5) = by, Go(&1, 0, 5) = by, G3(G1, 0, 5) = bs.
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Substituting invariants (4.25) into (4.21), and solving the reduced equations,

uy = sech®(x + iy), up = isech’(x + iy), uz = co, p = m, 4.26)
b, = sech®(x + iy), by = isech®(x + iy), b3 = cyg, r = n, '

is a sech-type solution for MHD equations (4.21), where ¢9 and cy( are arbitrary constants. Using
symmetry V = taa_x + taa—y + t(% + a—‘zl + 6%2 + ﬂ%, solution (4.26) can further generate the following
invariant solution,
u, = sech’®(x — &t + iy—et)+¢, u = isech®(x — et + i(y —et)) + ¢,
us = co + &, by = sech’*(x — et + i(y — &t)), by = isech®(x — &t + i(y — &t)), 4.27)
by = ci0, p = m(1), r = n(1).
Remark 4.2. (1) The lump solution (4.20) for inviscid MHD equations (4.10) also satisfies the viscous
MHD equations (4.21).
2)Ifby = by = b3 = 0and r = 01in (4.27), then (4.27) reduces to exact solutions for (3 + 1)-
dimensional Navier-Stokes equation.

3)Sincew =VxU=#0in4.24) and w = VXU = 01in (4.27), it can be concluded that (4.24)
corresponds to rotational flow. Moreover, (4.27) corresponds to inrotational flow.

4.2. Generalized Riccati equation expansion method for MHD equations

Using traveling wave transformation { = kyx + ksy + kyz — ki t, Eq (4.1) are transformed into following

ODE:s as ) ) )
— klulg — V(k2l/t1“ + k3l/t1“ + k41/t1§§) + kzululg + k3u21/l1{ + k4lxt3l/t1§

+ k(kobabos + kabsbs; — ksbaby, — kabsbyy) + kap = 0,

— kyuyr — v(k%uzg + k%uzg + kiuza) + kouyups + kzupuny + Kgusuyy
+ k(ksbbyy + ksbsbs; — kabbay — kabsbyy) + kap, = 0,

— ks, — v(k%umv + k%um + kil/tgévéj) + kouyusy + kaupuzy + kqusuz,
+ k(kyb1b1; + kybaboy — kabibs, — ksbabsy) + kapy = 0,

— kibi; — nk5bige + K3bigr + kibigr) — (kabyuyy + ksbouy, + kabsuyy) (4.28)
+ ko1 b1y + k3urbip + kyusby + kory = 0,

— kibyy — n(ksbage + K3bagr + kibogr) — (kabyuay + ksbouay + kybsuay)
+ kou1 Doy + k3uprboy + ksusbyy + kyry = 0,

— kibs; — n(kabsgp + kibsg + kibagy) — (kobyusg + ksbauz, + kabsusy)
+ ko1 b3y + k3urbay + kyusbsy + kary = 0,

kzulg + k3u2{ + k41/t3§ = 0, kzblg + k3b2§ + k4b36v =0.
Suppose that the solution of ODEs (4.28) can be expressed as a polynomial of ¢({) as follows.

Ny

Ny N N3
u = Zaﬂf’i({), Uy = Zmifﬁi(f), uz = Zd@i({), b, = Zni¢i({),
i=0 i=0 i=0 i=0 (429)

Ns

Ng Ny Ng
by= Y s$'O, bs= ) [0, p=10)+ ) L), r=q)+ ) a:¢'(©),
i=0 i=0 i=0

i=0
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where a;, m;, d;, n;, s;, fi, l;, g; are undetermined constants and ay,, my,, dy,, ny,, Sns, fn, # 0. I(f) and
q(t) are arbitrary functions related to r only. ¢({) satisfies Eq (3.27). We choose Ny = N, = N; =
N4 = N5 = Ng = N; = Ng = 2 with can balance the highest order of the derivative and nonlinear terms
in ODEs.

4.2.1. Inviscid MHD equations

When v =71 =0and k = 1 in ODEs (4.28), substituting (4.29) and (3.27) into (4.28), we collect the
coeflicients of ¢'(¢) and set them to be zeros, we obtain

ap = ap,a; = ay,a; = a,dy =do,dy =dy,dy=dy, fo= fo, i =fi,.=0
(—k% — k% - ki)fof] ; flz(kg + k% + ki)

sl = —

kl = kl,kZ = k25k3 = k3ak4 = k4’ll =

k% + k§ 2(k§ + k%) ’
—apky — k4d() + k; —(llkz - k4d1 —kra, — k4d2
my = m=————"HMm=—"—"—"-,Ny = Ny,
k3 k3 k3
0 = fikaky 0, 0.0n = 0. s = —k4 fo — kang 5 = Siksky s
1= —k2 kz’ ny =Y,91 =Y,q2 » S0 ks » 51 —k2 kz’ 2=

Combined with the general solutions of (3.27) (c.f. [29]), it folllows from (4.29) that (4.30)—(4.38)
are four kinds of solutions for (3 + 1)-dimensional inviscid MHD equations.

Case 1. When ff —4&&) > 0 and &€& # 0 (or &é, # 0), the following tanh-type solution can
be obtained.

46106% - 2a,6,6, + a2§]2 N aéy — a1 & mtanh( ﬂff —46%

u = 2 2 1 2 {)
4 26 (4.30)
m(E - 46, \E ~ 46k
+ tanh“( 0),
48 2
48 (—aoky — doks + ki) + 2£1&(kaay + diky) — E(kaan + doky)
Uy = )
Ay 2
2
| blak +dik) ~ Ei(kat + doke) [ N0
2l & — 46 tanh( 2 0) (4.31)
\/§2 — 466
- '%‘f"“(f% T O L
352 2
2 2 _ } / — 4§ g
us _4do&; QZI;@ + dzf dlf;; dr¢ / — 4&,€&) tanh(———— ’ O
2 2 (4.32)
L hE - deg) V& — 46k
tanh”( 0),
48 2
26k + 1) + fikokai fikoky \JE - 4§z€o \/§12 - 452500 4.33)
' 265(K2 + K2) 26,k + k2) 2 :

Networks and Heterogeneous Media Volume 19, Issue 2, 887-922.



909

& — 46
V (4.34)
> 0,

_;a&m§+@XMﬁ+wmmy+%ﬁﬁa_+hﬁﬁ\k%—4@&t

b, = anh(
2](352(](% + k%) 2§2(k§ + k%)
2fols — fi&y N \/gf - 46,8 VE — 46é
b = 2% — 2% tanh(#g“), (4.35)
2 2

where { = kyx + k3y + kyz — kyt.
Setting ag = 6,61] = 6,02 = —z,d() = 1,d1 = —3,d2 = —2,k1 = 2,](2 = —4,k3 = 1,k4 = 1,{“0 =
1,6 =-2,6=3,y=1and t = 5in (4.31), we obtain Figure 10 of kink solution u, as follows.

50
45
4
50 40
40 . 40
35
] 35
3
= o
N 30 =
5

15 ! L L L L
X 2 -18 -6 -14 12 1 08 -06 -04 -02 0
X

(a) (b)
Figure 10. (a) uy, (b) u,(z =4, 5, 6).

In particular, when &, = 0 and &,&, # 0, the following sinh-cosh-type solution can be obtained.

_ _a&lsinh(& ) + cosh(6i )] axéi[sinh(£,0) + cosh(£,0)1°
&[sinh(£10) + cosh(£10) + C1  &[sinh(£,¢) + cosh(£,0) + CI*
_ —apky — doky + ki N (arky + diks)é[sinh(£1{) + cosh(£1)]

ur =aqo

e 2 kséalsinh(€,0) + cosh(€,0) + C]
~ (kaay + daky)E2[sinh(€,£) + cosh(&,0)]?

ks&2[sinh(&,0) + cosh(é10) + CT?

s = dy d, & [sinh(£,0) + cosh(&,0)] .\ dr€?[sinh(¢1¢) + cosh(£,0)]? 4.36)
&lsinh(£10) + cosh(é10) + C1  &[sinh(&0) + cosh(&1) + CI

b = Jikoks&1[sinh(£10) + cosh(&10)]

1=+ —5——> - )

(k5 + k)& [sinh(€,4) + cosh(£10) + C]

b, = —ky fo — kong N k3ky fi1&1[sinh(&1) + cosh(£14)]
ks (k3 + k))& [sinh(&10) + cosh(é,0) + CT°

by = fo - fi&i[sinh(&14) + cosh(£,4)]

&[sinh(£1¢) + cosh(£1¢) + CT

Setting apg = 2,a7 = —2,a, = —g’do = -10,dy = 12,d, = 3,k; = =14,k = =T, k3 = =2,
ky=-2,60=0,&=1,6 = —%,y =1,C =1and x = 5 in u; in (4.36), we obtain Figure 11 of kink-like
solution u, as follows.
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12

12

9 10
5 95
7 9
2
85
z

(a) (b)
Figure 11. (a) uy, (b) u,(z =4, 5, 6).

3 32 34 36 38 4 42
t

Case 2. When & — 46&) < 0 and £& # 0 (or &, # 0), the following tan-type solution can
be obtained.

" :4ao§§ - 24,616 + axé] . a1é — aré) Mtan( \/45250 - 62{)

483 28
612(44::2{;0 - é“%) ) \,45260 - f%
+ 2 tan”( 0,
45 2
y _453(_‘10]‘2 — doky + ki) + 2E1:E(arks + diky) — Ex(kyar + kadh)
i 4hr?
/ 2
_62(611](2 + d1k4) + fl(kzag + k4d2) 2 462'?0 - é:l
ks 4280 — & tan(—2 )
\ 46260 — &
- %(4&& - ff)tanz(#g),
3'§:2 2
P f 2 4.37)
2 _ _
us =4d0§2 2111;;62 + dog d1§22§2d251 \/m T #5260 1
L Blesh -8 VA4ako - €
tan”( 0),
4§2 2
. 2ogalk + K9 + fikakad fikaks \[4é260 — 52 \/45250 - &
1 26,(2 + K2) S 0)
b =2&,(k3 + k3)(ka fo + kano) + K3k f1 &1 kska fi \[4&280 — fz \ 46260 = &
7 22 + 1) Tkl M 9
2folr - filr N \/45260 - & \/45250 - &
bz = 2% + 2% tan( 7 ).
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Case 3. When &, = & = 0 and &, # 0, the following rational solution can be obtained.

= an — a + a " = —aok2 —d()k4 + kl + a1k2 + dky _ a2k2 + d2k4
Y RN Y i) ks k6l +C) k3l + O
us =dy — di + dz by =ng + fikoky 4.38
AT v TGy o T T i@+ o) (4.38)
—kifo—k ksk
b, = 4f0 210 3 4fl by = fo _ fl

ks (K + k(L +C) £{+C

4.2.2. Viscous MHD equations
When v = = k = 1 in ODEs (4.28), substituting (4.29) and (3.27) into (4.28), we obtain

ia; ,,k% + k% ia, 1,](% + kg
k—z’d2 =—— fo=Jo,

ap = ag,a) = ay,ay = az,dy = do,dy =
ks
. [0 ) arks
=1, = foski = ki ky = ko ks = ks, ky = iJk; + k3, mo = mo,my = o
2
arks Jika _ fk Jiks

= 80,81 =

mz=k—,no=no,n1= » Ny = » S0 s
2 ik + K2 ik + K3 ik + K3

f2k3 ay(—apky — idy k% + k% — moks + k)

9ll: s
i+ i k2

az(i(aokz + mok; — kl) k% + k% - do(k% + k%))

h=-
iky AJK2 + K2

_(=aing + fido)ks — k3soa N (aofi + a1 fo)ki — fi(=moks + k)ka + foaik;

q1 = 2
2 iky + /kﬁ + k§

_(=aang + fodo)ks — k3soa, N (aofs + ar fo)k5 — fo(—=moks + k)ky + foarks

9 = X
2 ik | /k§ + k§

Combined with general solutions of (3.27) (c.f. [29]), it follows from (4.29) that (4.39)—(4.52) are
four kinds of solutions for (3 + 1)-dimensional viscous MHD equations.

Case 1. When & — 46,4, > 0 and £& # 0 (or &, # 0), the following tanh-type solution can
be obtained.

Sy =

b

’

:461065 - 26116162 + 02612 N ¢ —a1& mtanh( \,é‘:% - 452504/)

4 % 2 (4.39)

+ Mtanhz( w

47 2

U

)
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4m0k2§§ — 2611](361{:2 + a2k3§f
4hr&s

Uy =

\/ —4§§
k3( a & + aréy) \/mtanh( 2 O

Ut

+ a2k3(§2 4§2§0) 9 \,é‘:f - 4§2§0

h
ol T

i(=2a: 616 + @mED) (kS + K5
4kr&5

laz(fl —4&60) \JK; + K3 Vé - 462&)

tanh (
4k2§2

l(azfl —a;&) \/k + k2 \/ - 4§2§0
2o VEL = 4é2é tanh(—————),
—2fikaér&s + foko&}

1482 \JI2 + 12
k2( hHié + f2é1) mtanh( \/ _45250
283 \[k3 + k3
5 \/5% — 4660

N foka (€] - 4§2§o)tanh (
462 \JK2 + K2 2
_ > / 4
by =50 + 2fiksé1E + fakséy k3( fi& + HED) mtanh( fzfo
48 (ks + k3 283 \Jks + k3
N foka(& - 4§2§O)tanh2( \/512 — 4660

482 \JI& + 12 2
4fo5 = 21116 + fof] —fl.fz + Hé Mtanh( \/(f% — 4660 5
482 22 1 260 -5

0,

us :do +

by =ny +

0,

£),

by = -
B —dek) 4k
+ Ttanh (#4).

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

Setting ay = —1,a2 = 2,d() = l,kl = l,kz = 1,k3 = l,f() = 2,51 = —6,{"2 =3 andy =1in (441), we

obtain Figure 12 for solution u3 as follows.
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8

40 30 20 A0 0 10 20 30 40

(a) (b) (c)
Figure 12. (a) The evolution of interaction solution between anti-kink and solition wave via
lus|(t = 1), (b) Overview of |us|(t = 1), (¢) |u3|(t = 1,2,3,z=1).

In particular, when &, = 0 and &,&, # 0, the following sinh-cosh-type solution can be obtained.

a,&,[sinh(&,0) + cosh(&,0)] N a>€2[sinh(¢1¢) + cosh(£,0)]*

M7 Elsinh@0) + cosh(Ed) + 1 &[sinh(&2) + cosh(@0) + I
e ark;&i[sinh(£14) + cosh(&14)] N arks€][sinh(£10) + cosh(& I
P kaglsinh(€10) + cosh(&10) + C1  kyg2[sinh(£0) + cosh(£,0) + CTP
. ia1€) \Jk3 + K3[sinh(£10) + cosh(£10)]  iaxé} (k3 + K2[sinh(£,) + cosh(£,)]
T T TG s ED) + cosh@ED) + C1 | ko2sinh(10) + cosh(@d) + CT
Sika&1[sinh(£10) + cosh(&14)] foka&3[sinh(£10) + cosh(£ )]
by =ng — + )
i&, \[k3 + K3[sinh(£1{) + cosh(&10) + C1  i&2 \[k? + k3[sinh(£1{) + cosh(£1{) + CT?
by —s fiks&[sinh(£,{) + cosh(£10)] N foks&€3[sinh(£,0) + cosh(&1))]
2 =90 — )
i&, \Jk3 + K3[sinh(£1{) + cosh(£10) + C1 &2 \[k? + k3[sinh(¢1{) + cosh(£1{) + CT
by = f Si&1[sinh(£10) + cosh(£10)] N f&[sinh(£0) + cosh(£ )]
3 —J0—

&lsinh(£14) + cosh(€10) + C1 &[sinh(£,¢) + cosh(£,) + CT
(4.45)

Case 2. When & — 46,&) < 0 and && # 0 (or &, # 0), the following tan-type solution can
be obtained.

:46105% - 201§1§2 + asz N alfz — azé-‘] \/mtan( 1/4§2§0 - é:%é‘)

) 4 2 2 (4.46)
4 a2(4§2§0 - f%)tanz( \,45250 - é:% é’)
4¢3 2 ’
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4m0k2§§ - 2(11](35152 + a2k3§2 k3(alé‘-‘2 a2§1) \/72 3,452‘50 - f]
46260 — & tan(—————

= 182 2k

why(d6rgy — &), ko= &

+ TR tan”( > 0),
252
i(—2a1§1§2 + asz) k% + k% ia2(4§2§0 - f%) R /k% + k2 A ,462{30 - 62

Us :d() + 4k2§% + 4k2§% tan (

l(alfz — mé)) k5 + i3 \/4fz§0 -&

[ @
ol 466, — & tan(————0),
3 2 _ \ 4 f - &

by =ny + ka(=2f1&:1é2 +f2§1) 4 ky(fi& — fé1) /4‘5 £ — §2 tan( 250 15)

2 e a2 fesr
fho(dirty — &), Hb0— &
+ tan*(~————0),
482 \JI2 + I 2
by sy ¢ RCRREETSED ki~ ) [ N6 x/4§zfo -,
482 \JI2 + 12 282 \JI2 + I
ksfdei) - &), Y4k - &
+ tan*(————
42 2 + 12 2

4ty ~ 266+ hE it - fify VAako - &
e Vb~ g tan(————0)

52

0,

b3:

| PUan -8 68
tan“( 0).
4¢3 2
Case 3. When &, = & = 0 and &, # 0, the following rational solution can be obtained.
"y = ap — ap C+ azcz,bl=n0— Sika + Jaka ,
0+ 0 (H4+0) IR+ RECHC) iR+ K&+ C)
. iay A /k% + k% ia 4 /k% + k§ arks arks
us =dy — + , Uy = Mgy — + ,
U G40 kG0 T (@l +0) k(& +C)
k k
by = 5o - Jiks N faks by fy— fi_c-'_ f N
iJR+IREL+C) i+ (6L + O G0+ C &L+ 0)

(4.47)

(4.48)

(4.49)

(4.50)

4.51)

(4.52)

Setting a; = 2i,a, = i,dy = —=2,k; =3,ky = -2,k = -2,60 = 0,6, = 0,6, =-1,C =1,z =2 and
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x = —15 for u; in (4.52), we obtain Figure 13 for bright—dark soliton solution u3 as follows.

23
215
22
121
214
2.05
2

16 18 |
10 8 - =
e 18 —
6 > 40 13
4 : o 0 . .

.
2

p . . .
@ 6 8 10 12 14 16 18
t y

(a) (b)
Figure 13. (a) |u3], (b) |us|(z =1, 2, 3).

S. Stability of MHD flows

5.1. Qualitative analysis

We analyze the continuous dependence of solution for MHD equations (2.2) on initial data, or namely
the stability of MHD equations (2.2) from a qualitative perspective.

Lemma 5.1. [31] For g € [2, o), there exists C > 0 such that for f € H'(R?),
||f||iq(Rz) <C “f”iz(Rz) IIVfIIZZfRz). (5.1
Lemma 5.2. [32] For p € [2, 6], there exists C > 0 such that for g € H'(R?),

(6-p)/2 (Bp-6)/2
”g”IZp(R"G) S C ||g||L2(£3) ”Vg”LZ[()RS) ° (5'2)

Theorem 5.3. For n = 2,3, if the initial data Uy, B, € (L*(R"))", then the solutions (U, B) for the
(2 + 1)- and (3 + 1)-dimensional MHD equations (2.2) with periodic boundary condition at infinity
depend on the initial data continuously in (L*(R"))".

Proof. Let (U, By) and (U,, B,) be two solutions to MHD equations (2.2) with initial data Uy, By €
(L*(RM))". SetU=U,; —U,, B=B, -B,, p = p; — p», ¥ = 1| — 1y, then (U, B) is the solution to the
following system,

U, —vAU + (U - VU, + (U, - VYO(B - V)B; + (B, - V)B) + Vjp

1
+§KV(IB1 " - B, =0, (5.3)
B, —nAB + (U-V)B, + (U, - V)B) — (B - V)U, + (B, - V)U) + Vi = 0, (5.4)
div U=0, div B =0. (5.5)
Casel.n=2.

It follows from Holder inequality and Lemma 5.1 that

—((0- VU, 0) < IVU |07, < Coll VULl [T,V O, (5.6)
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((B-V)Uy, B) < [VU,||2IIBI7; < CollVU[l2[IBI| VBl ., (5.7)
~ . - ~ .1 . L1 . 1
(B - V)B,,U) <|[VB||2[[Bl|+[[Ullzs < CollVB;|l2lBIl L [IVBII LUl VU (5.8)
~ ~ . ~ .1 . L 1 .1
—((U-V)By, B) < [[VBill2[[Ull4IBlls < CollVBy|l2l[Ull LIIVUILIIBI L IVB| . (5.9)

Take L? inner product of (5.3) with U and (5.4) with B, respectively. Without loss of generality,
choose v =n =k =11n(5.3) and (5.4). Since

(U;-V)0,0) =0, ((Uy-V)B,B) =0, ((B,-V)B,U)+((B,-V)U,B) =0, (5.10)
and |
(V(p + EK(|B1|2 - By, 0) =0, (VF,B) =0, (5.11)
using (5.6)—(5.11), we have
d jea2 =012 ~ 12 =112
22Ol + [1Bll.») + 2 [VOI[.. +2 [ VB,
<C|[VUll2[[011 IV Oll,» + CIVULI2(1Bll I VBI|, (5.12)
.1 . L1 .1
+2C|IVB, || 2|BIl L [IVBII LU L IVUIL,.
where C = 2C). It follows from Young inequality and (5.12) that
d 2 ) ) )
22Ol + [1Bll.) + 2 [ VO, +2 [ VB,

c? o . o . (5.13)
< (190, 1782 (JOIE, + [ )+ (17, + 7B,

Using Gronwall’s inequality, fJ”iz + ||l~3||i2 < M(||I~J||i2 + ||l~3||iz)|t:t0. Then, solution (U, B) for
(2 + 1)-dimensional MHD equations (2.2) with periodic boundary condition at infinity depends on the
initial data continuously in (L2(R?))".

Case2. n =3.

It follows from Holder inequality and Lemma 5.2 that

~((0- VU, U) < IVUI21101:0100 < CO”VUI“Lzllfj”iz”Vﬁ”iz’ (5.14)
(B - V)U,, B) < [[VU || 2Bl Bl s < COHVUI”Lz”E”L%z”VE”iz- (5.15)

(B - V)B, U) < [IVB, |2 IIBll 11Ol s < CoIIVBlIILzIIEIIL%ZIIVEIIEQIIVI?IILL (5.16)
~((U - V)By, B) < |IVB |2 /1Ol 1Bl s < CO”VBI”LZ”ﬁ”iz”Vﬁ”iz”VB”LZ- (5.17)

Using Young inequality with &, without loss of generality, choosing v = n =« = 1in (5.3) and (5.4),
there exists & < 3 such that

d 1~ ~ . _
i 101: + Bl + 2V O], + 2| VB,

<C()(IVULE + IVBLIE([O], + B[} + 3e(|VO., + [VB|[,.).

Similarly, using Gronwall’s inequality, it can be obtained that solution (U, B) for (3 + 1)-dimensional
MHD equations (2.2) with periodic boundary condition at infinity depends on the initial data continu-
ously in (L2(R%))’.
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5.2. Quantitative analysis

Next, we further analyze the stability of MHD equations (2.2) combining with the exact solutions
obtained above from a quantitative perspective, which provide an accurate mathematical description for
the stability of MHD systems. Denote U=U+U,B =B +B, where U, B’ are disturbances to the
velocity and magnetic field, respectively. (U, B) and (U, B) are solutions before and after being affected
by disturbances, respectively. Therefore U’, B’ satisfy the following system

U, —vAU + (U - VU + (U +U) - VU) - (B’ - V)B + (B +B') - V)B)

+Vp + %KV(—|B|2 +B+B) =0, (5.18)
B/ - nAB + (U -V)B+ ((U+U")-V)B) - (B -V)U + (B +B') - V)U)

+Vr =0, (5.19)
divU’ =0, divB’ = 0. (5.20)

We select several obtained exact solutions of MHD system to study the impact of disturbances on
stability of the system.

Case 1. Harmonic disturbance.

The initial disturbance is

, 2n _ , 2n I
uy(to, x,y) = A COS(W—(x —y— (i —h)), uyto, x,y) = Az COS(W—(x —y— (V1 —V2)h)),
1 2
where A, A, are amplitude of disturbance waves. We analyze the behavior of u;, u, in (3.13) after

being affected by disturbances u/(t, x,y), u)(t, x,y). Set A; = 0.1,w; = 5 (i = 1,2), the evolution of
u; + u} can be displayed intuitively as following Figure 14 (u; + u) is similar).

42

@ c

Figure 14. (a) u; + uj, (b) u; + uj(z=1, 3, 5).

From Figure 14, it can be seen that with the evolution of time, the amplitude of U under the
influence of the harmonic disturbance is limited. The solutions (U, B) for the (2 + 1)-dimensional MHD
equations (2.2) depend on the initial data continuously in (LZ(RZ))Z, which is also consistent with the
conclusion of qualitative analysis.
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Case 2. Bell shaped solitary wave disturbance.
The initial disturbance is

, 2r L , 2r -
uy(fo, x,y) = Ay sech(w—(x —y— V1 —W)hy)), uy(to, x,y) = A sech(W—(x -y — (V1 — ")),
1 2
where A, A, are amplitude of disturbance waves. We analyze the behavior of u;, u, in (3.14) after

being affected by disturbances u)(z, x, y), u,(z, x,y). Set A; = 0.1,w; = 5(i = 1,2), the evolution of
u; + u} can be displayed intuitively as following Figure 15 (u, + u) is similar).

Figure 15. u; + uj(t = 1, 4, 7, respectively).

From Figure 15, it can be seen that the amplitude of U under the influence of the Bell shaped solitary
wave disturbance has increased but is limited. The velocity U under the influence of Bell shaped solitary
wave disturbance is stable.

6. Conclusions

In this paper, several novel classes of solutions and stability analysis are presented for MHD flows.
When the magnetic field vanishes, some of the exact solutions can be reduced to solutions of Euler or
Navier-Stokes equation. Through Lie symmetry analysis and the generalized Riccati equation expansion
method, the MHD system achieves order reduction and dimensionality reduction, and the complex
nonlinear and strongly coupled terms in fluid dynamics systems are handled technically. The Lie group
of transformations and the similarity reductions of (2 + 1)- and (3 + 1)-dimensional inviscid and viscous
MHD equations are studied. The exact solutions with rich forms are obtained, which can describe
certain solition-like surface waves, such as periodic solution, single soliton solution, and lump solution.
The mechanisms of rotational and irrotational fluids are analyzed. Furthermore, using the generalized
Riccati equation expansion method, we obtain miscellaneous traveling wave solutions, including kink,
kink-like, anti-kink-like, breather, and interaction solutions. In addition, the continuous dependence of
solutions for MHD equations for initial values is studied from qualitative and quantitative perspectives.

Compared with the related work, the novelty of this paper lies in that we consider the problem from
multiple perspectives and obtain new exact solutions. For instance, Dorodnitsyn et al. [23] studied
(1 + 1)-dimensional inviscid MHD flows in the mass Lagrangian coordinates, while we studied from
the perspective of both inviscid and viscous of (2 + 1)- and (3 + 1)-dimensional MHD equations.
Liu et al. [24] obtained analytical solutions of (2 + 1) -dimensional inviscid incompressible MHD
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equations by Lie symmetry analysis. Picard et al. [26] obtained some exact solutions of (3 + 1)-
dimensional inviscid MHD equations by the symmetry reduction method. We used Lie symmetry
analysis as well as generalized Riccati equation expansion methods to study both inviscid and viscous of
(2 + 1)- and (3 + 1)-dimensional MHD equations. Moreover, based on the study, we obtain new exact
solutions with richer forms. Xia et al. [25] used the Lie symmetry method to obtain some exact solutions
of (2 + 1)-dimensional incompressible ideal MHD equations. Cheung et al. [33] obtained bounded
soliton solutions of (2 + 1)-dimensional incompressible MHD equations. However, we obtain some
new exact solutions for both inviscid and viscous of (2 + 1)- and (3 + 1)-dimensional MHD equations,
such as lump solutions, kink solutions, kink-like solution, breather solutions, and interaction solution
between anti-kink and solition. Ayub et al. [34] studied solitary wave solutions for two-dimensional
viscous incompressible MHD flow regarding space evolution, while we studied from the perspective of
both inviscid and viscous of (2 + 1)- and (3 + 1)-dimensional MHD flows, which consider both time
and space evolution.

The exact solutions we obtain can correspond to different physical behaviors for MHD flows. For
instance, solitons can maintain their shape and thier amplitude is unchanged during propagation. This
property is important for understanding and predicting some wave propagations in MHD flow. Soliton
waves can be used to describe some wave phenomena in plasma, which has potential application
value for achieving and maintaining the stability of fusion plasma. Periodic solutions can describe
some periodic oscillation phenomena in MHD flow. Lump solution can correspond to waves that are
localized in time and space, while the amplitude of peak and valley is several times higher than the
surrounding background height. Breather solutions can explain MHD flow that exhibits periodicity in
certain direction and locality in other directions. The kink and kink-like solutions can manifest as a rapid
change or discontinuity in some fields at the macro level. Considering the physical significance and the
importance of studying analytical solutions of MHD equations, compressible case and MHD systems
with other factors such as time-dependent density and Coriolis force deserve to be further studied.
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