Research article

Weak Galerkin method for the Navier-Stokes equation with nonlinear damping term

  • Received: 29 December 2023 Revised: 03 April 2024 Accepted: 23 April 2024 Published: 28 April 2024
  • The primary focus of this research was to investigate the weak Galerkin (WG) finite element method for the Navier-Stokes equations with damping. We established the weak Galerkin finite element numerical scheme and demonstrated the existence and uniqueness of the weak Galerkin numerical solution. Additionally, optimal errors estimates for the velocity and pressure were obtained. Eventually, numerous numerical examples were reported to validate the theoretical analysis.

    Citation: Yue Tai, Xiuli Wang, Weishi Yin, Pinchao Meng. Weak Galerkin method for the Navier-Stokes equation with nonlinear damping term[J]. Networks and Heterogeneous Media, 2024, 19(2): 475-499. doi: 10.3934/nhm.2024021

    Related Papers:

  • The primary focus of this research was to investigate the weak Galerkin (WG) finite element method for the Navier-Stokes equations with damping. We established the weak Galerkin finite element numerical scheme and demonstrated the existence and uniqueness of the weak Galerkin numerical solution. Additionally, optimal errors estimates for the velocity and pressure were obtained. Eventually, numerous numerical examples were reported to validate the theoretical analysis.



    加载中


    [1] D. Bresch, B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergenceto the quasi-geostrophic mode, Commun. Math. Phys., 238 (2003), 211–223. https://doi.org/10.1007/s00220-003-0859-8 doi: 10.1007/s00220-003-0859-8
    [2] E. Burman, P. Hansbo, Edge stabilization for the generalized Stokes problem: A continuous interior penalty method, Comput. Methods Appl. Mech. Eng., 195 (2006), 2393–2410. https://doi.org/10.1016/j.cma.2005.05.009 doi: 10.1016/j.cma.2005.05.009
    [3] B. Cockburn, J. Gopalakrishnan, R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and conforming Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47 (2009), 1319–1365. https://doi.org/10.1137/070706616 doi: 10.1137/070706616
    [4] W. Gao, R. Liu, H. Li, A hybrid vertex-centered finite volume/element method for viscous incompressible flows on non-staggered unstructured meshes, Acta Mech. Sin., 28 (2012), 324–334. https://doi.org/10.1007/s10409-012-0038-2 doi: 10.1007/s10409-012-0038-2
    [5] N. Hagmeyer, M. Mayr, A. Popp, A fully coupled regularized mortar-type finite element approach for embedding one-dimensional fibers into three-dimensional fluid flow, Int. J. Numer. Meth. Eng., 125 (2024), e7435. https://doi.org/10.1002/nme.7435 doi: 10.1002/nme.7435
    [6] Q. Hong, F. Wang, S. Wu, J. Xu, A unified study of continuous and discontinuous Galerkin methods, Sci. China Math., 62 (2019), 1–32. https://doi.org/10.1007/s11425-017-9341-1 doi: 10.1007/s11425-017-9341-1
    [7] S. Hou, Q. Zou, S. Chen, G. Doolen, A. C. Cogley, Simulation of cavity flow by the lattice Boltzmann method, J. Comput. Phys., 118 (1995), 329–347. https://doi.org/10.1006/jcph.1995.1103 doi: 10.1006/jcph.1995.1103
    [8] X. Z. Hu, L. Mu, X. Ye, A weak Galerkin finite element method for the Navier-Stokes equations, J. Comput. Appl. Math., 362 (2019), 614–625. https://doi.org/10.1016/j.cam.2018.08.022 doi: 10.1016/j.cam.2018.08.022
    [9] J. Li, H. Liu, H. Sun, Damping mechanisms for regularized transformation acoustics cloaking, Contemp. Math., 615 (2014), 233–253. https://doi.org/10.1090/conm/615/12279 doi: 10.1090/conm/615/12279
    [10] M. Li, D. Shi, Y. Dai, Stabilized low order finite elements for Stokes equations with damping, J. Math. Anal. Appl., 435 (2016), 646–660. https://doi.org/10.1016/J.JMAA.2015.10.040 doi: 10.1016/J.JMAA.2015.10.040
    [11] M. Li, D. Shi, Z. Li, H. Chen, Two-level mixed finite element methods for the Navier-Sokes equations with damping, J. Math. Anal. Appl., 470 (2019), 292–307. https://doi.org/10.1016/j.jmaa.2018.10.002 doi: 10.1016/j.jmaa.2018.10.002
    [12] Z. Li, Z. Shi, M. Li, Stabilized mixed finite element methods for the Navier-Stokes equations with damping, Math. Methods Appl. Sci., 42 (2019), 605–619. https://doi.org/10.1002/mma.5365 doi: 10.1002/mma.5365
    [13] H. Peng, Q. Zhai, R. Zhang, S. Zhang, A weak Galerkin-mixed finite element method for the Stokes-Darcy problem, Sci. China Math., 64 (2021), 2357–2380. https://doi.org/10.1007/s11425-019-1855-y doi: 10.1007/s11425-019-1855-y
    [14] D. Di Pietro, A. Ern, Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations, Math. Comput., 79 (2010), 1303–1330. https://doi.org/10.1090/S0025-5718-10-02333-1 doi: 10.1090/S0025-5718-10-02333-1
    [15] H. Qiu, L. Mei, Multi-level stabilized algorithms for the stationary incompressible Navier-Stokes equations with damping, Appl. Numer. Math., 143 (2019), 188–202. https://doi.org/10.1016/j.apnum.2019.04.004 doi: 10.1016/j.apnum.2019.04.004
    [16] H. L. Qiu, Y. C. Zhang, L. Q. Mei, A Mixed-FEM for Navier-Stokes type variational inequality with nonlinear damping term, Comput. Math. Appl., 73 (2017), 2191–2207. https://doi.org/10.1016/j.camwa.2017.02.046 doi: 10.1016/j.camwa.2017.02.046
    [17] H. L. Qiu, Y. C. Zhang, L. Q. Mei, C. F. Xue, A penalty-FEM for Navier-Stokes type variational inequality with nonlinear damping term, Numer. Meth. Part. D. E., 33 (2017), 918–940. https://doi.org/10.1002/num.22130 doi: 10.1002/num.22130
    [18] D. Shi, Z. Yu, Superclose and superconvergence of finite element discretizations for the Stokes equations with damping, Appl. Math. Comput., 219 (2013), 7693–7698. https://doi.org/10.1016/j.amc.2013.01.057 doi: 10.1016/j.amc.2013.01.057
    [19] C. Wang, J. Wang, R. Wang, R. Zhang, A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation, J. Comput. Appl. Math., 307 (2016), 346–366. https://doi.org/10.1016/j.cam.2015.12.015 doi: 10.1016/j.cam.2015.12.015
    [20] J. Wang, X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103–115. https://doi.org/10.1016/j.cam.2012.10.003 doi: 10.1016/j.cam.2012.10.003
    [21] J. Wang, X. Ye, A weak Galerkin finite element method for the stokes equations, Adv. Comput. Math., 42 (2016), 155–174. https://doi.org/10.1007/s10444-015-9415-2 doi: 10.1007/s10444-015-9415-2
    [22] R. Wang, X. Wang, Q. Zhai, K. Zhang, A weak Galerkin mixed finite element method for the Helmholtz equation with large wave numbers, Numer. Meth. Part. D. E., 34 (2018), 1009–1032. https://doi.org/10.1002/num.22242 doi: 10.1002/num.22242
    [23] X. Wang, Q. Zhai, R. Zhang, The weak Galerkin method for solving the incompressible Brinkman flow, J. Comput. Appl. Math., 307 (2016), 13–24. https://doi.org/10.1016/j.cam.2016.04.031 doi: 10.1016/j.cam.2016.04.031
    [24] S. Y. Yi, A lowest-order weak Galerkin method for linear elasticity, J. Comput. Appl. Math., 350 (2019), 286–298. https://doi.org/10.1016/j.cam.2018.10.016 doi: 10.1016/j.cam.2018.10.016
    [25] L. Zhang, M. Feng, J. Zhang, A globally divergence-free weak Galerkin method for Brinkman equations, Appl. Numer. Math., 137 (2019), 213–229. https://doi.org/10.1016/j.apnum.2018.11.002 doi: 10.1016/j.apnum.2018.11.002
    [26] T. Zhang, T. Lin, An analysis of a weak Galerkin finite element method for stationary Navier-Stokes problems, J. Comput. Appl. Math., 362 (2019), 484–497. https://doi.org/10.1016/j.cam.2018.07.037 doi: 10.1016/j.cam.2018.07.037
    [27] Y. Zhang, Y. Qian, L. Mei, Discontinuous Galerkin methods for the Stokes equations with nonlinear damping term on general meshes, Comput. Math. Appl., 79 (2020), 2258–2275. https://doi.org/10.1016/j.camwa.2019.10.027 doi: 10.1016/j.camwa.2019.10.027
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(738) PDF downloads(168) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog