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1. Introduction

Humanity has always been attracted to celestial bodies. However, our ability to observe the
universe is significant biased. The light released by the atmosphere; as by a star is refracted as it
enters the human eyes or optical telescopes, it results in the formation of the our perceived star image.
Solar radiation affects the erratic motion of molecules in the atmosphere, resulting in unpredictable
fluctuations in physical characteristics such as temperature, pressure, and humidity. This
unpredictable thermal motion causes a disruption in the refraction of light, resulting in varying light
routes and random fluctuations in the amplitude and phase of the light reaching the surface. As a
consequence, stars appear to sparkle and flicker. Atmospheric turbulence, the described atmospheric
motion phenomena, disrupts the refraction of light. Due to atmospheric turbulence, imaging findings
appear blurred and deteriorated even if weather conditions are optimal and the technology is
enhanced, not meeting the expected theoretical outcomes. Consequently, the research on turbulence
has consistently been a prominent topic in the realm of fluid mechanics.

Atmospheric turbulence refers to the occurrence of turbulence in gaseous fluids; however,
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turbulence can also be observed in other types of fluids. Once the Reynolds number exceeds a critical
threshold, the fluid streamlines become disorganized, and numerous small eddies emerge within the
flow field. As a consequence, there is sliding and blending between neighboring layers of flow, which
induces the fluid to generate a velocity component that is perpendicular to the direction of the
streamlined flow, ultimately leading to an erratic motion. The Navier-Stokes (NS) equation is widely
acknowledged as the prevailing model for describing turbulence processes. We consider the steady
incompressibility Navier-Stokes equation with a nonlinear damping term. Find (u, p) such that

−µ∆u + (u · ∇) u + α|u|r−2u + ∇p = f, in Ω, (1.1)
∇ · u = 0, in Ω, (1.2)

u = 0, on ∂Ω, (1.3)

where Ω ∈ Rd (d = 2, 3) is an open bounded domain with Lipschitz continuous boundary.
u = (u1, ..., ud)T represents the fluid velocity, p represents the pressure, and f represents the external
force. µ > 0 is the viscosity coefficient. 2 < r < ∞ and α > 0 are two damping parameters. Nonlinear
damping describes the damping force of a flowing fluid that is not directly proportional to its velocity.
This phenomenon is frequently observed in porous medium flow, friction effects, and dissipation
mechanisms [1, 9].

The Navier-Stokes equation with damping is a complex nonlinear second-order partial differential
equation with multiple variables and unknown parameters, making it challenging to determine its
solution. At present, the mainstream method used to tackle this problem is the mixed finite element
method (MFEM) [6]. The Navier-Stokes-type variational inequality with nonlinear damping term and
friction boundary conditions has been discussed in [16, 17]. Moreover, Li et al. developed a two-level
mixed finite element approach and demonstrated its ability to significantly reduce computational time
without compromising accuracy [11]. A stabilized mixed finite element method was proposed for the
NS equations with damping in [12]. The existence and uniqueness of the weak solutions were proven
by the Brouwer fixed-point theorem, and numerical examples were implemented to confirm the
theoretical analysis. Furthermore, [15] studied the multi-level stabilized algorithms, which combine
the stabilized finite element technique with the multi-level method. Using a regularized mortar-type
finite element discretization, [5] proposed a partitioned Dirichlet-Neumann algorithm for the fluid
fow, which is described by the incompressible NS equations. [4] adopted an incremental pressure
fractional step method and proposed a hybrid vertex-centered finite volume/finite element method for
the NS equations on unstructured grids.

In the context of these Eqs (1.1)–(1.3), namely the Stokes equation with a damping term, there
have been more studies on its numerical solution. Its existence and uniqueness have been proved, and
the conforming MFEM has been developed to discretize the model. Additionally, superclose and
superconvergence results for the MFEM applied to the Stokes equations with damping were obtained
in [18]. In [27] the interior penalty discontinuous Galerkin (IPDG) schemes on general mesh were
established, and the existence, boundedness, and uniqueness of the discrete solutions were analyzed.
With the help of a local pressure projection stabilization, low-order finite element pairs were applied
to approximate the velocity and pressure in [10]. Furthermore, Burman and Hansbo presented a
continuous interior penalty finite element method with edge stabilization for the incompressible
Navier-Stokes equations and proved energy-type a priori error estimates independent of the local
Reynolds number [2].
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In this paper, we are concerned with the weak Galerkin (WG) finite element method. The WG
finite element method is a novel numerical technique that has emerged in recent years for solving
partial differential equations [3]. The main idea behind this method is the employment of totally
discontinuous weak functions on the partitions and the replacement of classical derivatives by weak
derivatives. In [20], the WG scheme was extended to general polygon mesh by introducing a
stabilizer. When comparing with mixed finite element methods, the WG finite element methodis more
flexible due to the availability of low-order weak Galerkin finite element pairs. In the past few years,
this method has been utilized to address the Stokes equation [13, 21], Brinkman equation [23, 25],
Helmholtz equation [22], and linear elastic equations [19, 24]. In contrast to the references that
focused on the WG scheme applied to the Navier-Stokes equations [8, 26], we introduce a nonlinear
damping term to the NS equation, making it more complex. Dealing with this damping term presents
a challenge due to the need for more mathematical techniques to prove error estimates, including the
topological degree lemma, which is detailed in the following section.

We propose the weak Galerkin finite element method for solving the Navier-Stokes equation with
nonlinear damping. The paper is structured as follows. Section 2 outlines the variational formulation
of the problem and introduces the notion of weak finite element spaces as well as weak differential
operators such as weak gradient and weak divergence. In addition, we establish the WG finite element
numerical scheme and prove the existence and uniqueness of the numerical solutions. The error
equation and estimates for velocity and pressure are derived and examined in Section 3. In Section 4,
we present numerical examples to verify the theoretical analysis conducted before.

2. Weak Galerkin finite element method

2.1. Variational form

Let Ω ∈ Rd (d = 2, 3) be an open bounded domain with Lipschitz continuous boundary. We denote
by Hm(Ω) the standard Sobolev space, where the associated inner product, boundary product, norm,
and semi-norm are given by (·, ·)m, 〈·, ·〉m,∂Ω, ‖ · ‖m , and | · |m. When m = 0, the space Hm(Ω) coincides
with L2(Ω), where the inner product and norm are denoted by (·, ·)Ω and ‖ · ‖Ω, respectively. We denote
the subspace of L2 (Ω) by L2

0 (Ω), where the mean value is zero.

L2
0 (Ω) =

{
u ∈ L2 (Ω) ,

∫
∂Ω

u ds = 0
}
.

We introduce some bilinear forms and trilinear forms. For any v, w ∈ V , p ∈ W, we define

a(u, v) = (∇u,∇v),
b(v, p) = (∇ · v, p),

c(u; v,w) = α(|u|r−2v,w),
d(u; v,w) = ((u · ∇)v,w) = ((u1∂x1 + ... + uxd∂xd )v,w).

If ∇ · u = 0, by the Green’s formula,

c(u; v,w) = ((u · ∇)v,w) +
1
2

((∇ · u)v,w)
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=
1
2

((u · ∇)v,w) −
1
2

((u · ∇)w, v).

Then, the variational form of Eqs (1.1)–(1.3) is to find (u, p) ∈ V ×W such that

µa(u, v) − b(v, p) + c(u; u, v) + d(u; u, v) = (f, v),
b(u, q) = 0,

for any v ∈ V , q ∈ W.

2.2. Numerical scheme of WG

The main objective of this part is to develop the weak Galerkin finite element numerical scheme
for the problems (1.1)–(1.3). The essential step in establishing a numerical scheme for the WG
method is to replace the differential operators in the variational form with weak differential operators
and incorporate a stabilizer to improve the weak continuity of the approximation functions. This part
aims to provide an introduction to fundamental topics in WG techniques, including the local weak
function space, discrete weak function space, weak differential operators, and the stabilizer.

Let Th be the regularity partition of Ω satisfying conditions [20]. T denotes the partition unit and
∂T denotes the boundary of T . For each T ∈ Th, hT denotes its diameter and h = maxT∈Th denotes the
mesh size of Th. For any k ≥ 1, Pk(T ) denotes the set of polynomials with degree no more than s on
T . The function v = {v0, vb} is called the weak vector valued function, where v0 and vb are the values
of the weak function v in the interior T and the boundary ∂T , respectively.

Define the local weak function space S (T ), discrete velocity space, and pressure space Vh, V0
h , and

Wh, as follows.

S (T ) = {v = {v0, vb} : v0 ∈ Pk(T ), vb ∈ Pk(∂T ), k ≥ 1},
Vh = {vh = {v0, vb} : vh|T ∈ [S (T )]d},

V0
h = {vh ∈ Vh : vb|∂Ω = 0},

Wh = {ph : ph ∈ L2
0(Ω), ph|T ∈ Pk−1(T ), k ≥ 1}.

Define two types of weak differential operators, namely the discrete weak gradient and discrete
weak divergence.

Definition 1. For any τ ∈ [Pk−1(T )]d×d, discrete weak gradient of vector valued functions ∇wv ∈
[Pk−1(T )]d×d is defined as the unique polynomial satisfying the following equation

(∇wv, τ)T = −(v0,∇ · τ)T + 〈vb, τn〉∂T .

Definition 2. For any q ∈ Pk−1(T ), discrete weak divergence of vector valued functions ∇w ·v ∈ Pk−1(T )
is defined as the unique polynomial satisfying the following equation

(∇w · v, q)T = −(v0,∇q)T + 〈vb · n, q〉∂T .

We denote the stabilizer by bilinear form s(uh, vh), which is defined as

s(uh, vh) =
∑
Th

h−1
T 〈u0 − ub, v0 − vb〉∂T , uh ∈ Vh, vh ∈ Wh.

Here, we provide the weak Galerkin finite element numerical approach for the problems (1.1)–(1.3)
in the following manner:
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Algorithm 1. Find uh ∈ V0
h + H1, ph ∈ Wh + H1 such that

µah(uh, vh) + dh(uh; uh, vh) + ch(uh; uh; vh) − bh(vh, ph) = (f, v0), (2.1)
bh(uh, qh) = 0. (2.2)

for any (vh, qh) ∈ V0
h ×Wh, where

ah(uh, vh) = (∇wuh,∇wvh)Ω + s(uh, vh),
bh(vh, ph) = (∇w · vh, ph)Ω,

ch(uh; uh; vh) = α(|u0|
r−2u0, v0)Ω,

dh(uh; uh, vh) =
1
2

((u0 · ∇w) uh, v0)Ω −
1
2

((u0 · ∇w) vh,u0)Ω .

2.3. Well-posedness of the WG scheme

This subsection provides a proof of the well-posedness for the WG numerical scheme. Next, we
present the subsequent norm definition and lemmas from the documents [11, 14, 21, 26].

Definition 3. For any vh ∈ V0
h , define

|||vh|||
2 = ‖∇wvh‖

2 +
∑
Th

h−1
T ‖v0 − vb‖

2
∂T .

Definition 4. For any vh ∈ V0
h , define a mesh-dependent norm

‖f‖∗,h = sup
vh∈V0

h

(f, vh)
|||vh|||

. (2.3)

Lemma 1. For any vh ∈ V0
h we have ∑

T∈Th

‖∇v0‖T ≤ C|||vh|||.

Lemma 2.
[
Discrete Sobolev Inequality

]
For any vh ∈ V0

h , there exists a positive constant C0

independent of h such that

‖v0‖Lq ≤ C0|||vh|||, 2 ≤ q ≤
2d

d − 2
. (2.4)

Lemma 3. For any ρh ∈ Wh, there exists a positive constant β independent of h such that

sup
vh∈V0

h

b(vh, ρh)
|||vh|||

≥ β‖ρh‖. (2.5)

Lemma 4. For all a, b ∈ Rn, r > 2, there holds that

||a|r−2 − |b|r−2| ≤ C(|a|r−3 − |b|r−3)|a − b|,

||a|r−2a − |b|r−2b| ≤ C(|a| + |b|)r−2|a − b|,

||a|r−2 − |b|r−2 − (r − 2)|b|r−4b(a − b)| ≤ C(|a|r−4 − |b|r−4)|a − b|2,

(|a|r−2a − |b|r−2b, a − b) ≥ |a − b|r.
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Lemma 5. Let Z be a finite dimensional functional space equipped with a norm ‖ · ‖Z, let θ > 0, and
let Ψ : Z × [0, 1]→ Z, satisfying the following assumptions

1. Ψ is continuous;
2. For any (z, ρ) ∈ Z × [0, 1], Ψ(z, ρ) = 0 implies ‖z‖Z , θ;
3. Ψ(·, 0) is an affine function and the equation Ψ(Z, 0) = 0 has a solution z ∈ Z such that ‖z‖Z < θ.

There exists z ∈ Z such that Ψ(z, 1) = 0 and ‖z‖Z < θ.

The next propositions can be deduced from Definition 1, 3 and Cauchy-Schwarz inequality.

Proposition 1. For any uh, vh ∈ V0
h , we have

ah(uh, vh) ≤ C|||uh||| · |||vh|||, (2.6)
ah(uh,uh) = ν|||uh|||

2, (2.7)

where C and ν are constant.

The upper bound of the trilinear form ch(·; ·, ·) and dh(·; ·, ·) can be proved.

Proposition 2. For any uh, vh,wh ∈ V0
h , we have

ch(uh; vh,wh) ≤ C1|||uh|||
r−2
|||vh||||||wh|||, (2.8)

dh(uh; vh,wh) ≤ C2|||uh||||||vh||||||wh|||, (2.9)

where C1, C2 are constants independent of h.

Proof. From the Lemmas 1 and 2, we have

ch(uh, vh,wh) = (|u0|
r−2v0,w0)

≤

∑
T∈Th

(∫
T
|u0|

4(r−2)
) r−2

4(r−2)

‖v0‖L4(T )‖w0‖L2(T )


≤

∑
T∈Th

‖u0‖
r−2
L4(r−2)(T )‖v0‖L4(T )‖w0‖L2(T )


≤ C1|||uh|||

r−2
|||vh||| · |||wh|||.

In a similar manner, we may obtain

|dhw(uh, vh,wh)|

=

∣∣∣∣∣∣∣∑T∈Th

1
2

(u0 · ∇wvh,w0) −
1
2

(u0 · ∇wwh, v0)

∣∣∣∣∣∣∣
≤

1
2

∑
T∈Th

(
‖u0‖L4(T )‖∇wvh‖L2(T )‖w0‖L4(T ) + ‖u0‖L4(T )‖∇wwh‖L2(T )‖v0‖L4(T )

)
≤ C2|||uh||||||vh||||||wh|||.

�
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The theorem presented aims to establish the well-posedness of the WG scheme.

Theorem 1. [Existence and Boundedness] There exists a solution (uh, ph) ∈ V0
h × Wh to the WG

schemes (2.1) and (2.2) that satisfies the following estimates

|||uh||| ≤ µ−1‖f‖∗,h, (2.10)

‖ph‖ ≤
1
β

(2‖f‖∗,h + C1µ
−(r−1)‖f‖r−1

∗,h + C2µ
−2‖f‖2∗,h). (2.11)

Proof. Let Zh := V0
h × Wh. It is obvious that Zh is a finite dimensional functional space. For any

(wh, rh) ∈ Zh, the norm ‖(wh, rh)‖Zh is given by

‖(wh, rh)‖Zh := (µ|||wh|||
2 + ‖rh‖

2)
1
2 .

Define the continuous map Ψ : Zh × [0, 1] → Zh such that, for ((wh, rh), ρ) ∈ Zh × [0, 1], (ξ, ζh) =

Ψ((wh, rh), ρ) is defined as the unique polynomial pairs satisfying the following equations

(ξh, vh)V0
h

= µah(wh, vh) − bh(vh, rh) + ραch(wh; wh, vh) (2.12)
+ρdh(wh; wh, vh) − (f, vh),

(ζh, qh)Wh = bh(wh, qh). (2.13)

for any vh ∈ V0
h , qh ∈ Wh.

We are now in a position to check the conditions of Lemma 5 one by one.
It is easy to know that Ψ is continuous. Let (ξh, ζh) = Ψ((wh, rh), ρ) = (0, 0). Taking vh = wh in Eq (2.12)
and qh = rh in Eq (2.13), and using Eqs (2.6) and (2.7), we have

µah(wh,wh) + ραch(wh,wh; wh) = (f,wh).

The following can be obtained from Eq (2.5)

µ|||wh|||
2
≤ µah(wh,wh) + ρα‖wh‖

r = (f,w0) ≤ |||wh|||‖f‖∗,h.

From Eq (2.3), we can further have |||wh||| ≤ µ
−1‖f‖∗,h.

According to Lemma 4,

‖rh‖ ≤
1
β

sup
vh∈V0

h

b(vh, rh)
|||vh|||

=
1
β

sup
vh∈V0

h ,|||vh |||=1

b(vh, rh)
|||vh|||

=
1
β

sup
vh∈V0

h ,|||vh |||=1
((f, vh) − µah(wh, vh) − ρch(wh; wh, vh) − ρdhw(wh; wh, vh))

≤
1
β

(2‖f‖∗,h + C1µ
−(r−1)‖f‖r−1

∗,h + C2µ
−2‖f‖2∗,h).

which implies

|||wh|||
2 + ‖rh‖

2 ≤ (
4
β2 +

1
µ2 )‖f‖2∗,h +

1
β2 (C2

1µ
−2(r−1)‖f‖2(r−1)

∗,h + C2
2µ
−4‖f‖4∗,h).
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Taking

θ = (
4
β2 +

1
µ2 )‖f‖2∗,h + (

C1

βµ(r−1) )2‖f‖2(r−1)
∗,h + (

C2

βµ2 )2‖f‖4∗,h)
1
2 + δ,

where δ is a positive constant, ‖(wh, rh)‖Zh , θ .
Note that Ψ(zh, 0) is an affine map when ρ = 0. The equation Ψ(wh, 0) = 0 is well-posed because in

the result of WG finite element method for the Stokes problem [21], we denote it by zh = (wh, rh) ∈ Zh

and the solution satisfies the estimate ‖(wh, rh)‖Zh < θ. There exists z∗h = (uh, ph) ∈ Zh such that
Ψ(zh, 1) = 0 and ‖z∗h‖Zh < θ from Lemma 5. Thus the WG scheme solution is (uh, ph), which satisfies
the estimates (2.10) and (2.11). �

Theorem 2. The solution of the WG schemes (2.1) and (2.2) is unique under the condition C2‖f‖∗,h <
µ2.

Proof. Let (uh1, ph1) ∈ V0
h × Wh, (uh2, ph2) ∈ V0

h × Wh solve Eqs (2.1) and (2.2) and satisfy the
estimates (2.10) and (2.11). Then, we have

µah(uh1 − uh2, vh) + dh(uh1; uh1, vh) − dh(uh2; uh2, vh)
−bh(vh, ph1 − ph2) + α(|uh1|

r−2uh1 − |uh2|
r−2uh2, vh) = 0,

bh(uh1 − uh2, qh) = 0.

Observe that

dh(uh1; uh1, vh) − dh(uh2; uh2, vh) = dh(uh1,uh1 − uh2, vh) + dh(uh1 − uh2,uh2, vh).

So we arrive at

µah(uh1 − uh2, vh) + dh(uh1; uh1 − uh2, vh) − bh(vh, ph1 − ph2) + α(|uh1|
r−2uh1 − |uh2|

r−2uh2, vh)
= dh(uh1 − uh2; vh,uh2).

Taking vh = uh1 −uh2, we have the next inequalities based on Lemma 4, Proposition 1, and Theorem 1.

µah(uh1 − uh2,uh1 − uh2) + α(|uh2|
r−2uh1 − |uh2|

r−2uh2,uh1 − uh2)
= dh(uh1 − uh2; uh1 − uh2,uh2).

Thus,

µ|||uh1 − uh2|||
2 + α‖uh1 − uh2‖

r
0,r ≤ C2|||uh1 − uh2|||

2
|||uh2||| ≤ C2µ

−1|||uh1 − uh2|||
2
‖f‖∗,h.

The condition C2‖f‖∗,h < µ2 yields that uh1 = uh2 = 0. It follows from Eq (2.11)

b(vh, ph1 − ph2) = 0,∀vh ∈ V0
h .

Combining with Eq (2.5), we know that ph1 = ph2. �

Networks and Heterogeneous Media Volume 19, Issue 2, 475–499.



483

3. Error analysis

In this section, we construct the error equation of the WG numerical scheme and obtain the optimal
error estimates for the velocity in an energy norm and the pressure in the L2 norm, which shows the
efficiency of the WG method in theory.

We first introduce several L2 projection operators. Let Qh = {Q0,Qb}, where Q0 is the L2 space
projection onto [Pk(T )]d, Qb is the L2 space projection onto [Pk(e)]d. Moreover, Qh,Rh, and Qh

represent the projection operators from L2 space onto [Pk−1(T )]d×d, [Pk−1(T )]d, and Pk−1(T ),
respectively.

Proposition 3. Let 1 ≤ r ≤ k, w|Ω ∈ [Hr+1(Ω)]d, ρ|Ω ∈ Hr(Ω), vh ∈ Vh. Thus, under the condition of
regular subdivision, we have

|s(Qhw, vh)| ≤ Chr‖w‖r+1|||vh|||,

ϕw(vh) ≤ Chr‖w‖r+1|||vh|||,

θρ(vh) ≤ Chr‖ρ‖r|||vh|||,

where

ϕw(vh) =
∑
T∈Th

〈v0 − vb, (µ∇w)n − Qh(µ∇w) · n〉∂T ,

θρ(vh) =
∑
T∈Th

〈v0 − vb, (ρ − Qhρ)n〉∂T .

Proof. Based on the definition of Qb, trace inequality, Cauchy-Schwarz inequality, and projection
inequality (A.5), we can get

|s(Qhw, vh)| =

∣∣∣∣∣∣∣∑T∈Th

h−1
T 〈Q0w − Qbw, v0 − vb〉∂T

∣∣∣∣∣∣∣
≤

(
h−1

T ‖Q0w − w‖2∂T

)1/2
∑

T∈Th

h−1
T ‖v0 − vb‖

2
∂T


1/2

≤
(
h−2

T ‖Q0w − w‖2T + ‖∇(Q0w − w)‖2T
)1/2
|||vh|||

≤ Chr‖w‖r+1|||vh|||.

|ϕw(vh)| =

∣∣∣∣∣∣∣∑T∈Th

〈v0 − vb,∇w · n −Qh(∇w) · n〉∂T

∣∣∣∣∣∣∣
≤

∑
T∈Th

‖v0 − vb‖∂T ‖∇w · n −Qh(∇w) · n‖∂T

≤
∑
T∈Th

(hT ‖∇w · n −Qh(∇w) · n‖2∂T )1/2|||vh|||

≤ Chr‖w‖r+1|||vh|||.
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|θρ(vh)| =

∣∣∣∣∣∣∣∑T∈Th

〈v0 − vb, (ρ − Qhρ)n〉∂T

∣∣∣∣∣∣∣
≤

∑
T∈Th

(‖v0 − vb‖∂T ‖ρ − Qhρ‖∂T )

≤ Chr‖ρ‖r|||vh|||.

�

Based on the lemma mentioned above, we provide the subsequent error equations.

Theorem 3. Let (u, p) ∈ ([Hk+1(Ω)]d ∩ [H1
0(Ω)]d) × (Hk(Ω) ∩ L2

0(Ω)) be the exact solution of
Eqs (1.1)–(1.3), (uh, ph) ∈ V0

h ×Wh be the numerical solution of the WG schemes (2.1) and (2.2), and
we define eh = Qhu − uh εh = Qh p − ph, the following equations

µah(eh, vh) − bh(εh, vh) + dh(eh; eh, vh) + α(|u|r−2u, v0) − ch(uh; uh, v0) (3.1)
= ϕu(vh) − θρ(vh) + s(Qhu, vh) − dh(eh; uh, vh) − dh(uh; eh, vh)

−

4∑
i=1

Li(u,u, vh) − l1(u,u, vh) − l2(u,u, vh),

bh(eh, qh) = 0. (3.2)

hold for any vh ∈ V0
h and qh ∈ Wh, where

L1(u,u, vh) =
1
2

(((u − Qhu) · ∇)u, vh)h,

L2(u,u, vh) =
1
2

(((Qhu · ∇)u, vh)h − ((Qhu · ∇w)Qhu, vh)h),

L3(u,u, vh) = −
1
2

(((u − Qhu) · ∇w)vh,u)h,

L4(u,u, vh) =
1
2

((Qhu · ∇w)vh,u − Qhu)h,

ϕu(vh) =
∑
T∈Th

〈v0 − vb, (µ∇u)n − Qh(µ∇u)n〉∂T ,

θρ(vh) =
∑
T∈Th

〈v0 − vb, (ρ − Qhρ)n〉∂T .

Proof. Multiplying by v0 in v = {v0, vb} to both sides of Eq (1.1), we have

−(µ∆u, v0) + ((u · ∇)u, v0) + (∇p, v0) + α(|u|r−1u, v0) = (f, v0).

Using integration by parts to get

(f, v0) = µ(∇u,∇v0) −
∑
T∈Th

〈∇u · n, v0〉∂T + ((u · ∇)u, v0) − (p,∇ · v0) +
∑
T∈Th

〈pn, v0〉∂T + α(|u|r−1u, v0).

It follows from Eqs (A.1) and (A.2)

(f, v0) = µ(∇w(Qhu),∇wvh)h +
∑
T∈Th

〈v0 − vb,Q(∇u) · n〉∂T −
∑
T∈Th

〈∇u · n, v0〉∂T
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+ ((u · ∇)u, v0) − (Qh p,∇w · vh)h −
∑
T∈Th

〈v0 − vb, (Qh p)n〉∂T +
∑
T∈Th

〈pn, v0〉∂T + α(|u|r−1u, v0).

Noting that ∑
T∈Th

〈∇u · n, vb〉∂T = 0,
∑
T∈Th

〈pn, vb〉∂T = 0.

Further simplify as

(f, v0) = µah(Qhu, vh) − bh(Qh p, vh) + ((u · ∇)u, v0) (3.3)
+α(|u|r−2u, v0) − ϕu(vh) + θp(vh) − s(Qhu, vh).

Subtracts Eq (3.3) from Eq (2.1) as

µah(eh, vh) − bh(εh, vh) + (u · ∇u, v0) − dw(uh; uh, vh) + c(u; u, v0) − ch(uh; uh, v0)
= ϕu(vh) − θp(vh) + s(Qhu, vh).

Replacing (u · ∇u, v0) by Eq (A.6), we have

µah(eh, vh) − bh(εh, vh) + δd(u; u, vh) + l1(u, vh) + l2(u, vh)
−dw(uh; uh, vh) + c(u; u, v0) − ch(uh; uh, v0)

= ϕu(vh) − θp(vh) + s(Qhu, vh).

Next, we deal with the nonlinear terms δd(u; u, vh) − dw(uh; uh, vh). First, we get

δd(u; u, vh) (3.4)

=

[
1
2

((u · ∇)u, vh)h −
1
2

((u · ∇w)vh,u)h

]
=

1
2

[(((u − Q0u) · ∇)u, v0)h + ((Q0u · ∇)u, v0)h − ((Q0u · ∇w)Qhu, v0)h. + ((Q0u · ∇w)Qhu, v0)h]

−
1
2

[(((u − Q0u) · ∇w)vh,u)h + ((Q0u · ∇w)vh,u − Q0u)h + ((Q0u · ∇w)vh,Q0u)h]

=

4∑
i=1

Li(u,u, vh) + dh(Qhu; Qhu, vh).

Furthermore,

dh(Qhu; Qhu, vh) − dh(uh; uh, vh) (3.5)
= dh(Qhu; Qhu, vh) − dh(uh; Qhu, vh) + dh(uh; Qhu, vh) − dh(uh; uh, vh)
= dh(eh; eh, vh) + dh(eh; uh, vh) + dh(uh; eh, vh).

Combining Eqs (3.4) and (3.5), we obtain

µah(eh, vh) − bh(εh, vh) + dh(eh; eh, vh) + α(|u|r−2u, v0) − ch(uh; uh, v0)
= ϕu(vh) − θp(vh) + s(Qhu, vh) − dh(eh; uh, vh) − dh(uh; eh, vh)
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−

4∑
i=1

Li(u,u, vh) − l1(u, vh) − l2(u, vh).

Multiply both sides of Eq (1.2) by qh ∈ Wh and use Lemma A1 as follows

0 = (∇ · u, qh) = (Qh(∇ · u), qh)h = (∇w · Qhu, qh)h = b(Qhu, qh). (3.6)

The difference of Eqs (2.2) and (3.6) yields the following equation

b(eh, qh) = 0.

�

Next, we are ready to derive the optimal error estimates for velocity and pressure. Taking the
velocity function as an example, we can in fact separately estimate the errors Qhu − uh and Qhu − u in
order to estimate u− uh. Because the interpolation error Qhu− u is proved by the finite element theory
in [20], we need to demonstrate the error estimates theorem as follows.

Theorem 4. Let (u, p) ∈ ([Hk+1(Ω)]2∩ [H1
0(Ω)]2)× (Hk(Ω)∩ L2

0(Ω)) be the solution of Eqs (1.1)–(1.3),
and (uh, vh) be the solution of the WG schemes (2.1) and (2.2). Then, the following error estimate holds
true

|||eh||| + ‖εh‖ ≤ Chk(‖u‖k+1,Ω + ‖p‖k,Ω). (3.7)

Proof. Taking vh = eh in Eq (3.1), qh = εh in Eq (3.2), and adding α(|Q0u|r−2Q0u, e0)h to both sides of
Eq (3.1), we observe

µah(eh, eh) − b(εh, eh) + dh(eh; eh, eh) + α(|Q0u|r−2Q0u, e0)h − (|uh|
r−2uh, e0)h

= ϕu(eh) − θp(eh) + s(Qhu, eh) − dh(eh; uh, eh) − dh(uh; eh, eh)

−

4∑
i=1

Li(u,u, eh) − l1(u,u, eh) − l2(u,u, eh) − α(|u|r−2u, e0)h + α(|Q0u|r−2Q0u, e0)h.

Based on Eqs (2.8) and (2.9), and Lemma 4, we have

µ|||eh|||
2 + C‖e0‖

r
0,r

≤ ah(eh, eh) + dh(eh; uh, eh) + α(|Q0u|r−2Q0u, e0) − (|uh|
r−2uh, e0)

= ϕu(eh) − θp(eh) + s(Qhu, eh) − dh(eh; uh, eh)

−

4∑
i=1

Li(u,u, eh) − l1(u,u, eh) − l2(u,u, eh) − α(|u|r−2u, e0) + α(|Q0u|r−2Q0u, e0).

The following is an estimate of each item of the right side of the above formula. First, we deal with the
linear terms. According to Eqs (2.3) and (2.9), we have

dh(eh; uh, eh) ≤ C2|||eh|||
2
|||uh||| ≤ C2

‖f‖∗,h
µ
|||eh|||

2.
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From Proposition 3, we have

ϕu(eh) − θp(eh) + s(Qhu, eh) ≤ Chk(‖u‖k+1 + ‖p‖k)|||eh|||.

Using Hölder inequality, Discrete Sobolev inequality (2.4), and projection inequalities (A.3) and (A.4),

L1(u,u, vh) =
1
2

(((u − Q0u) · ∇)u, v0)h ≤
∑
T∈Th

‖u − Q0u‖L2(T )‖∇u‖L4(T )‖v0‖L4(T )

≤ Chk‖u‖k+1‖u‖2|||vh|||,

L2(u,u, vh) =
1
2

((Qhu · ∇)u − ((Qhu) · ∇w)Qhu, v0)h ≤
∑
T∈Th

‖Q0u‖L4(T )‖∇u − ∇wQhu‖L2(T )‖v0‖L4(T )

≤ Chk‖u‖k+1‖u‖1|||vh|||,

L3(u,u, vh) = −
1
2

(((u − Qhu) · ∇w)vh,u)h ≤ ‖u − Q0u‖L4(T )‖∇wvh‖L2(T )‖u‖L4(T )

≤ Chk‖u‖k+1‖u‖1|||vh|||,

L4(u,u, vh) = ((Qhu · ∇w)vh,u − Q0u)h ≤
∑
T∈Th

‖Q0u‖L4(T )‖∇wvh‖L2(T )‖u − Q0u‖L4(T )

≤ Chk‖u‖k+1‖u‖1|||vh|||.

Furthermore, using trace inequality, we have

l1(u,u, vh) =
1
2

d∑
i=1

((uiu − Rh(uiu)),∇wvi)h ≤ Chk‖u‖2k+1|||vh|||.

l2(u,u, vh) =
1
2

d∑
i=1

∑
T∈Th

〈(uiu − Rh(uiu)) · n, v0,i − vb,i〉∂T

≤ C
d∑

i=1

∑
T∈Th

h−
1
2

T ‖uiu − Rh(uiu)‖∂T

 ·
∑

T∈Th

h−
1
2

T ‖v0,i − vb,i‖∂T


≤ C

d∑
i=1

(
∑
T∈Th

‖uiu − Rh(uiu)‖T )|||vh|||

≤ Chk‖u‖2k+1|||vh|||.

At last, we deal with α(|u|r−2u, e0)h + α(|Q0u|r−2Q0u, e0)h. Using Hölder inequality, Lemma (2.4), and
projection inequality (2.10), we get

|α(|Q0u|r−2Q0u − |u|r−2u, e0)h|

≤ C
∑
T∈Th

∫
T
|u − Q0u|(|u| + |Q0u|)r−2|e0|dx

≤ C
∑
T∈Th

∫
T
|u − Q0u|(|u|r−2 + |Q0u|r−2)|e0|dx

≤ Chk‖u‖k+1|||eh|||.
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Thus, we get the following error estimate of velocity.

|||eh||| ≤ Chk(‖u‖k+1 + ‖p‖k).

In order to get the estimates of p, we can start with Eq (3.2)

b(εh, vh)
= ah(eh, vh) + α(|u|r−1u, v0) − ch(uh; uh, v0) − ϕu(vh) + θp(vh) − s(Qhu, vh)

+dh(eh; Qhu; vh) + dhw(uh; eh, vh) +

4∑
i=1

Li(u,u, vh) + l1(u,u, vh) + l2(u,u, vh).

On the right-hand side of the above equation, we only need to estimate the terms α(|u|r−1u, v0) −
ch(uh; uh, v0) and dh(eh; Qhu; vh) + dhw(uh; eh, vh) because estimates of other terms have been estimated
in the previous proof. Using Lemma 1, Proposition 1, and Hölder inequality,

α(|u|r−1u, v0) − ch(uh; uh, v0)
= α(|u|r−1u, v0) − α(|Q0u|r−2Q0u, v0) + α(|Q0u|r−2Q0u, v0) − α(|u0|

r−2u0, v0)
≤ C(|u|r−2u − |Q0u|r−2Q0u, v0) + C(|Q0u|r−2Q0u − |u0|

r−2u0, v0)
≤ Chk(‖u‖k+1 + ‖p‖k)|||vh|||.

From Sobolev Inequality (2.4), we have

dh(eh; Qhu; vh) ≤ C|||eh|||‖u‖1|||vh|||,

dh(uh; eh, vh) ≤ C|||uh||||||eh||||||vh||| ≤ C
‖f‖∗,h
µ
|||eh||||||vh|||.

Thus,

|b(vh, εh)| ≤ Chk(‖u‖k+1 + ‖p‖k)|||vh|||.

Combing with inf-sup condition (2.5), the estimate of p is given as

‖εh‖ ≤ Chk(‖u‖k+1 + ‖p‖k).

�

4. Numerical experiments

Three numerical examples are used to assess the efficacy of the WG finite element numerical
solution in this section. Taking into account the nonlinear term of the WG numerical scheme of
Navier-Stokes equation with the nonlinear terms (2.1) and (2.2), we use the Oseen iterative
method [11] to linearize it first: assuming that we have (un

h, pn
h), find (un+1

h , pn+1
h ) ∈ V0

h ×Wh such that

ah(un+1
h , vh) + dh(un

h; un+1
h , vh) − bh(vh, pn+1

h ) + ch(un
h; un+1

h , vh) = (f, v0),
bh(un+1

h , qh) = 0,

where the termination condition is set to 1.0E − 6.
The first two simulations are provided with precise, smooth solutions, while the third simulation

involves a stable nonlinear fluid and is considered a quasi-basis problem. Each of these simulations is
executed using MATLAB.
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Example 1. Let Ω = (0, 1) × (0, 1), viscosity coefficient µ = 1, damping coefficient r = 3, α = 1. The
source term f is selected to ensure that the exact solution is

u1(x, y) = 10x2(x − 1)2y(y − 1)(2y − 1),
u2(x, y) = −10x(x − 1)(2x − 1)y2(y − 1)2,

p(x, y) = 10(2x − 1)(2y − 1).

We employ a uniform rectangular grid partitioning of the region Ω in Example 1 and subsequently
establish connections between their diagonals to produce triangulated meshes. We proceed to mesh
in steps of h = 1/4, 1/8, 1/16, 1/32, 1/64. The WG numerical technique approximates the velocity
function using a polynomial function of degree one within the element and a polynomial function of
degree zero on the boundary of the element. The pressure function is approximated by a first-degree
polynomial function within the element. Namely, the WG scheme is in case of P1P1 − P0.

The results of Example 1 are illustrated in Figures 1–4 for a mesh size of h = 1/64. Figure 1(a)
displays the numerical solutions of the velocity function uh in the first direction, whereas Figure 1(b)
displays the exact solutions of the velocity function u in the first direction. Figure 2(a),(b) shows
the numerical solutions and the exact solutions of the velocity function in the second direction. The
numerical solutions ph and exact solutions p of the pressure function are displayed in Figure 3. The
left and right subgraphs of Figure 4 illustrate the two contour maps of pressure. Observing the images
above, it becomes apparent that the numerical solutions for the velocity and pressure functions are able
to accurately approximate the respective analytical solutions.

(a) (b)

Figure 1. Example 1 (a) the WG solution u1h, (b) the exact solution u1 with h = 1/64.
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(a) (b)

Figure 2. Example 1 (a) the WG solution u2h, (b) the exact solution u2 with h = 1/64.

(a) (b)

Figure 3. Example 1 (a) the WG solution ph, (b) the exact solution p with h = 1/64.
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(a) (b)

Figure 4. Example 1 (a) the WG solution, (b) the exact solution of pressure contours with h
= 1/64.

Subsequently, we show the error and convergence of the velocity and pressure functions. The
convergence rates with respect to h are calculated using the formula log(ei/ei+1)/log(hi+1/hi), where ei

and ei+1 are the relative errors corresponding to the mesh sizes hi and hi+1. Table 1 denotes the obtained
error and convergence order. The third and fifth columns of the table clearly demonstrate that the rate
of convergence for the H1-norm and L2-norm of velocity is of first and second order, respectively.
The outcomes coincide precisely with the predictions made by Eq (3.7) in Theorem 4. Furthermore,
it is evident that the seventh column of Table 1 demonstrates a convergence rate over order 1 for the
L2-norm of the pressure function. Also, we show the image of the convergence order in Figure 5,
which is compared with lines of first and second order visually. This indicates that the convergence is
superlative and surpasses the expectations set by the theoretical study.

Table 1. Error and convergence order of velocity and pressure of Example 1.

h |||Qhu − uh||| k ‖Q0u − u0‖0 k ‖Qh p − ph‖0 k
1/4 2.0075E−00 – – 2.5094E−01 – – 8.7338E−01 – –
1/8 1.0523E−00 0.93 6.9945E−02 1.84 3.9207E−01 1.16
1/16 5.3817E−01 0.97 1.8463E−02 1.92 1.3716E−01 1.52
1/32 2.7144E−01 0.99 4.7138E−03 1.97 4.3112E−02 1.67
1/64 1.3613E−01 1.00 1.1871E−03 1.99 1.2856E−02 1.75

Networks and Heterogeneous Media Volume 19, Issue 2, 475–499.



492

(a) (b)

Figure 5. (a) the convergence order of Example 1, (b) the convergence order of Example 2.

Example 2. Let Ω = (0, 1) × (0, 1), viscosity coefficient µ = 1, damping coefficient r = 5, α = 2. The
source term f is selected to ensure that the exact solution is

u1(x, y) = sin(πx)sin(πy),
u2(x, y) = cos(πx)cos(πy),
p(x, y) = 2cos(πx)sin(πy).

In Example 2, we ensure that the mesh partitions, mesh sizes, and the weak Galerkin finite element
function space are identical to those in Example 1. In this example, we calculate the numerical
solutions for the velocity uh and pressure ph when the value of h is set to 1/64. The numerical
solutions of the velocity functions in the first and second direction are shown in Figures 6(a) and 7(a).
The exact solutions of the velocity functions in the first and second direction are shown in
Figures 6(b) and 7(b). The numerical solutions ph are presented in Figure 8(a), and the exact solutions
p are displayed in Figure 8(b). Figure 9(a),(b) displays the pressure contours. By analyzing these
figures, we may obtain numerical solutions for both velocity and pressure that closely approximate
the corresponding exact results. In addition, we compute the errors and convergence and present them
in Table 2 and Figure 5(b). The table displays the rate of convergence for the H1-norm error of
velocity in the third, fifth, and seventh columns, as well as the L2-norm error of velocity. The
H1-norm error of the pressure exhibits orders of 1, 2, and 1, which aligns with the theoretical analysis
presented in Theorem 3.7.

We are also interested in determining whether variations in the damping coefficient impact the
numerical results of the WG method proposed in this paper. By a number of experiments in which the
coefficients change by orders of magnitude, it shows that when the damping coefficient changes are
extremely small, even up to 10E − 06, the effect on the solution of the equation still remains small,
which is up to 4.07%. However, when α increases, the numerical results are effected significantly.
In practice, the damping parameters describe the damping force that is not directly proportional to the
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velocity of a flowing fluid. Large damping coefficients lead to an increase in the proportion of nonlinear
terms in the equation, and this causes change in calculation results of uh.

(a) (b)

Figure 6. Example 2 (a) the WG solution u1h, (b) the exact solution u1 with h = 1/64.

(a) (b)

Figure 7. Example 2 (a) the WG solution u2h, (b) the exact solution u2 with h = 1/64.
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(a) (b)

Figure 8. Example 2 (a) the WG solution ph, (b) the exact solution p with h = 1/64.

(a) (b)

Figure 9. Example 2 (a) the WG solution, (b) the exact solution of pressure contours with h
= 1/64.
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Table 2. Error and convergence order of velocity and pressure of Example 2.

h |||Qhu − uh||| k ‖Q0u − u0‖0 k ‖Qh p − ph‖0 k
1/4 1.4427E−00 – – 1.5438E−00 – – 1.9606E−01 – –
1/8 7.6442E−01 0.92 4.1614E−02 1.89 9.4198E−02 1.06
1/16 3.8685E−01 0.98 1.0616E−02 1.97 4.2124E−02 1.16
1/32 1.9401E−01 1.00 2.6713E−03 1.99 1.9318E−02 1.12
1/64 9.7081E−02 1.00 6.6922E−04 2.00 9.2582E−03 1.06

Example 3. Consider the lid-driven cavity flow problem [7]. Let Ω = (0, 1)×(0, 1), viscosity coefficient
µ = 0.1, damping coefficient r = 3, α = 1. The source term f is zero. The velocity function satisfies
the Dirichlet boundary condition, namely, we impose the normal component of the velocity to be zero
on ∂Ω and the tangential component to be zero except along the top boundary where it is set to one.

In Example 3, we standardize the triangulation partitioning to match that of the initial two examples.
The WG scheme is in case of P1P1−P0. When mesh size h = 1/64, we represent the numerical velocity
vector diagram as Figure 10(a) and the streamline diagram as Figure 10(b). By analyzing Figure 10(a),
it is evident that the initial velocity of the top border in the tangential direction induces a clockwise
flow of the fluid in the cavity. Upon analyzing Figure 10(b), it becomes evident that, as one moves
closer to the top cover, the streamline becomes thicker, indicating a higher velocity. This has the same
calculation results as [11]. The density of streamlines decreases and the velocity of the flow decreases
as the flow approaches the three boundaries.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b)

Figure 10. Example 3 (a) velocity vector diagram, (b) velocity streamline diagram.
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5. Results

In this paper, we propose the weak Galerkin finite element method for the Navier-Stokes equation
with a nonlinear damping term. The theoretical analysis demonstrates the existence and uniqueness of
numerical solutions obtained by the WG finite element method. We analyse the convergence of the
velocity error in the energy norm and the pressure error in the L2-norm. The numerical experiments
show the validity of the theoretical study and the efficacy of the WG method. For improved
computational efficiency, this two-level technique can be explored in the future, and we will make an
effort for the time-dependent models.
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Appendix A

In order to give the error estimates, we need to estimate the remainder s(Qhw, vh), ϕw(vh) and θρ(vh)
with the help of the lemmas in [21] and [26]. In this section, we shall introduce these techniques.

Lemma A1. The projection operators Qh,Qh, and Qh satisfy the following commutative properties

∇w(Qhv) = Qh(∇v), ∀ v ∈ [H1(Ω)]d,

∇w · (Qhv) = Qh(∇ · v), ∀ v ∈ [H(div,Ω)]d.

Lemma A2. For any w ∈ [H1(Ω)]d, ρ ∈ H1(Ω), vh ∈ V0
h , it follows that

(∇w(Qhw),∇wvh)h = (∇w,∇v0)h −
∑
T∈Th

〈v0 − vb, (Qh∇w) · n〉∂T , (A.1)

(∇w · vh,Qhρ)h = (∇ · v0, ρ)h −
∑
T∈Th

〈v0 − vb, (Qhρ)n〉∂T . (A.2)

Lemma A3. Let Th be a finite element partition of domain K satisfying the shape regularity
assumptions and w ∈ [Hr+1(K)]d and ρ ∈ Hr(K) with 1 ≤ r ≤ k. Then, for 0 ≤ s ≤ 1, we have∑

T∈Th

h2s
T ‖w − Q0w‖2T,s ≤ Ch2(r+1)‖w‖2r+1, (A.3)
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T∈Th

h2s
T ‖∇w −Qh(∇w)‖2T,s ≤ Ch2r‖w‖2r+1, (A.4)∑

T∈Th

h2s
T ‖ρ − Qhρ‖

2
T,s ≤ Ch2r‖ρ‖2r , (A.5)

here, C denotes a generic constant independent of the mesh size h and the functions in the estimates.

Lemma A4. Let u ∈ [H1
0(Ω)]d and ∇ · u = 0, we have

((u · ∇)u, v0)h = δd(u; u, vh) + l1(u, vh) + l2(u, vh), (A.6)

where

δd(u,u, vh) =
1
2

((u · ∇)u, vh)h −
1
2

((u · ∇w)vh,u)h,

l1(u,u, vh) =
1
2

∑
T∈Th

〈(uiu − Rh(uiu)) · n,∇wvi〉∂T ,

l2(u,u, vh) =
1
2

∑
T∈Th

〈(uiu − Rh(uiu)) · n, v0,i − vb,i〉∂T .
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